A Survey on Artificial Intelligence in Posture Recognition

Xiaoyan Jiang, Zuojin Hu, Shuihua Wang, Yudong Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Over the years, the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded. The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years, such as scale-invariant feature transform, histogram of oriented gradients, support vector machine (SVM), Gaussian mixture model, dynamic time warping, hidden Markov model (HMM), lightweight network, convolutional neural network (CNN). We also investigate improved methods of CNN, such as stacked hourglass networks, multi-stage pose estimation networks, convolutional pose machines, and high-resolution nets. The general process and datasets of posture recognition are analyzed and summarized, and several improved CNN methods and three main recognition techniques are compared. In addition, the applications of advanced neural networks in posture recognition, such as transfer learning, ensemble learning, graph neural networks, and explainable deep neural networks, are introduced. It was found that CNN has achieved great success in posture recognition and is favored by researchers. Still, a more in-depth research is needed in feature extraction, information fusion, and other aspects. Among classification methods, HMM and SVM are the most widely used, and lightweight network gradually attracts the attention of researchers. In addition, due to the lack of 3D benchmark data sets, data generation is a critical research direction.

Original languageEnglish
Pages (from-to)35-82
Number of pages48
JournalCMES - Computer Modeling in Engineering and Sciences
Volume137
Issue number1
DOIs
Publication statusPublished - 2023
Externally publishedYes

Keywords

  • Posture recognition
  • artificial intelligence
  • classification
  • deep learning
  • deep neural network
  • feature extraction
  • machine learning
  • transfer learning

Fingerprint

Dive into the research topics of 'A Survey on Artificial Intelligence in Posture Recognition'. Together they form a unique fingerprint.

Cite this