Automatic calibration of numerical models using fast optimisation by fitness approximation

Yang Liu*, Soon Thiam Khu

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

15 Citations (Scopus)

Abstract

Genetic algorithms (GAs) and Multi-Objective Genetic Algorithms (MOGAs) have proven to be successful in calibrating numerical models. The limitation of using GAs and MOGAs is their expensive computational requirement. The calibration process usually needs to run the numerical model and evaluate the objective function thousands of times before converging to an acceptable solution and generating a sufficiently accurate Pareto set. However, in real world applications, there is simply not enough time and resources to perform such a huge number of model runs. In this study, a computational framework, known as GA-kNN, is presented for solving computationally expensive calibration problems. The concept of GA-kNN will be demonstrated via one novel approximate model using k-Nearest Neighbour classifier. This study also investigates Pareto ranks estimation using kNN classifier as a way to speed up multi-objective genetic algorithm search, namely NSGA-II-kNN. The approximation model is performed in predicting the form of Pareto ranks instead of running the simulation models and ranking current population. This approach can substantially reduce the number of model evaluations on computational expensive problems without compromising the good search capabilities of NSGA-II. The simulation results suggest that the proposed optimisation frameworks are able to achieve good solutions as well as provide considerable savings of the numerical model calls compared to traditional GA and NSGA-II optimisation frameworks.

Original languageEnglish
Title of host publicationThe 2007 International Joint Conference on Neural Networks, IJCNN 2007 Conference Proceedings
Pages1073-1078
Number of pages6
DOIs
Publication statusPublished - 2007
Externally publishedYes
Event2007 International Joint Conference on Neural Networks, IJCNN 2007 - Orlando, FL, United States
Duration: 12 Aug 200717 Aug 2007

Publication series

NameIEEE International Conference on Neural Networks - Conference Proceedings
ISSN (Print)1098-7576

Conference

Conference2007 International Joint Conference on Neural Networks, IJCNN 2007
Country/TerritoryUnited States
CityOrlando, FL
Period12/08/0717/08/07

Fingerprint

Dive into the research topics of 'Automatic calibration of numerical models using fast optimisation by fitness approximation'. Together they form a unique fingerprint.

Cite this