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ABSTRACT

The Digital Elevation Model (DEM} super-resolution approach aims to improve the spatial resolution or detail
of an existing DEM by applying techniques such as machine learning or spatial interpolation. Convolutional
Neural Networks and Generative Adversarial MNetworks have exhibited remarkable capabilities in generating
high-resolution DEMs from corresponding low-resolution inputs, significantly outperforming conventional
spatial interpolation methods. Mevertheless, these current methodologies encounter substantial challenges
when tasked with processing exceedingly highresolution DEMs (256x256,512%512, or higher), specifically
pertaining to the accumte restore maximum and minimum elevation values, the terrain features, and the
edges of DEMs. Alming to solve the problems of current super-resolution techniques that struggle to effectively
restore topographic details and produce high-resolution DEMs that preserve coordinate information, this paper
proposes an improved DEM super-resclution Transformer(DSRT) network for large-scale DEM super-resolution
and account for geopraphic information continuity. We desipn a window attention module that is used to
engage more elevation points in low-resolution DEMs, which can learn more termin features from the input
high-resolution DEMs. A GeoTransform module i designed to generate coordinates and projections for the
DSRT metwork, We conduct an evaluation of the network utilizing DEMs of various types of terrains and
elevation differences at resolutions of 64x64,256x256 and 512 x 512, The network demonstrated leading
performance across all asessments noterms of root mean square ertor (EMSE} for elevation, slope, aspect,
and curvature, indicating that Transformer-based deep leaming networks are superior to CNNg and GANs in
learning DEM features.

1. Introduction

Jm et al, 2019). Granular terrain information can yield more precize
outcomes in wban planning, floed simulations, and landslide pradic-

The Digital Elevation Model (DEM) symbolizes the Earth's 3D ter-
rain surface, finding varied uses in topographical mapping, ge=ology,
hydrology, civil engineering, and remote sensing (WMoore et al, 1991).
Elevation data, integral to DEMs, can be harmessed from various sources
such as aerial photogrammetry (Ouédracgo et al., 2014; Uysal et al.,
2015), satellite imagery (Fran and Martin, 2006; Shean et al., 2016),
and airborne LIDAR surveys (Liu, 2008). These data inputs are pro-
cessed into a standard grid of elevation points, typically in raster
format, whersin each cell represents a unique elevation value (Moore
et al., 1991). DEMs primarily serve as tools for generating topographi-
cal maps and rendering terrain visnalization (Smith and Clark, 2005).

As technological advancements progress and the requisites of var-
ious geospatial analytical tasks intensify, there is a mounting need
for highresolution DEMs {Zhang and Yu, 2022; Demiray et al., 2021;
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tions (Yang et al, 2015). However, many extant DEMs, constrained by
data acquisition techniques, fall short of offering the desired level of de-
tail. This underscores the exigency for super-resolution (SR) techniques
in DEMs, aiming to augment the resolution of existing data and furnish
a more detailed and accurate topographical representation (Hayat,
2018). SR in DEMs encompasses a suite of methodologies designed
to amplify the spatial resolution of DEMSs, transcending the inherent
rasolution of the input data (Zhang et al., 2022a; Lin et al, 2022). This
enhancement is not merely achisved via rudimentary interpolation but
by deploying intricate algorithms and techniques tailored to reconstruct
details latent in the original dataset. In essence, the objective of DEM
SR iz to engender a higher-resolution cutput from a lower-resclution
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input, ensuring the retention of authentic terrain characteristics and
precision.

In the field of computer vision, SR can be achieved through a variety
of techniques. These include simple interpolation methods like nearest
neighbour, bilinear, and bicubic interpolation (Park et al.,, 2003), as
well as more advanced methodologies such as Convolutional Neural
Wetworks ({CNNs) (Yang et al., 2019). Generative Adversarial Networks
{(GANs), in particular, have proven to be highly effective in various
image SR tasks, leading to state-of-the-art results (Fu et al., 2020; Singla
at al., 2022). Their effectiveness in image super-reselution is attributed
to their ability to discern complex relationships between low-resolution
and high-resolution images. This unique ability makes GANs a powerful
tool for enhancing image resolution and detail.

Research inte SR for DEMs often confronts a prevalent challenge
in deep learning: many models are diffieult to interpret and analyse
quantitatively. While we can confirm a model’s functionality, under-
standing its operation and how such insights could drive improvements
remains complex. Most techniques based on CNNs prioritize complex
architectural designs and incorporate residual blocks (Zagoruyko and
Komodakis, 2016) to enhance performance and incease the model's
capacity. Despite the significant progress made by CNNs compared
to traditional model-based techniques, two fundamental issues often
arise from the convolutional layers: firstly, the interaction between
images and convelutional kemmels, being content-independent, can lead
to suboptimal recovery of various image regions with a single ker-
nel (Wan et al., 2021; Schuler et al, 2015). Secondly, CNNs tend
to emphasize local features, possibly reducing their effectiveness in
madelling long-term dependencies and global features {(Hu et al., 2019).

In response to these challenges, Transformers have emerged as
potential alternatives to CNNs. Their self-attention mechanism cap-
tures global interactions between contexts, demonstrating robust per-
formance acrass varicus visual tasks (Han et al., 2022; Khan et al.,
2022; Lin et al, 2021; Liang et al., 2021). When using Vision Trans-
formers (VIT), the input image is divided intoe patches of a predefined
size, with each segment processed individually. Despite the superior
metric performance of some Transformer-based SR models at this stage,
the limited range of information can render their outcomes inferior
to those generated by CNNs in certain scenarios. These phenomena
indicate that while Transformers excel in modelling local information
from DEMs, their capacity to leverage global elevation information for
super-resclution remains to be augmented.

In the context of DEM superresclution, edge recovery becomes
even more critical. As the resclution increases, the inaccuracies or
distortions at the edges can become more pronounced if not addressed
adequately (Da Wang et al, 2019). Successful edge recovery ensures
that these boundaries are seamless and maintain the integrity of the
elevation data. In the task of DEM SR using machine learning, many
SR methods are based on CNNs. Due to the convolutional operations,
cells at the edges of the raster may not consider sufficient contextual
information during processing, potentially leading to inaccurate edge
recavery {Ma et al.,, 2020). Addifionally, the loss functions used in
training these methods are not specifically optimized for edge recovery,
resulting in models that might perform well in other areas but fall short
at the edges (Ma et al,, 2022). Moreover, edge recovery is paramount
in the domain of DEM mosaicking. As multiple DEMs are combined
to form a larger coverage area, any discrepancy in the edge values
can lead to visible seams or discontinuities. This affects the visual
representation and can also introduce errors in analyses that use the
DEM. For instance, an inaccurate boundary can divert the flow path in
watershed delineation, leading to incorrect delineation of catchment ar-
eas. Similarly, inaccuracies at the edges can lead to false interpretations
of slope gradients and potential instability regions in slope stability
analysis.

Given the importance of edge recovery in DEM super-resolution,
there is a pressing need for more effective methods that can accu-
rately restore edge elevation values. This study presents a DEM super-
resolution Transformer network which applies a multi-head attention

mechanism using a shifted window approach. We re-design the window
attention module, enabling the activation of more elevation infor-
mation within the DEMs and facilitating more effective leamning of
geagraphical featuras by the network. To alleviate the computational
turden associated with the attention mechanism, we turn to the re-
search to optimize and enhance the network architecture specifically
tailored for the DEM data structure (Zhang et al., 2022h). As depicted
in Fig. 1, the network’s architecture consists of four main components:
shallow feature extraction, deep feature extraction, GeoTransform, and
High-Resolution (HR) generation. To assess the effectiveness of the pro-
pased model, we have chosen bicubic interpolation, SRGAN, ESRGAN,
and Tfasr methodologies as experimental benchmarks for comparison.

2. Related work
2.1. Bnage super-resolution

2.1.1. nterpolation-based tmage SR

Interpolation-based Image SR also referred to as image scaling,
employs each known data point for interpolation, calenlating the pixel
value to be interpolated (Li =t al,, 2020). Frequently used interpolation
algorithms include nearest neighbour, bilinear, and bicubic interpo-
lation (Han, 2013). These methods apply varying interpolation tech-
niques to fill in pending pixel blocks, exhibiting commendable real-time
performance {Su et al, 2011).

However, these methods operate under the assumption of conti-
nuity in the image’s grey value, leading to nadequate preservation
of high-frequency information. Consequently, interpolation-based Im-
age SR demonstrates limited adaptability, particularly when handling
adges and texturss. This often results in the generation of blurred
high-resolution images (Han, 2013).

2.1.2. Deep leaning based fmage SR

SRCNN employs a thres-layer neural network te extract feature
information from images, achieving nonlinear mapping through acti-
vation functions, and ultimately reconstructing images (Dong et al,,
2016). Despite SRCNN potentially delivering superior super-resclution
rasults, it is burdened with high computational demands and lacks
the capacity to extract global image features (Wang et al., 2020).
Addressing the issue of undemtilized hierarchical features of Low-
Resolution (LR) images during the CNIN reconstruction process, Zhang
at al. proposed a Residual Dense Netwaork (RDN) (Zhang et al., 2018).
This network combines multiple residual dense blocks in series, offer-
ing a more nuanced solution. Further advancing the field, Niu et al.
introduced a Holistic Attention Network (HAN) to capture the interde-
pendencies acrass mult-scale layers (WNin et al, 2020). This network
adaptively learns the global correlation across different depths and
channels, demonstrating the evolution of super-resolution techniques.

Building upon the foundation of CNNs, ResNet inherits the deep fea-
ture extraction capability of CWNNs. Lim et al. {2017) utilized a residual
deep network to learn high-frequency information, achieving superior
results compared to SRCNN. To address the challenge of increasing
network depth and complexity without improving performance, the
Multi-Scale Residual Netwaork ({MSBN) was intraduced (Li et al., 2018a).
This method enhances the residual black by incorporating multiscale
convolution kernels, facilitating adaptive detection of image featurss
acrass different scales.

In scenarios where a significant scaling factor is involved, the
reconstructed Super Resolution (SR) image often lacks texture details.
Addressing this issue, GANz have demonstrated remarkable genera-
tive capabilities. SRGAN, the first attempt to employ GANs for super-
resolution of real-world photos, capitalizes on the mutual antagonism
between the generator and discriminator to learn high-frequency tex-
ture details of the image {(Ledig et al., 2017). Building on the foundation
of SRGAN, ESRGAN (Wang et al, 2018) has enhanced capabilities
to assess the owverall quality of an image aceurately, leading to the
production of texturas with an elevated degree of realizm.
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2.2, Spatial interpolation

Spatial interpolation, a method used to estimate the values of un-
known points based on lmown sample points, plays a crucial role in
Geographic Information System (GIS) systems. Specifically, it is com-
monly employed to estimate the values in a raster’s target area (Mitas
and Mitasova, 1993), One such interpolation method is trend sur-
face analysis, which uses a least square fitting approach to replicate
the spatial distribution features of Imown sampling points (Agterbers,
1984). However, to ensure the accuracy of the fit, two issues must be
addressed: the setting of the surface function model and the adjustment
of the maodel.

The nearest neighbour (NN) method assigns the value of the target
area based on the closest sampling point, employing a more stringent
boundary processing technique {Rukunde and Cao, 2012). While this
method is effective when there are ample sample points, it may yield
less than optimal smoothness at the boundary.

Building on the foundation of variogram theory, the Kriging inter-
polation method was developed. This method considers both the spatial
position relationships among each sample point and the relationships
between the interpolation point and the sampling points (Oliver and
Webster, 1920). However, Kriging interpolation requires significant
computational resources.

Another approach is the Inverse Distance Weighted {IDW) interpola-
tion method, initially proposed by Daly {2006). This method has since
been further developed and enhanced (Lu and Wong, 2008; Rahman
et al., 2010).

2.8. Deep learning DEM SR

The integration of deep learning inte image super-resclution has
emerged as a popular research area. However, there are only a few com-
prehensive studies that examine the feasibility of applying these deep
learning techniques specifically to DEM SR. To enhance network effi-
clency, D-SRGAN, as proposed by Demiray et al. (2021), used SRGAN
as the basis of the convolutional neural network, employing a RellV
activation function, and a residual model. This study demonstrated that
D-SRGAN outperformed two other CNN-based DEM SR models, namely
D-SRENN (Chen et al., 2016) and DPGN (Xu et al., 201%9). However,
D-SRGAN exhibited over-smoothing distortion in non-flat terrain due
to mean square error (MSE) loss.

In a comparative study by Zhang and Yu (2022), four DEM SR
methods, including SRGAN (Lediz et al., 2017), ESRGAN (Wang et al.,
2018), and CDEGAN (Zhu et al, 2020), were assessed. The study
yielded surprising results: (1) SRGAN outperformed other SR methods
acrass several metrics; (2) although ESRGAN was able to learn a large
number of geographical features, many of these features were distorted
when tested; {3) while CDEGAN analysed several indicators of geo-
graphical variance, the comparison showed that CDEGAN introduced
some visual noise signals.

To address these limitations, Lin et al. {2022) proposed a method
that combines internal and external learning approaches. This method
learns detailed features from the inside out and assigns the learned
detailed features to the global feature weight. This approach yielded
superior results in mountainous regions with abundant texture and
elevation features and improved DEM recovery in flat terrain areas.

To enable the model to understand terrain features, Zhang et al.
proposed the Tfasr model {Zhang et al, 2022a). To compensate for
terrain feature loss, the model’s adaptive terrain feature extraction
madule uses the Deformable Convnets 2 module {Zhn et al., 2019,
the U-Net (Ronneberger et al., 2015) segmentation network, and slope
loss as one of the loss functions.

Moast of the previous research focused solely on local correlations
in DEMs. To address this, Han et al. {2023) proposed a DEM super-
resalution model that incorporated ¢lobal information, demonstrating
superior performance across multiple terrains.

3. Methods

The network structure of DSRT is depicted in Fig. 1. The shallow
feature extraction module utilizes convolutional layers to pressrve
low-frequency data. The deep feature extraction module primarily com-
prises Global Attention Blocks (GABs). Each GAB employs multiple
madified lightweight Global Attention Swin Transformer Layers (GA-
STLs) to facilitate Iocal attention and cross-window interaction, in
alignment with the DEM super-resolution objective. Additionally, we
introduce a GeoTransform maodule capable of natively generating DEM
in GeoTiff format. The final black of cur network is the high-resolution
DEM generation maodule.

3.1. Shallow feature extraction

The shallow feature extraction performs simple convelution on
the input IR DEM to extract lowerdevel features {edges and tex-
tures) (Zhang =t al., 2016; Hu et al., 2015). It acts as an initial filtering
phase, where simple and easily extractable features such as edges,
textures, and basic shapes are gathered from the input data.

In the context of the DSRT maodel, the shallow feature extraction
madule uses a convolutional layer to extract these basic features from
the input LR DEM. The extracted features are then passed onto the desp
feature extraction maodule for further processing. For the input LR DEM
DEM;p € RE*WxCorwr | H and W are the height and width of the
input DEM, and Cp,z,, represents the input channel number (normally
Cpzar = 1) A 3 x 3 convolutional layer Hox(-} is used to extract the
shallaw feature Fppyy, . € RF*W*C of the input LR DEM; 5

Frgpm, , = Hep(DEM; ) {1

3.2. Deep feature extraction

Deep feature extraction aims to capture high-level semantic in-
formation within the DEM. In the context of DEM super-resolution,
this could include detecting and representing specific terrain features,
patterns, and other topographical information. The output of shallow
features Frzpyy, . can then be used as input for the deeper layers Hp ()
of the network, which performs more complex operations to extract
high-level features F,p € RE*#*C;

Frp = HDF(FDEMLR) (2]

where Hpz(-} represents the deeper feature extraction module of the
network, and it has » Global Attention Blocks (GABs) (see Fig. 1)
The features Foyz,, Faup, - Faap, ¢80 be expressed by the following
equation:

Faap, = Hoap, Faaz, ) 1=12..,n (2)

where Hp,p denotes the i, Global Attention Block. At the end of
the GABs, we use an additional comvolutional layer to achieve better
performance for ageregating deep features and shallow featurss (Liang
et al, 2021).

3.2.1. Global Attention Block (GAB}

Fig. 2 shows that GAB contains multiple Global Attention Swin
Transformer Layers (GA-STLs) and a convolutional layer. The purpose
of GAB is to extract the deep feature of the input DEM:

Frea,; = Hes sr1, ,Foea, b 7=L2 N (4)

where Hzy or 1,, ("} Tepresents the j,, GA-STL of the i, GAB.
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Fig. 2. Owerall strueture of the Global Attention Block (GAB).

3.2.2. Globdl Atterition Swin Transformer Layer (GA-STL}

Fig. 3(a) shows the overall structure of the modified lightweight
Global Attention Swin Transformer Layers. Instead of using layer nor-
malization (LN} (Ba et al., 2016) in the GA-STL, we use batch normal-
ization {BN) (Santurkar et al., 2018) to reduce the tremendous amount
of computation brought by the self-attention (SA) (Shaw et al., 2018)
and Multi-Head Self-Attention (MSA) {Voita et al., 2019).

In G-MSA (zee Fig. 3(b)), the input sequence passes through thres
distinet linear layers to obtain Query (Q), Key (X), and Value {37}
matrices. The weights of these linear layers are learnable parameters.
Wext, the dot product of @ and X iz computed, yielding an attention
score matrix. This process describes the degree of association between
sach element and other elements within the sequence. To maintain
computational stability, the attention score matrix is divided by a
scaling factor /4 and adds a relative position bias B & RM>x¥*,
where M represents the window size, and M? represents the mumber
of patches in a window. Subsequently, a Sof tMax operation is applied
to the attention score matrix, obtaining normalized attention weights.
Then, the normalized attention weights are multiplied by the Value (77)
matrix. This operation can be considered as a weighted average of the
input sequence, emphasizing elements with a stronger asseciation with
the current position.

T
Attention(Q,V, K} = Soerax(%

+ B}V {5)

Lastly, a mult-layer perceptron (MLP) (Taud and Mas, 2018) is
added to provide a straightforward nonlinear transformation through
the Rel.Ul (Nair and Hinten, 2010) function for activation.

3.3. Geograplical coordinate profections and transformations (GeoTran-
form}

We downsample the resolution of the original DEM to a lower
resolution DEM during the network {DSRT) training to ensures the
spatial and acquisition time consistency of HR and LR DEMs. Therefore,
in the GeoTransform maodule, twao coordinate information processes are
involved. As shown in Fig. 4, the first step is to resample the original
HR DEM DEM,,,; € BF*W intec LR DEM DEM,;, < [Rseait ¥ e , and

Elevation; , R 5 and projected coordinate information of each
cell The next step is to caleulate the number of rows and columns and
the cell size of the high-resolution DEM. Among them, Coluwmns X scale
and FRows X scale are the height and width of the target HR DEM,
CellSize % rie iz the cell size and coordinate projection of the target
HR DEM. The high-resolution elevation values Elevationg, € RF*W
generated by DSRT and HR projected coordinates GeoTransf oring g €
E¥*W are integrated into the final HR DEM DEMg, € BV in the
last step.

3.4, High-resolution DEM generation

The final process of the network is the generation of the HR DEM
with geographical coordinate projections. The high-resolution DEM
DEMgp 1s generated by ageregating shallow and deep features:

DEMpp = Hyp(Foeu, , + For) (6)
In Eq. {6), Hgz(-} denotes the HR DEM generator of the network

3.5, Loss function

3.5.1. L, loss
Mast SR methods used Mean Square Error (MSE) as the loss func-
tion (Ledig et al,, 2017; Li et al., 2018b; Nagaraj et al., 2020; Dathong
at al., 2022). Although direct minimization of MSE loss can gat good SR
rasults, aveiding blurring details is difficult (Lim et al., 2017; Anagun
et al, 201% He and Cheng, 2022). Therefore, we use I, loss to
caleulate the error of the corresponding pixel position of SR and HR.
The equation is as follows:
m
L(DEM,, 4 DEM 3= Y ‘DEMSM - DEM),, )
=0
2.5.2. Roof mem square error
Root mean square error (RMSE) measures the error size of the
deviation between the predicted and actual values. RMSE is very sen-
sitive to the error, so it can well reflect the precision of the generated
high-resolution DEM. The equation is as follows:

i i 1 i i
RMSE(DEM,,,, DEM,, )= \/ S L (DEM, —~DEM{, P  (8)

whera DEME;LE denotes the elevation value of the real HR DEM and

DEM?‘)M means the elevation value generated by the network.
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3.5.3. DEM featire loss

To better preserve the high-resclution details of the DEM generated
by the network, we refer to the idea of perceptual loss {(Johnson
et al.,, 2016; Rad et al.,, 201% Jo et al, 2020) and VGG-16 feature
extraction (Zhang et al, 201%; Ge et al, 2018; Tun =t al., 2021) in
remote sensing. The equation is as follows:

1

8. =
ffem(DEMreais DEMfake) = CjH}-T/IG-

I g}(DEMreai) _gj(DEMfake) ”2

&)

where j represents the j,, layer of VGG-16, §,(DEM,,,) represents
the cutput of DEM,,, in VGG-16 intermediate layer j, §,(DEM 4.
represents the output of DEM;,, In VGG-16 intermediate layer J,
and C; H,W, represent the number of chanmels, height, and width in
VGG-16 middle layer j respactively.

3.5.4. DEM edge loss

This iz a specialized loss function that directly targets the edges of
the DEMs. It works by first detecting the edges in both the ground truth
and the generated DEM, and then computing the diffsrence between
the two. E,,,, and E,, are the edges of the predicted and ground tmuth
images, respectively, the edge loss Z,,,, could be defined as:

o
1
Lge = 5 > (Borea — E.Y (19)
i=1

3.5.5. Global gradient loss

The global gradient loss can play a cmcial role in DEM tasks by
encouraging the model to generate DEMs that accurately capture the
terrain’s structure and characteristics, particularly at the edgas:

o] i Ol pred _afgt 2+ O red _afgt 2
720 T N o o oy oy

{11)
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Water: ASTGTMWVD02 M2ZEEDS0 dem).
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Fig. 7. Four examples of elevation distribution from different terrains.

where I, and I,; are the predicted and ground truth DEMs, respec-
tively, N is the total number of cells in the DEMSs, and the derivatives
are computed with respect to the » and y directions.

2.5.6. Collaborative loss
The loss function of the network is a collaboration of the L, loss,
RMSE, and DEM feature loss, and the equation is as follows:

loss=Lloss+w- RMSE+f§-¢,,,+6 L +3-L a1

‘grad edge

where @, 8, # and y are the weight coefficients of the collaborative loss.
4, Experiments
4.1. DEM dataset

The DEM data utilized in this study is sourced from the ASTER
GDEM v3 in 16-bit GeoTiff format. The elevation datum is referenced

to BEGMY6, and the reference ellipsoid is WGS84, The DEM boasts a ver-
tical resolution of 7-10 m and a horizontal resolution of 1 are-second
{approximately 30 m). We select 80 experimental regions that encom-
pass various topographical features, with elevations ranging from 0.5
to 8260 m.

Far this study, we have curated a diverse set of DEMs representing
various terrains, including but not limited to mountains, hills, urban
areas, plains, and valleys (see Table 1). Fig. 6 shows an example of
each terrain, and Fig. 7 shows the elevation distribution. To conduct a
comprehensive analysis, these DEMs were batch cropped into multipls
resolutions of 64, 256, and 512 using the ArcPy module in ArcGIS.
This approach was adopted with the understanding that DEMs of higher
rasolution can encapsulate a broader range of elevation differences and
retain a greater iumber of geographical featuras.

It is noteworthy that generating low-resolution DEMs of the precize
site poses a significant challenge, as highlighted in previous research.
Consequently, we have also incorporated a downsampling processing
technique. This specific approach involves the downsampling of 25 056
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Table 1
Training datasets of different terraine.

Eesolution Elevation difference [m]

Mountaing Hills Walleys Urban Areas Flains
64 w B4 100 Fo 50 20 10
256 w 256 1500 200 400 100 20
Bl2 w Bl2 2000 1200 SO0 150 40

high-resolution DEMs four times {down_sampling = 4) using the ArcPy
package from ArcGlIS,

4.2, Traiming

Fig. 8 shows the RMSE after recovery of elevation values generated
by different methods throughout the training process. First, SRGAN has
the lowest RMSE at the beginning of training. However, the feature
axtraction and perceptual loss used by SRGAN are based on real-world
SR tasks, so there is not much downward trend in the RMSE of SRGAN.
ESRGAN has a more apparent downward trend, and the final RMSE is
better than SRGAN. Tfasr has a very stable performance throughout
the training cycle, and the RMSE decreases steadily. This is because:
{1) Tfasr used U-Net to pre-train the basin in DEM; and (2) Tfasr used
deformable convolution, and this adaptive terrain feature extraction
madule has certain effectiveness. The madel we proposed (DSRT) had
the highest RMSE value at the beginning of training {epach = ), but as
the training progressed, the RMSE gradually dropped to the minimum
value among the four models. The RMSE curve has two fluctuations,
ane when the epoch is 30 and one at 70. These two fluctuations are
related to the dynamic learning rate we set. Because (1) we set the
learning rate to decrease during {35, 703t# epoch, and (2) to reduce
the loss as soon as possible in the early stage, we set a larger learning
rate within the insurance range.

Fig. % show the HR DEMs generated by our model at different
epachs. It can be seen that the degree of terrain recovery of the DEM
gradually improves throughout the training process. At epoch 5, the
accuracy of the DEM generated by our model is not high, and the
restoration of terrain features has not been well repaired. At epoch 30,
the model we trained has gradually recoverad many simple landform
features while the elevation error has decreased. Our model has gen-
erated terrain features similar to real DEM when trained to epoch 80.
Although the RMSE of the model further decreases at epochl(f, the
effect is minimal.

To demonstrate that our GeoTransform maodule works correctly, we
put the DEM generated by DSRT into ArcGIS (see Fig. 10(a)). The
results show that the GeoTransform module can handle coordinates and
projections well, and the coordinates and projections of the generated
DEM:z and the original data coincide perfectly. We can view each cell’s

elevation value and use ArcGis's 30 Analyst Tool for surface analysis
{zea Fig. 10(b).

5. Results
5.1. RMSE assessment

Table 2 provides a comprehensive evaluation of the performance
of five different methads — DSRT, Tfasr, SRGAN, ESRGAN, and Bicubic
- in generating DEMs of varying resolutions: 64 x 64,256 x 256, and
512 x 512. The performance iz assessed based on the Root Mean Square
Error {RMSE) of four key parameters: Elevation, Slope, Aspect, and
Curvature.

In the 64 x 64 raselution DEMs, the DSRT method exhibits superior
performance, achieving the lowest RMSE values across all parameters.
This suggests that the DSRT method is most effective at preserving
the accuracy of Elevation, Slope, Aspect, and Curvature in the gener-
ated DEMs at this resolution. On the other hand, the Bienbic method
shows the highest RMSE values for Elevation and Curvature, indicat-
ing potential limitations in its ability to accurately represent these
parameters.

When the resclution is increased to 256 x 256, the DSRT method
maintains its leading performance, again achieving the lowest RMSE
values across all parameters. This consistency across different resolu-
tions underscores the robustness of the DSRT method. The ESRGAN
method, however, shows the highest RMSE values for Elevation, Slope,
and Curvature, suggesting that it may struggle to accurately represent
these parameters at higher resolutions. The Bicubic method has the
sacond lowest RMSE for Elevation and Slope, indicating a specific area
of strength.

At the highest resolution of 512 x 512, the DSRT method con-
tinues to cutperform the other methods in terms of Elevation, Slope,
and Curvature, reinforcing its effectiveness across different resolutions.
Interastingly, the Bicubic method, despite its weaker performance at
lower resclutions, achieves the second-lowest RMSE at this resolution.
This suggests that the Bicubic method has specific strengths in repre-
senting DEMs at higher resolutions. The ESRGAN method, however,
exhibits the highest RMSE values across all parameters, indicating a
general struggle with aceouracy at this reselution.

In conclusion, these results highlight the consistent superiority and
robustness of our DSRT method across different resolutions and pa-
rameters. In contrast, the other methods demonstrate varying degrees
of error across different parameters and resolutions. For instance, the
Bicubic method shows the highest RMSE values for Elevation and
Curvature in the 64 X 64 resolution DEMSs, suggesting potential lim-
itations in accurately representing these parameters. However, it is
worth noting that the Bicubic method can achieve good performance
when provided with sufficlent reference points. This may explain why
it achieves the second-lowest results in the 512 x 512 resolution DEMs.
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Fig. 10. (2) HE DEM: generated By DSET in AreGIS, a pop-up window shows the elevation values of a selected DEM. (B) HR DEM generated by DSRT at epoch 100 (slope, aspeet,
and eurvature rasters proeessed by AreGIS, distributions on the right).

Table 2

EMSE assessment results on different resolution DEMs,

DEMas w ae EMSE-elevation (m) EMSE-slope () EMSE-aspeet (*) EMSE-curvature
DSET 1.286 1.958 79.552 0.255

Tfasr 1492 2321 82673 0356

SRGAN 27856 3544 84,587 0417

ESEGAI 2146 2621 84,247 0474

Eicubie 4.588 2065 86,422 0508

DEMs w 2 EMSE-elevation (m) EMSE-slope () EMSE-aspect () EMSE-curvature
DSET 3.493 4.506 24.790 0.675

Tfasr 6.254 B.023 86673 0729

SRGAN 7987 6.44% 877710 1.446

ESEGAI 13,222 SEIZ 85,521 1.547

Eicubie BYEE 4,976 27.425 0508

DEM:: w s EMSE-elevation (m) EMSE-slope () EMSE-aspeet (*) EMSE-curvature
DSET f.286 7802 B7.466 1.554

Tfasr .00 28.942 G0.002 2.BEE

SEGA 12.864 11.581 G0.545 B.ELT

ESEGAI 16677 17.621 97401 .47 4

Bicubic 7546 F.0EE 27.82% 1.6%8
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Fig. 12, LAM result of four models on 256 = 256 input DEML

5.2, LAM results

The Local Attribution Maps (LAM) {(Gu and Dong, 2021) method we
adopt is based on the Integrated Gradient approach, typically used in
attribution analysis within classification problems (Zeiler et al., 2011;
Simonyan et al., 2013; Zeiler and Pergus, 2014; Sundararajan et al.,
2017). We utilize this method to quantify the extent to which our model
has learned the features of suwrrounding areas when performing super-
resolution tasks on specific elevation regions in DEMs. Additionally, as
the main challenge in DEM Super Resolution lies in the reconstruction
of high-frequency textures, such as ridgelines and river valleys, flat
areas can often be restored simply through interpolation. Therefore, we
foms on attributing only the complex patches.

Fig. 11 presents the LAM test results for DSRT, Tfasr, ESRGAN,
and SRGAN. In the LAM Distribution, red pixels signify the model’s
capacity to incorporate and compute adjacent elevation values when
executing super-resolution tasks at specified elevation points. A greater
density of such pixels corresponds to a superior capability of the maodel
to apprehend global characteristics. As evidenced by the LAM Distri-
bution, DSRT learns and utilizes global information from the image
when performing SR tasks on the elevation regions highlighted in the
black boxes. While activating adjacent elevation values, our madel also
considers the global feature information of the IR DEM, demonstrating
its strong capability to learn global terrain features effectively.

To provide more robust evidence that DSET can engage a broader
set of elevation values in DEM Super Resolution, we utilized DEMs with

a resolution of 265 x 256 in our LAM tests (se= Fig. 12). Consistently,
our model demonstrated a substantial lead in metrics. Upon testing
the regions delineated by the black boxes, it was observed that DSRT
activated a more extensive amray of elevation points and spanned a
larger area for SR

5.8, Visud evaluation

We selected a 64 % 64 DEM to demonstrate the visual evaluation
of geographic features (see Fig. 13). Although all models can generate
high-resolution DEM similar to real DEM, there are sl many differ-
ences in the details of each generated DEM. From the perspective of
visnal evaluation, our method can generate the features most similar
ta real DEM, and the maximum and minimum elevation values are
alsa the closest to the original DEM. DEM generated by Tfasr is over-
smoathed, although some basic features are well preserved. Compared
with the real DEM, the DEM generated by Tfasr is too blurry at the
loweast elevation value (green part), and a small amount of detail
iz lost near the highest value (red and orange part). Both ESRGAN
and SRGAN can retain as many terrain details as possible, but most
details are distorted during the restoration process {excessive smooth-
ing, redundant terrain details, and loss of original terrain details) by
ESRGAN. From the training curve (Fig. 8), ESRGAN achieves better
results than SRGAN, but from the visual evaluation result, ESRGAN is
not competent for DEM super-resolution tasks.
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Fig. 15. Aspeets generated by five models (red dotted frames are the zoomed-n detail of the aspeets). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

The slope measures the rate at which the height of a particular area
of the ground changes. As shown in Fig. 14, the DEM generated by our
madel achieves the closest slope map to the original DEM, and the red
dotted frames part is the enlarged detail of each generated DEM. Tfasr
and ESRGAN achieve the worst results in slope analysis, and all have
slope distortion in areas with large slopes (yellow area in Fig. 14). Both
have varying slope distortion degress, corresponding to the elevation
analysis results {ses Table 2). The HR DEM generated by SRGAN and
bicubic cannot fully preserve the terrain featuras of areas with flatten
slopes (such as the purple area in the red bozx).

Fig. 15 shows the aspects generated by different models. Roughly,
sach model can generate aspects similar to the original DEM, but the
quality of each generated DEM is different in detail. A clear difference
can be seen at the bottom right of the DEM (red dotted frames of each
DEM). In the 360-300° area (deep blue in Fig. 15), the aspect raster
generated by our model is most similar to the original DEM, with almast
the same outline. SRGAN performed the worst with one ervor point. The
aspects of the DEM generated by the three models of ESRGAN, Tfasr,
and bicubic are very similar, but all have missing aspects.

Fig. 16 presents a three-dimensional visnalization of a plateau re-
gion, featuring distinet topographical elements such as canyons and
mountain peaks. DSRT exhibits exceptional performance in edge recon-
struction, accurately delineating the sharp transitions between different
topographical features. This is particularly evident in the representation
of the abrupt edges of canyons and the pointed peaks of mountains,
which are well-preserved in the DSRT-generated DEM. Bicubic in-
terpalation, while not achieving the lowest RMSE, also demonstrates

commendable performance. It successfully maintains the continuity of
the terrain and dees a particularly good job in preserving the shape of
mountain peaks. In contrast, the SRGAN and ESRGAN methods show
significant shortcomings in edge reconstruction. The DEMs generated
by these methods appear blurred and lack the sharpness of the original
DEM, especially at the edges of topographical features. This is consis-
tent with the higher RMSE values observed for these methods in our
quantitative evaluation. Tfasr also performs well, demonstrating the
affectiveness of its design in handling complex terrain features.

6. Discussion
6.1. The impact of terrain characteristics

In order to investigate the impact of different terrains on the perfor-
mance of our madel, we categorize the DEMs used in our study into four
types: urban areas, rivers, plateaus, and canyons. We then evaluate the
RMSE for each of thess categories {see Table 3). It allows us to gain a
more nuanced understanding of the model’s performance across diverse
terrains. Each of these terrain types presents unique challenges and
features that can influence the model’s ability to accurately generate
high-resolution DEMs. For instance, urban areas are characterized by
man-made structures and flat surfaces, rivers have smooth and gradual
changes in elevation but complex shapes, plateaus have high eleva-
tion differences, and canyons have steep slopes and sharp changes in
elevation. By evaluating the model’s performance on each of these
terrain types separately, we can better understand its strengths and
weaknessas, and identify areas for improvement.
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Table 3

EMSE-elevation assessment results on different terrain charaeteristies DEMs.
Urban regions 64 x 64 256 w 256 512 » 512
DSET 2.198 3.95%8 A.012
Ttasr 2.BEG 5327 7208
SEGAN 4,258 6742 8267
ESEGAN 7.246 2167 13,597
Eicubie 4.87% 5087 7320
Water regions 64 x 64 256 w 2B6 512 » 512
DSET 3.497 4,205 4,069
Ttasr 3.806 4.411 5088
SEGAN 4.274 B.l32 BB
ESEGAN 6,005 T30 11.B62
Eicubie 2765 4576 5288
Canyon regions 64 x 64 256 w 256 512 » 512
DSET 5.987 7.574 B.847
Ttasr 7.058 8,082 e.724
SEGAN 8.572 11.862 14.002
ESEGAN G865 12,405 16.274
Eicubie T EOE 8117 G025
Flateau regions 64 x 64 256 w 256 512 » 512
DSET 7.232 2301 857
Ttasr 8.000 2.211 11.001
SEGAN e.721 13000 14.208
ESEGAN 11.521 18.274 25,032
Eicubie F.o00 012 9.530

6.1.1. Performarnce evaluation in what regions

It can be seen from Table 3 that, in wban regions, DSRT consistently
achieves the lowest RMSE across all resolutions, indicating that it is the
mast accurate method for super-resolving DEMs among the methods
tasted. The Tfasr and SRGAN exhibit moderate RMSE values, sug-
gesting that while they are capable of generating reasonably accurate
urban DEMs, their performance is not as robust as the DSRT method.
These methods may be more susceptible to errors during the super-
resolution process, leading to discrepancies between the generated
and real DEMs. The Bicubic method, while not achieving the lowest
RMSE, demonstrates a relatively stable performance across different
resalutions.

Fig. 17 shows that DEM generated by the DSRT model stands out for
its ability to accurately reproduce roads, as evidenced by its minimal
RMSE. This suggests that the DSRT model is highly effective in captur-
ing and replicating intricate details from the Real DEM, thus resulting

in a high-quality output that closely mirrors the original. On the other
end of the spectrum, the ESRGAN model’s output is characterized by
the highest error and a significant degree of blurriness. This indicates
that the ESRGAN model strugeles to accurately replicate the features
of the Real DEM, leading to a less precise and lower quality output
The performance of the Tfasr and Bicubic models falls somewhere in
between. While they do not match the accuracy of the DSRT model,
they manage to produce reasonably clear and recognizable features,
suggesting a moderate level of effectiveness in DEM superoresclution.
However, due to the chaotic and disordered elevation values in the
DEM of urban areas with a resolution of 30 m, all methods appear very
blurry upon visual inspection.

6.1.2. Performarice evaluation in water regions

In this case, the DSRT method consistently achieves the lowest
RMSE across all resolutions, indicating superior accuracy in super-
resolving DEMs of water regions. The ESRGAN method shows the high-
ast RMSE values, particularly for the 512 x 512 resclution, indicating
that it is the least accurate method among those tested.

Fig. 18 shows that the DSRT method, despite having the lowest
averall RMSE and effectively restoring the outline of the river, exhibits
a higher RMSE in the river area. This suggests that while our method
iz generally effective at super-resolving DEMSs, it may struggle to ac-
curately capture the waterbody’s elevation. The Tfasr method, on the
other hand, not only restores the river’s outline well but alse achieves
the lowest error in the river area. This superior performance in the
river area can be attributed to the specific design of the Tfasr netwark,
which has been tailored to handle watershed areas. However, the Tfasr
method’s performance appears to falter around the periphery of the
water system, indicating a potential limitation in its ability to resolve
the surrounding terrain accurately.

6.1.3. Performarce evaluation in cargon regions

It iz evident in Table 3 that the DSRT method consistently out-
performs the other methods across all resolutions, as indicated by its
consistently lowest RMSE values. This suggests that the DSRT method
iz adept at preserving the intricate featurss of canyon regions during
the super-resclution process, thereby producing outputs that cosely
mirrar the original, high-resolution DEMs. The SRGAN and ESRGAN
methods, on the other hand, show a trend of incareasing RMSE values
with increasing resolution. The Bicubic method, despite not achieving
the loweast RMSE, demonstrates a level of performance that is relatively
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Fig. 19. 256 x 256 resolution eanyon region DEM: generated by different methods and their elevation differences,

stable across different resolutions. The Tfasr methad, while not the
top performer, exhibits a commendable level of stability across dif-
farent resolutions. This indicates that the Tfasr method is capable of
maintaining a consistent level of accuracy irrespective of the resolu-
tion of the input DEM, a trait that could be advantageous in certain
applications.

In Fig. 19, the DSRT method, despite having the lowest overall
RMSE, not only effectively restores the shape of the peaks but also
demaonstrates a remarkable ability to capture the overall topography of
the canyon region. This is a testament to the superior performance of
the DSRT methed, which, despite minor visual discrepancies, manages
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to generate a DEM that closely mirrors the real one. This is a signif-
icant achievement, considering the complexity of the terrain and the
challenges associated with accurately capturing the mmances of such
landscapes. The Bicubic method, while performing admirably in restor-
ing the outline of the peaks, falls short in terms of overall accwracy, as
indicated by its higher RMSE compared to DSRT. This underscores the
axceptional performance of the DSRT method, which manages to strike
a balance between maintaining overall accuracy and preserving specific
features of the terrain. The remaining three methods - Tfasr, SRGAN,
and ESRGAN - all exhibit certain shortcomings in terms of RMSE
and preservation of geographical features. These deficiencies become
particularly pronounced when dealing with high-resolution DEMs with
significant elevation differences, such as those found in canyon regions.

6.1.4. Performance evaluation in plateau regions

It iz evident in Table 3 that the Tfasr method, while showing a
slight increase in RMSE compared to DSRT, still manages to maintain a
relatively low error rate across all resolutions. This suggests that, while
not as accurate as DSRT, Tfasr is still capable of producing reasonably
accurate super-resolved DEMs of platean regions. Interestingly, the
Bicubic method, despite having a slightly higher RMSE than DSRT
at the 64 x 64 resolution, manages to achieve a lower RMSE at the
512 x 512 resolution. This suggests that the Bicubic method may
be more effective at capturing the topographical features of platean
regions at higher resolutions.

In Fig. 20, visually, the DSRT method produces a DEM that is
strikingly similar to the original, capturing the subtle topographical
features of the plateau region with remarkable accuracy. This visual
imprassion is supported by the RMSE values presented in the accompa-
nying Table 3, where DSRT consistently achieves the loweast error across
all resolutions. The Bicubic method also performs well in terms of visual
quality, particularly in its ability to accurately reproduce the contours
of the peaks. However, its slightly higher RMSE values, as compared to
DSRT, indicate a somewhat lower overall aceuracy. The other methods
— Tfasr, SRGAN, and ESRGAN - while capable of generating visually
similar DEMs, struggle to capture the topographical features of the
platean region accurately. This is reflacted in their higher RMSE values
and is particularly noticeable in the case of ESRGAN, which exhibits
the highest error rates across all resolutions.

6.2, The effect of the collaborative loss fimction on the model

To reveal the effect of the collaborative loss function on topographic
feature recovery, we conduct additional experiments. We only keep L1
loss as the loss funetion, named DSRT;,. In the second experiment,
we retained L, loss and RMSE loss, named DSRT; 75z The thind

Table 4

EMSE assessment results of collaborative loss.
Mlethod EMSE

Elevation (m) Slope () Aspeet () Curvature

DSET 1.2% 1.26 7e5E 000026
DSET., 1.3% 282 28,22 0.00048
DSRTL pue sr 1.25 242 83.26 0.00028
Tfasr 1.4% 2.32 8267 000026

experiment iz a model with a full collaborative loss function, namely
DSRT. Tfasr, which has the second-best performance in Section 5, is
salected as the baseline in this experiment.

Table 4 lists the results of additional experiments of collaborative
loss. If only the L, loss were kept, the obtained elevation error of
DSRT,, is similar to DSRT, but without the feature loss function 74, ,
the RMSE<lope, RMSE-Aspect, and RMSE-Curvature are the highest
After adding RMSE loss on DSRT;,, DSRT;, narsr achieves the best
RMSE-Elevation result, and the RMSE-slope, RMSE-Aspect, and RMSE-
Curvature are firther reduced. Since Tfasr used slope and aspect as a
collaborative loss function in erder to restore geographical features,
the RMSE-slope, RMSE-Aspect, and RMSE-Curvature of DSRT;, narsz
are still inferior to Tfasr. This proves that RMSE can be used as a loss
funetion that constrains elevation accuracy while also constraining the
preservation of topographic features globally. Although the elevation
accuracy results are slightly lower than DSRT;, pprer. DSRT achieves
the best results in RMSE-slope, RMSE-Aspact, ‘and RMSE-Curvature,
which indicates that a complete collaborative loss fuimetion can opti-
mally restore terrain features while preserving elevation accuracy as
much as possible.

6.3. The impact of the welght coefficients on the model

To better analyse the impact of different weight coefficients in the
collaborative loss function, we fiwther tested the impact of « and #
in Eq. {12) on the model As shown in Table 5, different weight coef-
ficients bring great differences to the final results of the model. When
the weight coefficient ¢ of RM S'E loss is set to 1, as the coefficient g of
¥t ou decreases, the model can gradually retain more complete terrain
features {(decrease trend of RMSE-Elevation, RMSE-Slope, RMSE-Aspect,
and RMSE-Curvature). For the weight coefficient « of RMSFE loss, if o
iz set ta 10, the final model generates the worst RMSE-Elevation result.
If & is reduced to 0.1 and 0.001, although better results can be obtained
compared to the value of 10, the model will generate a larger error
when « = 0.001. This shows that for EM SE loss, the value of « that is
too high or too low will affect the final performance of the model, and
the feature loss #,,, cannat well constrain the collaborative lass of the
moadel.
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Fig. 21. Elevation loss (RMSE) of four models,
Table 5 6.6, Evaluation on higher-resolution DEMs
EMSE assessment results of weight coefficients (baseline: o — 1, § — 0.001).
§ # RM3E To further validate the generalization capability of our model,
Elevation (m) Slape (*) Aspect () Curvature we conducted additional experiments, divectly comparing the model-

1 1 2589 2.058 80,552 0.458 generated HR DEM with the existing 8 m resolution DEM.
1 0.1 1.806 2422 86,322 0,356
1 0.001 1.286 1.95% 79.552 0.255 . .
10 D.001 5.386 3802 a0.673 0.504 6.6.1. D afa preparation m_d processing .
%} 0.001 474 TFT 85,233 0.385 The ngh Mountain Asia (HNIA) dataset pr].mar]ly focnses on moum-
0.001 0.001 2.502 2.588 87.066 0.39% tainous regions and boasts an 8 m spatial resolution. This dataset was

6.4. Effect of additiondl trafring epochs

To understand whether the performance can be further improved if
the training epoch model is increased, we continued to train the four
netwarks for 100 epochs. We set the learning rate to decrease in steps,
reducing it to half every 20 epochs. As shown in Fig. 21, our model
has achieved good results at 100 epachs. Although the final results are
slightly improved, the difference is insignificant. SRGAN and Tfasr have
slight loss fluctuations but have remained in a stable range without
significant improvement. The loss of ESRGAN has a clear upward trend,
further proving that ESRGAN is unsuitable for DEM super-resolution
tasks.

6.5, Evaluation based on 2 x SR {upscale = 2}

In order to explore the performance of DSRT in dealing with the
super-resolution of different scales, we trained the model based on 2
® SR {upscale = 2). The training parameter settings are the same as in
Section ?7.

In Fig. 22, when setting the scale of SR to 2 (upscale = 2), the
generated high-resolution DEM is very close to the original picture.
As the upscale value increases, the elevation information retained by
the low-resolution DEM will alse decrease. As shown in Fig. 22, when
upscale = 4, we need to downsample the 64 X 64 resolution DEM to
16 x 16, The resulting quadmple high-resolution DEM retains much
less elevation information than the low-resolution DEM downsampled
to 32 % 32 when upscale = 2. Table 6 shows the results of the different
upscale factors of DSRT. Similar to the visualization results in Fig. 22,
better rasults can be obtained using upscale = 2 as the sampling factor,
aspecially in slope and aspect. This indicates that DSRT can generate
more realistic HR DEMs with sufficient elevation and topographic
features.

chasen for its higher precision in challenging terrains, making it an
ideal candidate for comparison against our derived models. Given the
inherent nature of high-altitude regions, the raw HMA DEM contained
mmerous data vaids. To address this, an elevation-cantour-based inter-
palation method was employed to fill these gaps. The rationale behind
contour-based interpolation is that it can effectively maintain the topo-
graphical features while filling in the missing values, ensuring minimal
distortion. Once the voids were addressed, the HMA DEM was systemat-
ically cropped into multiple tiles with a resolution of 512 x 512 pixels.
This dimension was selected to ensure our experiments’ consistency and
facilitate efficient data processing (Jiang et al., 2023). For this study
and to simulate a real-world application where higher-resolution DEMSs
might not always be available, the extracted regions from the ASTER
GDEM were downsampled using a Cubic interpolation method. The
resultant DEMs had a resclution of 128 x 128 cells and were used as
test data in subsequent experiments.

6.6.2. Results

Due to the high-resolution and low-resolution DEMs originating
from two distinet data sources, inherent discrepancies in elevation
values are to be expected. However, the experimental results Table 7
shows DSRT maintains a leading performance. Fig. 23 show that the
elevation values of the low-resolution and high-resolution DEMs diffar
in certain areas. Nonetheless, the HR DEM generated by DSRT manages
to restore the geographical features as closely as possible.

.7, Limitations

In the proposed DSRT model, we use a self-attention mechanism-
based deep learning model for DEM super-resclution. Despite its signif-
icant advancements, the application of our maodel could potentially be
bounded by several limitations.

Firstly, the constraints related to the training data should be con-
sidered. Our model might exhibit biases resulting from the data it was
trained on. For instance, if the training dataset encompasses only a
limited variety of terrain types, complexitias, or geographical extents,
the model’s performance might be less reliable when extrapolated to
terrains or regions outside of these parameters. This limitation could
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Fig. 23. Performance evaluation on HMA DEM. 512 x 512 resolution DEMs generated by different methods and their elevation differences.

Table &
EMSE results of different upseale factors.

EMSE-clevation (m) EMSE-slope () EMSE-aspeet (*) EMSE-rurvature (m~1)
DSET upseale — 4 1.286 1.258 79582 0000255
DSET upseale — 2 1.268 1.7%8 FT.004 0. 000237

Table 7
EMSE results of different upseale faetors,

EMSE-elevation (m) RMSE-glope (%) RMSE-aspeet (°) RMSE-curvature

DSET 9.738 7.734 29,463 3.94
Ttasr 10268 2.005 2004 4.98
SEGAN  19.77% 11.045 98222 8.28
ESRGAN 28,443 18.271 o001 11.99
Bicbuic  13.003 10280 25821 R

affect the model’s ability to generalize effactively to new and diverse
geographic areas or to significantly different terrain types. Future re-
search could focus on enhancing the diversity of the training data to
improve the model’s versatility.

Furthermore, training and optimization challenges inherent in mod-
els with a large number of parameters, like Vision Transformers, should
be acknowledged. These models necessitate vast amounts of data and

meticulons fine-tuning for optimal performance. In scenarios with in-
sufficient data or improper optimization, the overall performance of the
madel could be compromised.

lastly, while the power of Transformer models in capturing com-
plex patterns iz well acknowledged, their black-box naturs and lack
of interpretability could be a potential drawback. Although we used
the LAM method to demonstrate our model in using elevation points,
understanding the internal workings of these models can be diffienlt,
which may hinder applications that require comprehensible model
decisions. Future work could explore incorporating methods to increasa
the interpretability of these models.

By acknowledging these limitations, we aim to guide future research
in this field, providing a realistic perspective on the challenges that may
be encountered and outlining potential areas for further exploration
and development.
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7. Conclusion

In this paper, we propose a self-attention-based deep learning net-
work to increase the resolution of digital elevation models. In order
to improve DEM rescolution and take spatial information continuity
inte account, our netwaork (DSRT) employs a unique Transformer-based
tachnique. We carry out in-depth tests to confirm the efficacy of DSRT,
and the findings demonstrate that our approach beats image-based SR
and DEM-orientad SR approaches. In comparizon to bicubic, SRGAN,
ESRGAN, and Tfasr, cur network further reduces the RMSE-Elevation,
RMSE-Slope, RMSE-Aspect, and RMSE-Curvature of the generated HR
DEMs, demonstrating the superiority of the deep learning model based
on the Transformer in learning DEM features over interpolation, CNIs,
and GANs.
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