A weighted least squares optimisation strategy for medical image super resolution via multiscale convolutional neural networks for healthcare applications

Bhawna Goyal*, Dawa Chyophel Lepcha, Ayush Dogra, Shui Hua Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Medical imaging is an essential medical diagnosis system subsequently integrated with artificial intelligence for assistance in clinical diagnosis. The actual medical images acquired during the image capturing procedures generate poor quality images as a result of numerous physical restrictions of the imaging equipment and time constraints. Recently, medical image super-resolution (SR) has emerged as an indispensable research subject in the community of image processing to address such limitations. SR is a classical computer vision operation that attempts to restore a visually sharp high-resolution images from the degraded low-resolution images. In this study, an effective medical super-resolution approach based on weighted least squares optimisation via multiscale convolutional neural networks (CNNs) has been proposed for lesion localisation. The weighted least squares optimisation strategy that particularly is well-suited for progressively coarsening the original images and simultaneously extract multiscale information has been executed. Subsequently, a SR model by training CNNs based on wavelet analysis has been designed by carrying out wavelet decomposition of optimized images for multiscale representations. Then multiple CNNs have been trained separately to approximate the wavelet multiscale representations. The trained multiple convolutional neural networks characterize medical images in many directions and multiscale frequency bands, and thus facilitate image restoration subject to increased number of variations depicted in different dimensions and orientations. Finally, the trained CNNs regress wavelet multiscale representations from a LR medical images, followed by wavelet synthesis that forms a reconstructed HR medical image.

Original languageEnglish
Pages (from-to)3089-3104
Number of pages16
JournalComplex and Intelligent Systems
Volume8
Issue number4
DOIs
Publication statusPublished - Aug 2022
Externally publishedYes

Keywords

  • Convolution neural network (CNN)
  • Edge preserving smoothening
  • High-resolution (HR)
  • Low-resolution (LR)
  • Multiscale decomposition
  • Super-resolution (SR)
  • Wavelet decomposition

Fingerprint

Dive into the research topics of 'A weighted least squares optimisation strategy for medical image super resolution via multiscale convolutional neural networks for healthcare applications'. Together they form a unique fingerprint.

Cite this