TY - GEN
T1 - An End-to-End Multi-stage Network for Ultrasound Video Object Segmentation
AU - Wang, Mei
AU - Liu, Shiyun
AU - Dong, Yijie
AU - Xu, Zhijie
AU - Pan, Qiao
AU - Chen, Dehua
AU - Su, Jianwen
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Real-time tracking and segmentation of ultrasound video sequence are prerequisite for identifying and analyzing lesions. While significant progress has been made in natural video object segmentation, developing a model for ultrasound video is still challenging due to problems such as low distinguishability and low visual saliency of the target objects, large variation between adjacent frames. These challenges are inherently complex and cannot be effectively tackled through a single process. This paper develops an end-to-end multi-stage network (EMNet) for ultrasound video object segmentation. EMNet consists of two stages. The inital mask generation stage comprises a contrast-enhanced layer to enhance visual contrast between targets and backgrounds. In this stage, a module that adopts the encoder-attention-decoder structure is designed for mask induction. After obtaining the initial segmentation mask, the mask refinement stage is followed to further improve initial segmentation. To prevent the propagation of errors, a gating mechanism is designed to control the fusion of segmentation probability maps in the initial and refinement stages. By transforming certain fixed parameters in different stage into trainable parameters and establishing an end-to-end learning process, we optimized the performance of our approach. We evaluate EMNet on real-world lymphoma ultrasound video dataset. Compared with the best results among seven competing baselines, EMNet achieves the best performance in terms of ℐ&ℱ and ℱ measures, the second-best performance with Param and FPS measures, which demonstrates the competitive performance in terms of both speed and accuracy.
AB - Real-time tracking and segmentation of ultrasound video sequence are prerequisite for identifying and analyzing lesions. While significant progress has been made in natural video object segmentation, developing a model for ultrasound video is still challenging due to problems such as low distinguishability and low visual saliency of the target objects, large variation between adjacent frames. These challenges are inherently complex and cannot be effectively tackled through a single process. This paper develops an end-to-end multi-stage network (EMNet) for ultrasound video object segmentation. EMNet consists of two stages. The inital mask generation stage comprises a contrast-enhanced layer to enhance visual contrast between targets and backgrounds. In this stage, a module that adopts the encoder-attention-decoder structure is designed for mask induction. After obtaining the initial segmentation mask, the mask refinement stage is followed to further improve initial segmentation. To prevent the propagation of errors, a gating mechanism is designed to control the fusion of segmentation probability maps in the initial and refinement stages. By transforming certain fixed parameters in different stage into trainable parameters and establishing an end-to-end learning process, we optimized the performance of our approach. We evaluate EMNet on real-world lymphoma ultrasound video dataset. Compared with the best results among seven competing baselines, EMNet achieves the best performance in terms of ℐ&ℱ and ℱ measures, the second-best performance with Param and FPS measures, which demonstrates the competitive performance in terms of both speed and accuracy.
KW - contrast enhancement
KW - end-to-end
KW - gating mechanism
KW - ultrasound video segmentation
UR - http://www.scopus.com/inward/record.url?scp=85184928379&partnerID=8YFLogxK
U2 - 10.1109/BIBM58861.2023.10385350
DO - 10.1109/BIBM58861.2023.10385350
M3 - Conference Proceeding
AN - SCOPUS:85184928379
T3 - Proceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
SP - 3574
EP - 3581
BT - Proceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
A2 - Jiang, Xingpeng
A2 - Wang, Haiying
A2 - Alhajj, Reda
A2 - Hu, Xiaohua
A2 - Engel, Felix
A2 - Mahmud, Mufti
A2 - Pisanti, Nadia
A2 - Cui, Xuefeng
A2 - Song, Hong
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
Y2 - 5 December 2023 through 8 December 2023
ER -