
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-023-16373-y

FindVehicle and VehicleFinder: a NER dataset for natural
language-based vehicle retrieval and a keyword-based
cross-modal vehicle retrieval system

Runwei Guan1,2,3,4 · Ka Lok Man2 · Feifan Chen2 · Shanliang Yao1,2,3,4 ·
Rongsheng Hu5 · Xiaohui Zhu2 · Jeremy Smith1 · Eng Gee Lim2 ·
Yutao Yue3,4,6

Received: 6 December 2022 / Revised: 13 May 2023 / Accepted: 16 July 2023
© The Author(s) 2023

Abstract
Natural language (NL) based vehicle retrieval is a task aiming to retrieve a vehicle that is
most consistent with a given NL query from among all candidate vehicles. Because NL query
can be easily obtained, such a task has a promising prospect in building an interactive intel-
ligent traffic system (ITS). Current solutions mainly focus on extracting both text and image
features andmapping them to the same latent space to compare the similarity. However, exist-
ing methods usually use dependency analysis or semantic role-labelling techniques to find
keywords related to vehicle attributes. These techniques may require a lot of pre-processing
and post-processing work, and also suffer from extracting the wrong keyword when the NL
query is complex. To tackle these problems and simplify, we borrow the idea from named
entity recognition (NER) and construct FindVehicle, a NER dataset in the traffic domain.
It has 42.3k labelled NL descriptions of vehicle tracks, containing information such as the
location, orientation, type and colour of the vehicle. FindVehicle also adopts both overlapping
entities and fine-grained entities to meet further requirements. To verify its effectiveness, we
propose a baseline NL-based vehicle retrieval model called VehicleFinder. Our experiment
shows that by using text encoders pre-trained by FindVehicle, VehicleFinder achieves 87.7%
precision and 89.4% recall when retrieving a target vehicle by text command on our home-
made dataset based on UA-DETRAC [1]. From loading the command into VehicleFinder to
identifying whether the target vehicle is consistent with the command, the time cost is 279.35
ms on one ARM v8.2 CPU and 93.72 ms on one RTXA4000 GPU, which is much faster than
the Transformer-based system. The dataset is open-source via the link https://github.com/
GuanRunwei/FindVehicle, and the implementation can be found via the link https://github.
com/GuanRunwei/VehicleFinder-CTIM.

Both are equally contributed to this work.

B Yutao Yue
yueyutao@idpt.org

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-16373-y&domain=pdf
http://orcid.org/0000-0003-4532-0924
https://github.com/GuanRunwei/FindVehicle
https://github.com/GuanRunwei/FindVehicle
https://github.com/GuanRunwei/VehicleFinder-CTIM
https://github.com/GuanRunwei/VehicleFinder-CTIM


Multimedia Tools and Applications

Keywords Cross modal learning · Named entity recognition · Intelligent traffic system ·
Vehicle retrieval · Human-computer interaction · Object detection

1 Introduction

Vehicle retrieval is a task that aims to find the target vehicle from a large image gallery
given a query image, which is an image-to-image matching technique also known as vehicle
re-identification [2–5]. It has promising prospects in building ITS [6–9] for smart cities
[10]. However, an image-based vehicle retrieval system also has its defects in practice. For
example, such a system needs an image to provide characteristics of the target vehicle, which
is not always easy to obtain in the real world. The performance of an image-based vehicle
retrieval system may also be limited because there is only one type of modality to provide
spatial and temporal information.

To alleviate these problems, Natural Language (NL), as another essential modality in
the real world, has received more and more attention from researchers in recent years. A
natural language-based vehicle retrieval system aims to identify the target vehicle using an
NL description. Such a system has a broader range of application scenarios, such as finding
a vehicle when a bystander provides only an informal description. Most current natural
language vehicle retrieval implementations construct the text encoder and visual encoder
to extract features from both data types. They then project the obtained text and visual
embeddings into the same latent space to compare their similarity. In addition, both visual
and NL data will be carefully modified by these methods for more effective representation.
For example, vehicle track images are cropped to generate a global motion image [11–14]. As
for NL, some keywords related to vehicle attributes (e.g., colour, vehicle type and orientation)
are extracted in the given NL query [11, 12, 14, 15]. Although these works achieve acceptable
performance on the CityFlow-NL [16] benchmark, they can still be improved, especially in
terms of NL. We find that when implementing keyword extraction, existing methods are
usually based on dependency analysis (e.g., using NLTK package) or semantic role labelling
techniques to determine whether the word is a keyword or not. These techniques only assign
the part of speech to the words in the sentence. It means that pre-determined rules and post-
processing are required to divide the extracted keywords into corresponding vehicle attributes,
making the whole process complex [15, 17]. Such methods can also suffer from extracting
the wrong keyword if the NL description is complex. This can lead to error propagation in
subsequent modules and reduce model performance.

In fact, keyword extraction is already a mature technology in natural language processing
(NLP), also known as named entity recognition (NER). The main obstacle that prevents us
from applying the state-of-the-art NER model to solve the above problem is the lack of a
domain-specific corpus with high-quality annotations. Therefore, to alleviate this problem,
we propose a named entity labelled natural language dataset focused on the traffic domain,
called FindVehicle. It consists of descriptions of the vehicle from the point of view of urban
traffic surveillance cameras. Some example descriptions from our dataset are shown. We
also compare them with instances selected from other traffic domain datasets using natural
language, namely Talk2Car [18] and CityFlow-NL [16]. All details are given in Table 1. We
carefully construct the vehicle descriptions to match real traffic scenarios and to enrich more
detailed information about the target vehicles. Our dataset includes eight types of vehicle
features, namely vehicle location, orientation, brand, model, type, colour, distance from the
traffic surveillance camera, and velocity. In contrast, Talk2Car [18] only records vehicle type,

123



Multimedia Tools and Applications

Ta
bl
e
1

D
at
as
et
s
of

V
eh
ic
le
R
et
ri
ev
al

D
at
as
et

D
at
a
Sa
m
pl
es

In
fo
rm

at
iv
e[1

]
A
m
ou
nt

H
as
N
E
R

M
y
fr
ie
nd

is
ge
tti
ng

ou
to

f
th
e
ca
r.
St
op

an
d
le
tm

e
ou

tt
oo

!

Ta
lk
2C

ar
[2]

Y
ea
h
th
at
w
ou

ld
be

m
y
so
n
on

th
e
st
ai
rs
ne
xt

to
th
e
bu
s.

L
ow

11
95

9
N
o

M
y
m
um

is
on

th
e
ri
gh

t!
Pa
rk

ne
ar

he
r,
sh
e
m
ig
ht

w
an
ta

lif
t.

A
ca
rg
o
tr
uc
k
dr
iv
es

do
w
n
an

in
te
rs
ec
tio

n
w
ith

m
an
y
sm

al
le
r
ca
rs
.

C
ity

Fl
ow

-N
L
[3]

T
he

la
rg
e
gr
ee
n
fla
tb
ed

18
w
he
el
er

is
go
in
g
st
ra
ig
ht
.

M
ed
iu
m

93
74

N
o

A
gr
ee
n
tr
uc
k
dr
iv
es

th
ro
ug

h
an

in
te
rs
ec
tio

n,
fo
llo

w
ed

by
a
se
da
n.

A
[g
re
y]

[s
ed
an
]
dr
iv
es

[r
ig
ht
]
at
a
sp
ee
d
of

[5
8k

m
pe
r
ho

ur
].

M
ay
be

a
[[
Fo

rd
]
[M

on
de
o]
][4

].
Fi
nd

V
eh
ic
le

A
[V
ol
vo
]
[t
ru
ck
]
is
pa
rk
ed

on
th
e
si
de

of
th
e
ro
ad

,b
eh
in
d
a

H
ig
h

42
34

1
Y
es

[[
Fe

rr
ar
i]
[4
58

]]
.

T
he

[b
lu
e]

[[
B
M
W
]
[3
20

]]
dr
iv
in
g
[a
w
ay
]
is
[1
50

m
et
er
s]
aw

ay
fr
om

us

123



Multimedia Tools and Applications

and CityFlow-NL [16] has only four types of information, which are vehicle colour, type,
action, and scene. More vehicle information in the description text means that the data can
more accurately reflect the traffic scene in real life while reducing the challenge in NL-based
vehicle retrieval tasks caused by the ambiguity of natural language. Both FindVehicle and
CityFlow-NL [16] have the description of the relationship with other vehicles (surrounding
vehicles). Therefore, we do not treat the surrounding vehicle as a separate feature. Further-
more, FindVehicle is annotated with multi-granularity named entity labels in order to be able
to meet further requirements in the future.

To verify the effectiveness of the proposed dataset, we construct a simple and highly effi-
cient cross-modal vehicle retrieval system called VehicleFinder. Unlike current transformer-
based models [19, 20], which have huge parameters and slow inference time, VehicleFinder
has only 8.81 million parameters. This means that it can achieve real-time performance in
the actual scenario and is more friendly to edge devices. VehicleFinder is trained and tested
on our homemade text-to-image dataset called Vehicle-TI based on the training set of UA-
DETRAC [1]. The keywords fed intoVehicleFinder are extracted by aNERmodel pre-trained
on FindVehicle. The experiment result shows that VehicleFinder gets 87.7% precision and
89.4% recall when detecting the vehicle. Its latency is 279.35 ms on one 8-core ARM v8.2
CPU.

To conclude, the main contributions of this paper include:

1. We propose the first NER dataset (benchmark) in the traffic domain called FindVehicle,
which has 42.3 thousand sentences, 1.361 million tokens, 202.5 thousand entities and
21 entity types. FindVehicle is not only a dataset that contains both flat and overlapping
entities, but also has both coarse-grained and fine-grained entity types.

2. We propose a text-image cross-modal vehicle retrieval system called VehicleFinder to
prove the effectiveness of our proposed NER dataset. VehicleFinder is a highly effi-
cient model with favourable performance that can achieve real-time performance and be
applied to edge devices.

3. During the experiment,we construct a text-imagevehiclematchingdataset calledVehicle-
TI. Vehicle-TI has 335,040 training samples, 179,520 test samples and 83,776 validation
samples.

The rest of this paper is organized as follows: Section 2 presents the related work of our
paper; Section 3 presents the critical information of FindVehicle and how we construct it;
Section 4 presents the statistics details of FindVehicle; Section 5 presents VehicleFinder,
our text-image cross-modal vehicle retrieval system; Section 6 includes the baselines of
FindVehicle; Section 7 presents the experiment details of VehicleFinder; Section 8 presents
the conclusion of this paper and our future work; Section 9 presents some challenges of
FindVehicle.

2 Related work

2.1 Named entity recognition

Named entity recognition (NER) is a classical sequence tagging task in NLP. It is to locate
and classify the words or sentences with specific types in the text. The input of NER model
is a sequence with part-of-speech (POS) taggings, as it shows in Equation 1,

WT = (w1, t1), (w2, t2) . . . (wi , ti ) . . . (wn, tn) (1)

123



Multimedia Tools and Applications

where n denotes the number of words segmented by word segmentation program. ti is the
POS of the word wi .

The process of NER based on word segmentation and POS tagging is splitting, combin-
ing (determining entity boundaries) and reclassifying (determining entity categories) some
words. The output is an optimal sequence WC∗, TC∗ with a pair format of (word category
(WC), tagging category (TC)), as it shows in Equation 2,

WC∗, TC∗ = (wc1, tc1), (wc2, tc2), (wci , tci ), . . . , (wcm, tcm) (2)

where m ≤ n, wci = [w j , . . . , w j+k], tci = [t j , . . . , t j+k], 1 ≤ k, j + k ≤ n.
In brief, the NER modal could be written as Equation 3 shows,

(WC∗, TC∗) = argmax(WC,TC)P(WC, TC |W , T ) (3)

where W is the word sequence while T is the tagging sequence. P(·) is a conditional proba-
bility model.

HiddenMarkovModels [21] and Conditional RandomFields [22] are two typical machine
learning models for NER. Convolutional neural network [23], recurrent neural network [24],
transformer [25], and graph neural network [26], these deep learning models all achieve the
state-of-the-art results in NER.

Moreover, many NER datasets have been proposed in past years. These [27–31] are the
well-known NER datasets (benchmarks). In these datasets, there are mainly three kinds of
named entities: flat entity, overlapped entity and discontinuous entity. [32] proposed a unified
neural framework to concurrently solve the three NER problems.

2.2 Text-image vehicle retrieval

Vehicle retrieval based on test-image cross-modal learning is a hot spot these years [11, 13–
15, 33–37]. The model could find out the highest matching vehicle based on the description
with the text format. There are mainly two formats according to the architecture. The first is
the end-to-end neural network based on early retrieval, where the features of images and text
are fused in the early stage. The second is the non-end-to-end system based on late retrieval,
where images and text features are extracted individually and loaded into a decision module.

2.3 Contrastive language image pretraining

Contrastive language image pretraining (CLIP) combines the modalities of language and
image in one neural network,which ismainly formulti-modal tasks based on natural language
and computer vision. Prior to this, most computer vision work was trained based on pre-
defined labels, and supervision limited the generalization and usefulness of neural networks.
There has been a lot of work in the field of NLP using a large amount of corpus data for self-
supervised learning, and the effect of these models has surpassed manually labelled datasets
[38, 39]. In the field of CV, the current mainstream method is still to use large-scale datasets
with labelled information for pre-training [40]. Vanilla CLIP [19] creatively uses text as a
supervision signal to train a vision model and achieves conspicuous results on ImageNet
[40]. In addition, vanilla CLIP [19] is also very good at zero-shot tasks. [20] proposes a CLIP
framework called DenseCLIP, which is good at dense prediction tasks, such as semantic
segmentation and dense object detection. [41] proposes a new contrastive loss to normalize
the location and geometric information of image and text features in the semantic space.

123



Multimedia Tools and Applications

3 The construction of FindVehicle

3.1 Brief introduction

FindVehicle is the first NER dataset in traffic. It is based on the image samples of UA-
DETRAC [1]. FindVehicle contains various descriptions of traffic participants on the road
from the view of traffic surveillance cameras, mainly vehicles. A description contains many
attributes of one or several vehicles. These attributes all could be detected by traffic sen-
sors, such as surveillance cameras, lidar and radar. Moreover, FindVehicle also incorporates
much real-world prior knowledge, such as the vehicle brand and model. Furthermore, Find-
Vehicle contains both coarse-grained and fine-grained entities. Entities include both flat and
overlapped entities.

3.2 Entity types

As Fig. 1 shows, there are 21 entity types in FindVehicle, 8 coarse-grained entities and 13
fine-grained entities. These entities are all the attributes of vehicles, which all follow the
distribution of the real world. Moreover, FindVehicle also contains both flat and overlapped
entities.

3.2.1 Coarse-grained entity

There are 8 kinds of coarse-grained entities, including vehicle_location, vehicle_orientation,
vehicle_brand, vehicle_model, vehicle_type, vehicle_color, vehicle_range and
vehicle_velocity.

vehicle_location indicates the locations of vehicles from the view of the traffic surveillance
cameras, such as bottom right, top-left, etc.

vehicle_orientation indicates the directions of vehicles’ heads from the view of the traffic
surveillance cameras, such as this way, away, etc.

Fig. 1 Entity types and an annotated sample of FindVehicle. Images are from UA-DETRAC [1]

123



Multimedia Tools and Applications

vehicle_brand indicates the brands of vehicles. FindVehicle contains 65 vehicle brands
all over the world.

vehicle_model indicates the models of vehicle brands. There are 4793 models of different
vehicle brands in FindVehicle. For example, Q7 is one of the models of Audi.

vehicle_type indicates the types of vehicles, such as sedan, suv, etc.
vehicle_color indicates the colors of vehicles, such as silver grey, rose red, etc.
vehicle_range indicates the distance between the vehicle and the traffic surveillance cam-

era, such as 18m, 123 meters, etc.
vehicle_velocity indicates the speed of the moving vehicle on the road, such as

50 kilometres per hour, 120 km/h, etc.

3.2.2 Fine-grained entity

As it shows in Fig. 1, in FindVehicle, there are 13 kinds of fine-grained entities, which belong
to the coarse-grained entity vehicle_type, for example, BMW X5 is a fine-grained entity of
vehicle_type-suv. Fine-grained entities contain the human prior knowledge of cars.

3.2.3 Flat and overlapped entity

Overlapped entities exist in coarse-grained entities vehicle_brand, vehicle_model and
fine-grained entities vehicle_type-*. For example, as Fig. 2 shows, the label of BMW is vehi-
cle_brand while the label of X5 is vehicle_model, for a car enthusiast, the label of BMW X5
is vehicle_type-suv.

3.3 Corpus collection

As Fig. 4 shows, the corpus collection includes two parts, the corpus with simple context and
the corpus with complex context. The corpus with simple context denotes the short sentences,
which are presented in the column of Data Samples in Table 1. As Fig. 3 presents, firstly,
we sample some target vehicles with bounding boxes and labels in UA-DETRAC [1]. Based
on these samples, we create a relational table to save the attributes of the corresponding
vehicle. Each item in the table represents one vehicle with several attributes. Furthermore, to
increase the complexity of the dataset, we replace some formal phrase-type and word-type
entities with our informal expression habits and add some rare entities which do not exist
in UA-DETRAC [1]. Moreover, for the entity generation of three entities vehicle_brand,

Fig. 2 An example of flat and
overlapped entities

123



Multimedia Tools and Applications

Fig. 3 The generation of corpus with simple context

vehicle_model and vehicle_type-*, we invite three car enthusiasts to collect and integrate
data based on their extensive car knowledge and the search results of Wikipedia. They write
data with different expressions and curate 65 vehicle brands, 4793 vehicle models and 13
vehicle types in total. Secondly, we recruit four volunteers to write descriptive sentences
with various patterns in their tone and expression habits. All volunteers are well-educated
and have adequate English linguistic knowledge. Thirdly, we insert the target vehicles with
their attributes into these patterns by our sentence auto-generation framework.

As the sample in Fig. 1 presents, the corpus with complex context indicates narrative
long sentences or paragraphs with persons’ subjective emotions and imagination. Instead of
generating a corpus with simple context by combining labor and computers, a corpus with
complex context is made by human beings only. Four members of our team write down the
corresponding sentences and paragraphs with their own writing habits and imagination by
observing the images in UA-DETRAC [1].

3.4 NER annotation

As Fig. 4 shows, in our NER annotation framework, there are two processes for the corpus
with simple and complex contexts, respectively. The annotations of the corpus with sim-
ple context are completed simultaneously with sentence auto-generation by our annotation
auto-generation framework. After that, the correction framework of auto-generation will
automatically identify whether the NER annotations by the auto-generation framework have
errors. If the data had an error, the annotation process would be interrupted and report the
location of the error, and then we would check and fix it. If it had no error, the corpus with
annotations would be loaded into the dataset directly.

The annotations of the corpus with complex context are totally manual. They are based
on the common sense and knowledge of annotators. Annotators are all volunteers who are
knowledgeable about vehicles and good at narrative writing.

123



Multimedia Tools and Applications

Fig. 4 The framework of corpus collection and annotation of FindVehicle

As Fig. 5 shows, we organize the data in two formats, JSON and CoNLL-style [27].
The value of the key ner_label is the annotated named entities. The values of ner_label in
each element is [entity type, start index of char span, end index of char span, start index of
token span, end index of token span]. Our annotation considers char-level and token-level,
meeting different needs of the NER models. The key re_label denotes the indexes of values
of ner_label that refer to one target in the context of a sentence.

123



Multimedia Tools and Applications

Fig. 5 The two annotation formats of FindVehicle

4 Data statistics of FindVehicle

4.1 Size and distribution of FindVehicle

FindVehicle is the first NER dataset in traffic with the annotations of automatic labeling
and manual labelling together. As Table 2 shows, we present the statistics of FindVehicle
and other widely used well-known NER datasets, including CoNLL’03 [27], WikiGold [28],
WNUT’17 [29], I2B2 [42] and OntoNotes [30]. FindVehicle has 42.3 thousand sentences,
1.361 million tokens, 202.5 thousand entities and 21 entity classes. As Fig. 6 presents, the
entity types are long-tail distributed to reflect the real-world traffic scenario.

4.2 Dataset split

FindVehicle is a hybrid NER dataset containing both flat and overlapped entities. We split
it into a training set and a test set. The details of these two sets are shown in Table 3. For
the training set, there are 84.6k coarse-grained entities and 18.2k fine-grained entities. In
addition, there are 84.2k flat entities and 18.6k overlapped entities. For the test set, there are

Table 2 Statistics of FindVehicle and other well-known NER datasets

Datasets Sentences Tokens Entities Entity Classes Domain

WikiGold [28] 1.7k 39k 3.6k 4 General

WNUT’17 [29] 4.7k 86.1k 3.1k 6 Social Media

CoNLL’03 [27] 22.1k 301.4k 35.1k 4 Newswire

I2B2 [42] 107.9k 805.1k 28.9k 23 Medical

OntoNotes [30] 103.8k 2067k 161.8k 18 General

FindVehicle (ours) 42.3k 1361.1k 202.5k Traffic

123



Multimedia Tools and Applications

Fig. 6 Statistics by entities in FindVehicle

82.5k coarse-grained entities and 17.4k fine-grained entities. Besides, 82.7k flat entities and
17.2k overlapped entities are in the test set.

5 VehicleFinder

VehicleFinder is a lightweight text-image cross-modal vehicle retrieval system. Users could
find out the target vehicle through the description of its type, color and orientation. As Fig.
7 presents, VehicleFinder has two branches. One is to extract proposals by a vision detector
while the other is to extract named entities by a text detector. We adopt NanoDet [43] as the
vision detector and BiLSTM-CRF [24] as the text detector. The NanoDet [43] is pretrained
on UA-DETRAC [1] while the BiLSTM-CRF [24] is pretrained on our FindVehicle. The
proposals and name entities will be loaded into the contrastive text-image module (CTIM)
to compare the semantic similarity of data of two modalities.

As Fig. 8 shows, there are two encoder branches in CTIM to encode the data of image
and text modalities, respectively. The output of CTIM is the similarity of the image and
text, whose value domain is between 0 and 1. An output below 0.5 indicates that the image
and text are unrelated, while an output above 0.5 indicates that they are related. CTIM is a
complete convolution module whose convolution operations are all the depthwise separable
convolution [44], dramatically reducing the parameter number, especially in the deep layers
of the neural network. CTIM could perform as a plug-and-play module in some cross-modal
systems.

In the branch of the image encoder, there are five same encoder units. An encoder unit
will initially put the input feature map xi ∈ Rc×h×w into three branches, where c, h, w
respectively denote the channel, height and width of a feature map. The first three branches
with different convolution kernel sizes are used to extract the feature with different receptive
fields. The output feature map x̂i ∈ Rc×h×w will be activated by ReLU [45], then increase
the channels and reduce the spatial size through a depthwise separable convolution operation
with the 3× 3 kernel. After a batch normalization and a ReLU activation, the output feature

map is xi+1 ∈ R2c× h
2 ×w

2 . To alleviate the gradient vanishing and explosion in the training
stage, a long residual path with a depthwise separable convolution is connected with the

123



Multimedia Tools and Applications

Ta
bl
e
3

D
at
a
Sp

lit
of

Fi
nd
V
eh
ic
le

D
at
as
et

C
oa
rs
e-
gr
ai
ne
d
E
nt
iti
es

Fi
ne
-g
ra
in
ed

E
nt
iti
es

Fl
at
E
nt
iti
es

O
ve
rl
ap
pe
d
E
nt
iti
es

T
ra
in
in
g
se
t

84
.6
k

18
.2
k

84
.2
k

18
.6
k

Te
st
se
t

82
.5
k

17
.4
k

82
.7
k

17
.2
k

123



Multimedia Tools and Applications

Fig. 7 The architecture of VehicleFinder

output feature map. The final output of the encoder unit is x̂i+1 ∈ R2c× h
2 ×w

2 . The whole
process is presented in Equation 4.

x̂i = BN (Conv3×3(xi )) + BN (Conv1×1(xi )) + BN (xi ), x̂i ∈ Rc×h×w

xi+1 = BN (Conv3×3(ReLU (x̂i ))), xi+1 ∈ R2c× h
2 ×w

2

x̂i+1 = ReLU (xi+1) + Conv3×3(xi ), x̂i+1 ∈ R2c× h
2 ×w

2

(4)

In the branch of text encoder, named entities will be firstly embedded by pretrained
embeddings of Fasttext (wiki-news-300d-1M) [46]. Fasttext could infer the embeddings
of words not in the word dictionary based on the existing words, which is more robust
than Word2vec [47] and GloVe [48] for the system. The shape of the embedding matrix
is d × 300, where d indicates the number of named entities and 300 is the vector length
of each named entity. After that, we adopt four groups of multi-scale depthwise separable
convolution operations to extract the featurewith different scales concurrently. The first group
is n convolution operations of the kernel size 1×w1, which is to extract the feature of a single
word in named entities. The second group has one convolution operation of the kernel size
2 × w2 and n − 1 convolution operations of the kernel size 1 × w1, where the convolution
of the 2 × w2 kernel is to extract the associated feature of adjacent words. The rest 1 × w1

convolution operations are to enhance the non-linear representation. The third group is firstly
processed by a convolution of the 3 × w3 kernel, which is also for the feature extraction
of adjacent words with a word window size of three. Then the following operations are the
same as the second group. The fourth group is a convolution operation with the kernel size
of d × wd , which is to extract the feature of the global context. Finally, the outputs of these
four groups will be added to get a comprehensive representation of the name entities. The
four convolution operations are shown in Fig. 9.

After we get the representations of the proposal and named entities, we align their shape to
calculate their cosine distance. Cosine distance measures the distance between vectors of the
proposal and named entities. It could maintain the same similarity in the high-dimensional
case as the low-dimensional case, which is a robust indicator of the relative difference in
direction. Equation 5 shows cosine distance.

CosineD = A · B
‖A‖‖B‖ =

∑n
i=1 Ai Bi

√∑n
i=1 A

2
i

√∑n
i=1 B

2
i

,CosineD ∈ [−1, 1] (5)

123



Multimedia Tools and Applications

Fig. 8 The architecture of Contrastive Text-Image Module (CTIM). All convolution operations are all depth-
wise separable convolutions, except for the convolution operation with the kernel size of 1 × 1. Because the
depthwise separable convolution contains the convolution operation with the 1× 1 kernel size. ci denotes the
channel number of the feature map whose kernel height is i . wi denotes the width of the feature map whose
kernel height is i

where n is the number of vector’s components. Ai and Bi respectively denote the text and
image vector of i th component.

However, the value domain of cosine distance is [−1, 1]. It means that the result of cosine
distance could not be directly fed to binary cross entropy loss (BCE loss) because BCE loss

123



Multimedia Tools and Applications

Fig. 9 The four multi-scale convolution operations in our text encoder

(Equation 6) could not process the negative number.

LBCE = −
N∑

i=1

[yi ln(ŷi ) + (1 − yi )ln(1 − ŷi )] (6)

where N indicates the number of samples in a batch. yi ∈ {0, 1} is the ground truth while
ŷi ∈ [−1, 1] is the result of cosine distance predicted by the neural network. Apparently, ŷi
is not in the definitional domain of ln(·) if ŷi is below zero.

Therefore, as Equation 7 presents, we use Equation 7 to compress the results of cosine
distance from [−1, 1] to [0, 1], which can be the input to BCE loss. The linear compression
function is a monotonically increasing function whose value domain is [0, 1]. It is differen-
tiable everywhere. Monotonicity ensures that the relative position of the variable does not
change when it maps from [−1, 1] to [0, 1]. The property of being differentiated everywhere
ensures that it can participate well in backpropagation in neural networks.

Comp(x) = 1

2
x + 1

2
,Comp(x) ∈ [0, 1] (7)

where x ∈ [−1, 1] denotes the result calculated by cosine distance.
Therefore, the complete form of the loss function is presented in Equation 8.

L(yi , ŷi ) = −
N∑

i=1

[yi ln(Comp(ŷi )) + (1 − yi )ln(1 − Comp(ŷi ))] (8)

Finally, our VehicleFinder will calculate the similarities between named entities extracted
from the command and object proposals extracted by the vision detector. We will sort
object proposals in terms of the similarity with named entities descendingly. The ranking
list proposals will then be fed to a decision module. In the decision module, considering
that the user cannot always describe the vehicle characteristics in detail, we take two patterns
of commands into account and process them respectively to enhance the system’s robustness,
which could also be user-friendly. As Fig. 10 presents, the first is the no-missing-entity pattern
and the second is the missing-entity pattern. No-missing-entity pattern indicates the com-
mand contains all three named entities, vehicle_type, vehicle_color and vehicle_orientation.
Missing-entity pattern indicates the command contains one or two named entities, and the
other one or two named entities are not mentioned.

123



Multimedia Tools and Applications

Fig. 10 Two patterns of commands

As Algorithm 1 presents, we firstly set two thresholds thnm and thm , which mean the
threshold for no-missing-entity pattern and the threshold for missing-entity pattern. The
variable proposals containing vehicle: sim pairs indicates object proposals and their sim-
ilarity with named entities extracted from the command. For no-missing-entity pattern, if
existing the vehicle: sim pair whose sim is larger than thnm , the vehicle: sim pair would be
appended to retainV ehicle. If not existing the vehicle: sim pair whose sim is larger than
thnm , the decision module would continue to search for the vehicle: sim pair whose sim is
larger than thm . If existing the vehicle: sim pair whose sim is larger than thm , the vehicle:
sim pair would also be appended to retainV ehicle. thnm and thm are set based on the results
of experiments. We assume by default that thnm is greater than thm .

Algorithm 1 Decision Module
Input: thnm , thm , proposals = [{vehicle : sim}], retainV ehicle = []
if proposals.exists(vehicle.sim ≥ thnm ) then

for p in proposals do
if p.sim ≥ thnm do

retainV ehicle.append(p)
end if

else if proposals.exists(thm ≤ vehicle.sim < thnm ) then
for p in proposals do

if p.sim ≥ thm do
retainV ehicle.append(p)

end if
end if

end if
return retainV ehicle

6 Experiments of FindVehicle

In the experiments of FindVehicle, we make the baselines of our FindVehicle.

6.1 Settings of training and evaluation

We select three representative and state-of-the-art models to train and test on FindVehicle,
which were BiLSTM-CRF [24], BERT-CRF [49] and FLERT [50].

123



Multimedia Tools and Applications

BiLSTM-CRF [24] combines BiLSTM and CRF. BiLSTM acts as the encoder layer and
takes word embeddings as input, CRF serves as a decoder to determine the tag for each token
based on hidden states outputted from a encoder.

BERT-CRF [49] replaces word embeddings of BiLSTM with subword-embeddings
learned from BERT, and changes the encoder from BiLSTM to Transformer.

FLERT [50] is a NER model that takes document-level features as an extra account. By
adding context text on both sides (left and right) to the query sentence, FLERT captures
document-level features and presents a better predict result than the previous model.

For each model, we use the most suitable hyperparameters that make the model converge
smoothly. We train and test these models on one TITAN RTX GPU. Table 4 shows the
implementation details.

Furthermore, as Equation 9, 10 and 11 present, we choose precision, recall and F1 score
as the evaluation metrics of the test, which are based on the confusion matrix (Table 5).

Precision = T P

T P + FP
(9)

Recall = T P

T P + FN
(10)

F1 = 2 × Precision × Recall

Precision + Recall
(11)

6.2 Baselines of FindVehicle

Table 6 shows the evaluation results of models on the test set of FindVehicle. It is apparent
that Transformer-based models perform better than the RNN-based model. BiLSTM-CRF
[24] got 49.5% F1 score, which is the lowest value among models. FLERT [50] achieved
80.9% F1 score, which is the highest value, 3% higher than BERT-CRF [49].

Furthermore, we do the statistics on the evaluation results for all 21 classes of named
entities.We take the evaluation results of FLERT [50] as the example, as Table 7 shows, all the
evaluation metric values of fine-grained entities are much lower than those of coarse-grained
entities. It denotes that the recognition of fine-grained entities is harder than coarse-grained
entities for neural networks. Moreover, we also calculate the evaluation results of flat entities
and overlapped entities by FLERT [50]. As Table 8 shows, the values of three metrics of flat
entity are about 20% higher than overlapped entities’. The recognition of overlapped entities
is still a challenge in FindVehicle.

6.3 Comparison of models on different NER datasets

We also compare the performances of models on different NER datasets (Table 9), including
CoNLL’03 (4 classes) [27], WNUT’17 (6 classes) [29], Ontonotes (18 classes) [30] and our
FindVehicle (21 classes). We use F1 score as the evaluation metric. We can see that F1 scores
(Equation 11) of three models on FindVehicle are all lower than the scores on CoNLL’03
[27] and Ontonotes (18 classes) [30], which indicates that there are some challenges in our
dataset to some extent.

123



Multimedia Tools and Applications

Ta
bl
e
4

Im
pl
em

en
ta
tio

n
D
et
ai
ls
of

M
od

el
s
on

T
he

T
ra
in
in
g
Se
to

f
Fi
nd

V
eh
ic
le

M
od

el
E
po

ch
s

B
S

IL
R

O
pt

Sc
h1

B
iL
ST

M
-C

R
F
[2
4]

80
32

0.
00

1
A
da
m
W

C
os
in
e

B
E
R
T-
C
R
F
[4
9]

10
0

4
0.
00

15
A
da
m
W

C
os
in
e

FL
E
R
T
[5
0]

80
8

0.
00

1
A
da
m
W

C
os
in
e

1
B
S
m
ea
ns

ba
tc
h
si
ze
,I
L
R
m
ea
ns

in
iti
al
le
ar
ni
ng

ra
te
,O

pt
m
ea
ns

op
tim

iz
er
,S

ch
m
ea
ns

sc
he
du
le
r

123



Multimedia Tools and Applications

Table 5 Confusion Matrix Predict Positive Negative
Label

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 6 Evaluation Results of
Three Models on The Test Set of
FindVehicle

Model Precision (%) Recall (%) F1 (%)

BiLSTM-CRF [24] 50.1 50.4 49.5

BERT-CRF [49] 77.7 78.4 77.9

FLERT [50] 80.6 81.3 80.9

Table 7 Evaluation Results of FLERT [50] for All The Classes of FindVehicle

Entity Class Precision (%) Recall (%) F1 (%)

vehicle_color 91.8 91.9 91.8

vehicle_brand 91.9 91.8 91.8

vehicle_model 91.7 91.7 91.7

vehicle_location 91.7 91.8 91.8

vehicle_velocity 90.4 89.8 90.1

vehicle_orientation 91.5 88.7 90.1

vehicle_range 92.1 91.9 92.0

vehicle_type 91.6 91.8 91.7

vehicle_sedan 81.9 83.0 82.4

vehicle_type-suv 84.7 86.1 85.4

vehicle_type-motorcycle 87.7 91.5 89.6

vehicle_type-sports_car 84.1 85.5 84.8

vehicle_type-hatchback 68.8 66.5 67.6

vehicle_type-vintage_car 81.6 82.9 82.2

vehicle_type-coupe 72.7 77.4 75.0

vehicle_type-truck 74.7 81.0 77.7

vehicle_type-van 62.9 74.0 68.1

vehicle_type-mpv 63.1 66.8 64.9

vehicle_type-estate_car 62.0 58.7 60.3

vehicle_type-bus 70.7 68.0 69.3

vehicle_type-roadster 44.9 32.4 37.8

Table 8 Evaluation Results of
FLERT [50] for Flat and
Overlapped Entities of
FindVehicle

Entity Type Precision (%) Recall (%) F1 (%)

Flat Entity 91.6 91.5 91.6

Overlapped Entity 71.5 72.6 71.9

123



Multimedia Tools and Applications

Ta
bl
e
9

Pe
rf
or
m
an
ce
s
of

M
od
el
s
on

Te
st
Se
ts
of

D
if
fe
re
nt

N
E
R
D
at
as
et
s

M
od
el
s

F1
D
at
as
et
s

C
oL

L’
03

[2
7]

W
N
U
T
’1
7
[2
9]

O
nt
on

ot
es

[3
0]

F
in
dV

eh
ic
le
(o
ur
s)

B
iL
ST

M
-C

R
F
[2
4]

91
.7

42
.6

87
.1

49
.5

B
E
R
T-
C
R
F
[4
9]

93
.4

59
.8

92
.0

77
.9

FL
E
R
T
[5
0]

94
.1

61
.1

92
.3

80
.9

123



Multimedia Tools and Applications

Table 10 Implementation Details
of NanoDet-m on The Training
Set of UA-DETRAC

Model Epochs BS ILR Opt Sch1

NanoDet-m [43] 200 16 0.001 AdamW Cosine

1BS means batch size; ILR means initial learning rate; Opt means opti-
mizer; Sch means scheduler

7 Experiments of VehicleFinder

There are four parts in the experiments of VehicleFinder, which are vision detector, text
detector, CTIM and VehicleFinder.

7.1 Experiments of vision detector

Vision detector is to extract proposals of vehicles from the image. We adopt NanoDet-m [43]
as the vision detector, which is a lightweight detector with only 0.95 million parameters. It
is trained on the training set of UA-DETRAC [1]. The implementation details are shown in
Table 10.

Moreover, we want the vision detector to miss as few targets as possible, so we use recall
as the evaluation metric instead of precision. As Table 11 presents, NanoDet-m [43] gets
86.7% recall rate on the test set.

7.2 Experiments of text detector

Text detector is to extract keywords (named entities) from the user command. BiLSTM-
CRF has relatively few parameters and fast inference among all NER models mentioned in
Section 6.2, so we train a BiLSTM-CRF on our FindVehicle as the text detector, which is
to extract named entities with types of vehicle_type, vehicle_color and vehicle_orientation.
The implementation details are shown in Table 4.

As Table 12 shows, BiLSTM-CRF has 4.02 million parameters. It spends 148.57 ms
extracting all named entities from a sample in FindVehicle on the 8-core ARM v8.2. In
addition, it spends 87.19 ms and 51.73 ms when tested on i7-12700 and RTX A4000 (Table
13).

7.3 Experiments of CTIM

7.3.1 Settings of training and evaluation

We construct a text-image-pair dataset called Vehicle-TI based on the training set of UA-
DETRAC [1] to train and test our CTIM. As Fig. 11 shows, each data sample in Vehicle-TI

Table 11 Evaluation of NanoDet-m on UA-DETRAC [1]

Model Param(M) Latency(ms) Latency(ms) Latency(ms) Recall(%)
8-core ARM v8.2 i7-12700 RTX A4000

NanoDet-m [43] 0.95 7.99 3.72 1.14 86.7

123



Multimedia Tools and Applications

Table 12 Inference Speed Evaluation of BiLSTM-CRF [24]

Model Param(M) Latency(ms) Latency(ms) Latency(ms)
8-core ARM v8.2 i7-12700 RTX A4000

BiLSTM-CRF [24] 4.02 148.57 87.19 51.73

has a triple keyword (text modal), a proposal (image modal) and a label, which are extracted
and reconstituted from UA-DETRAC [1]. A triple keyword contains the type, color and
orientation of the vehicle. The label indicates whether the proposal is consistent with the
description of the triple keyword, where 1 means consistent (positive sample) and 0 means
inconsistent (negative sample). Positive sample is to make the feature encodings of text and
image closer while the negative sample is to make the feature encodings of text and image
farther. There are 598,336 samples in Vehicle-TI, 335,040 for training, 179,520 for test and
83,776 for validation.

As Table 14 shows, we train CTIM for 50 epochs with a batch size of 64. The initial
learning rate is 0.001 and CTIM is optimized by AdamW [51]. The learning rate is scheduled
by the Step scheduler.

Furthermore, we set a threshold of 0.7 as the boundary of the consistency of the vehicle
proposal and the triple keyword. If the output of CTIM is above 0.7, it indicates that the
vehicle proposal and the triple keyword are consistent (strong-related), if not, we think they
are not related or weak-related.

7.3.2 Evaluation results

Table 15 presents the evaluation results of CTIM on the test set of Vehicle-TI. CTIM has only
3.84 million parameters, which gets 97.7% accuracy (Equation 12) for the identification of
consistency between vehicle images and triple keywords.

Accuracy = T P + T N

T P + FP + T N + FN
(12)

Moreover, we also test the inference speed of CTIM on different devices. CTIM spends
131.42 ms identifying one sample on an 8-core ARM v8.2 of NVIDIA Jetson AGX Xavier.
When tested on an i7-12700, CTIM gets 67.43 ms latency. In addition, it costs CTIM 39.47
ms on one RTXA4000. The above proves that CTIM can maintain high performance on both
edge and host devices.

7.3.3 Comparison of CTIM with other models

As the above mention, all convolution operations in CTIM are depthwise separable convo-
lution. In addition, we use cosine distance and linear compression function to measure and
process the similarity between text and image modalities. We still call it CTIM.

Table 13 F1 Scores of Different Kinds of Named Entities by BiLSTM-CRF [24] on FindVehicle

Model F1 (vehicle_type) F1 (vehicle_color) F1 (vehicle_orientation)

BiLSTM-CRF [43] 90.56 89.79 90.17

123



Multimedia Tools and Applications

Fig. 11 The data format of Vehicle-TI, which is for the training and test of CTIM

Wefirstly replace all depthwise separable convolution operations in CTIMwith the normal
convolution operations. We call it CTIM-Conv-CosineD.

Secondly, we replace the cosine distance and linear compression function in CTIM with
fully connected layers, which is the operation in normal Siamese neural networks to fit the
similarity by fully connected layers. We call it CTIM-DSConv-Siamese.

Thirdly, we adopt themost well-known contrastive language and image pretrainingmodel,
CLIP [19]. We adopt ResNet-50 as the image encoder and Transformer as the text encoder.
The total parameter number of CLIP is 102.58 million.

Last but not least, we fine-tune a bert-based Siamese neural network [52] to make it adapt
to our task. Its architecture is Transformer-based, totally different from the aforementioned
neural networks. We call it Bert-Siamese.

As Table 15 presents, CTIM performs the best for both accuracy and inference speed. In
contrast, CTIM-Conv-CosineD-Linear has 36.6 million parameters, which is 32.83 million
more than CTIM. Furthermore, its speed on different devices is slower than CTIM.

Secondly, the parameter number ofCTIM-DSConv-Siamese is the largest among all CNN-
based neural networks, which is 99.72 million. Its inference speed on different devices is also
the slowest and the accuracy is only 25.7%.

Thirdly, CLIP with ResNet-50 and Transformer has 102.58 million parameters. It gets
96.5% accuracy on the test set.

Last but not least, although Bert-Siamese [52] has a close performance with our CTIM, it
has huge parameters of 189.53 million. It spends nearly 3 seconds to identify one sample on
8-core ARM v8.2, which is far too slow to deploy on edge devices.

Table 14 Implementation Details
of CTIM on The Training Set of
Vehicle-TI

Model Epochs BS ILR Opt Sch1

CTIM 50 64 0.001 AdamW Step

1BS means batch size ILR means initial learning rate Opt means opti-
mizer Sch means scheduler

123



Multimedia Tools and Applications

Ta
bl
e
15

C
om

pa
ri
so
n
of

V
ar
io
us

Te
xt
-I
m
ag
e
Si
am

es
e
N
et
w
or
k
on

Te
st
Se
to

f
V
eh
ic
le
-T
I

M
od
el

Pa
ra
m
(M

)
L
at
en
cy
(m

s)
L
at
en
cy
(m

s)
L
at
en
cy
(m

s)
A
cc
ur
ac
y(
%
)

8-
co
re

A
R
M

v8
.2

i7
-1
27

00
R
T
X
A
40

00

C
T
IM

3.
84

13
1.
42

67
.4
3

39
.4
7

97
.7

C
T
IM

-C
on
v-
C
os
in
eD

-L
in
ea
r

36
.6
7

18
5.
64

79
.7
2

55
.5
4

97
.2

C
T
IM

-D
SC

on
v-
Si
am

es
e

99
.7
2

21
1.
79

13
4.
45

96
.1
8

25
.7

C
L
IP
(R

es
N
et
-5
0+

T
ra
ns
fo
rm

er
)

10
2.
58

22
36

.1
2

13
95

.7
7

52
7.
86

96
.5

B
er
t-
Si
am

es
e

18
9.
53

28
19

.8
7

16
57

.5
3

88
6.
62

97
.3

123



Multimedia Tools and Applications

Based on the performances of the above models, we find that cosine distance is a much
better choice for measuring the similarity of text and image features than fully-connected lay-
ers, where the accuracy of CTIM is 72% higher than CTIM-DSConv-Siamese. Furthermore,
transformer-based encoders do not behave as expected, where CLIP and Bert-Siamese get
lower accuracy than CTIM. Due to the limited features of named entities, transformer-based
encoders could not play to their strengths.

7.4 Evaluation of VehicleFinder

7.4.1 Settings of evaluation

We randomly sample 2000 images from the test set ofUA-DETRAC [1] as our homemade test
set for VehicleFinder. For each image, we write a piece of retrieval text, which corresponds
to one or more vehicles in the image. The format of the test set is presented in Fig. 12. Each
item includes columns of the image path img_path, target id target_id, the upper-left abscissa
of bounding box left, the upper-left ordinate of bounding box top, the width of bounding box
width, the height of bounding box height and the retrieval content retrieval_text. There are
3917 target vehicles based on retrieval text in these 2000 images. We adopt precision, recall
and F1 score to evaluate our VehicleFinder, which are presented in Equation 13, 14 and 15.
We also test our VehicleFinder on three different devices.

PrecisionV = num(detected vehicles& detected vehicles in the testset)

num(detected vehicles)
(13)

RecallV = num(detected vehicles& detected vehicles in the testset)

num(all vehicles in the testset)
(14)

F1 = 2 × PrecisionV × RecallV
PrecisionV + RecallV

(15)

7.4.2 Evaluation results

Table 16 shows that our VehicleFinder(CTIM) has 8.81 million parameters, containing the
vision detector, the text detector andCTIM.After setting two thresholds thnm and thm as 0.70
and 0.30 respectively, our VehicleFinder(CTIM) achieves 87.7% precision, 89.4% recall and
88.5% F1 score. Fig. 13 presents the test results of VehicleFinder(CTIM). We can observe
that the targeted vehicles could be preciously retrieved based on the description.

Furthermore, we also collect the results of the control group. VehicleFinder(CTIM-Conv-
CosineD-Linear) achieves 87.4% precision, 87.9% recall and 87.6% F1 score with 41.64
million parameters. VehicleFinder(CTIM-DSConv-Siamese) has 104.69 million parameters
and its F1 score is only 12.5%, which is the lowest among all. VehicleFinder(CLIP) has
107.55 million parameters total and gets 87.5% F1 score. VehicleFinder(Bert-Siamese) has

Fig. 12 The format of the homemade test set for VehicleFinder

123



Multimedia Tools and Applications

Ta
bl
e
16

E
va
lu
at
io
n
of

V
eh
ic
le
Fi
nd
er

on
O
ur

H
om

em
ad
e
Te
st
Se
t

M
od

el
Pa
ra
m
(M

)
Pr
ec
is
io
n(
%
)

R
ec
al
l(
%
)

F1
(%

)

V
eh
ic
le
Fi
nd

er
(C

T
IM

)
8.
81

87
.7

89
.4

88
.5

V
eh
ic
le
Fi
nd

er
(C

T
IM

-C
on
v-
C
os
in
eD

-L
in
ea
r)

41
.6
4

87
.4

87
.9

87
.6

V
eh
ic
le
Fi
nd

er
(C

T
IM

-D
SC

on
v-
Si
am

es
e)

10
4.
69

11
.7

13
.4

12
.5

V
eh
ic
le
Fi
nd

er
(C

L
IP
)

10
7.
55

86
.6

88
.4

87
.5

V
eh
ic
le
Fi
nd
er
(B
er
t-
Si
am

es
e)

19
4.
50

87
.5

89
.4

88
.4

123



Multimedia Tools and Applications

Fig. 13 Samples of inference results by VehicleFinder on UA-DETRAC [1]

the almost same F1 score (88.4%) as our VehicleFinder(CTIM), but its parameters are too
huge. This further proves that Bert may not be a better choice than RNNs for encoding named
entities because named entities are mainly short text with few contextual features.

We calculate the latency of our VehicleFinder(CTIM) from the moment that the command
is loaded into VehicleFinder(CTIM) to the moment that the VehicleFinder(CTIM) completes
the identification of one vehicle. As Equation 16 presents, Tner means the time of named
entity recognition and Tcti means the identification time of the consistency of named entities
and one vehicle proposal. It includes the inference time of the text detector and CTIM. We
ignore the time for the system to schedule different models. Table 17 shows the inference
speed evaluation of our VehicleFinder(CTIM). The longest latency is 279.35 ms on one 8-
core ARM v8.2 while the shortest latency is 93.72 ms on one RTX A4000. It implies that
our VehicleFinder(CTIM) could be deployed on both edge devices and host devices, but host
devices are the better choice.

Moreover, according to experiment results in Table 16. We find transformer-based CLIP
and Bert achieves worse performances than our CTIM. It implies that huge transformer-based
text encoders do not perform better than lightweight LSTMs on short text feature extraction,
since short text has few features for extraction.

Last but not least, we also test the VehicleFinder(CTIM) on our collected images in some
traffic scenes. Based on the images, we recruited two volunteers to describe the vehicles
that they want to find out in the images. As Fig. 14 presents, VehicleFinder(CTIM) can still
accurately find out the targeted vehicles based on the volunteers’ descriptions. In addition,
inference of corner cases is included as Fig. 15 shows, which means VehicleFinder(CTIM)
can keep robust to some extent when confronted with some adverse phenomenons.

Latency = Tner + Tcti (16)

123



Multimedia Tools and Applications

Ta
bl
e
17

In
fe
re
nc
e
Sp

ee
d
E
va
lu
at
io
n
of

V
eh
ic
le
Fi
nd
er

M
od
el

Pa
ra
m
(M

)
L
at
en
cy
(m

s)
L
at
en
cy
(m

s)
L
at
en
cy
(m

s)
8-
co
re

A
R
M

v8
.2

i7
-1
27

00
R
T
X
A
40

00

V
eh
ic
le
Fi
nd

er
(C

T
IM

)
8.
81

27
9.
35

16
9.
34

97
.7
2

V
eh
ic
le
Fi
nd

er
(C

T
IM

-C
on
v-
C
os
in
eD

-L
in
ea
r)

41
.6
4

36
5.
77

21
2.
59

13
8.
57

V
eh
ic
le
Fi
nd

er
(C

T
IM

-D
SC

on
v-
Si
am

es
e)

10
4.
69

39
8.
35

24
3.
93

17
1.
45

V
eh
ic
le
Fi
nd

er
(C

L
IP
)

10
7.
55

23
98

.7
7

14
87

.5
3

58
8.
56

V
eh
ic
le
Fi
nd

er
(B

er
t-
Si
am

es
e)

19
4.
50

30
94

.3
3

18
09

.5
1

97
3.
83

123



Multimedia Tools and Applications

Fig. 14 Inference results of VehicleFinder on our collected images

8 Conclusion and future work

We propose the first NER dataset FindVehicle in traffic domain, which contains different
sentences that describe the vehicles in different traffic scenes. Named entities include several
attributes of vehicles that could be detected by perception sensors. FindVehicle is a NER
dataset that contains both flat and overlapped entities. All the named entities in it are annotated
by both machine annotation algorithms and human annotators. Annotation includes both
coarse-grained and fine-grained entity annotation. FindVehicle could be used to assist text-
image cross-modal tasks in traffic scenes and act as the pretrained corpus of the territory
of traffic. Furthermore, We propose an efficient text-image cross-modal vehicle retrieval
system calledVehicleFinder. VehicleFinder achieves 87.7%precisionwhen identifying target
vehicles by text commands, which spends 279.35ms on one 8-coreARMv8.2CPU and 93.72
ms on one RTX A4000 GPU. Our VehicleFinder could help traffic supervisors find out the
target vehicle from a large number of images or videos based on natural language. Last but
not least, we construct a text-to-image vehicle-matching dataset called Vehicle-TI.

In the future, firstly,wewill continue tomaintain ourFindVehicle. Secondly,wewill extend
FindVehicle by adding the corpus of some special traffic scenes, and connecting samples of
FindVehicle to images of real traffic scenes, which would be a new dataset (benchmark).
Thirdly, we will explore text-video cross-modal vehicle retrieval.

9 Discussion

The discussion is divided into two parts, the challenges of FindVehicle and the limitation of
our cross-modal vehicle retrieval system VehicleFinder.

In FindVehicle, long-tail data distribution, the recognition of vehicle brands out of the
distribution, and the recognition of fine-grained and overlapped entities are three challenges

Fig. 15 Inference results of corner cases: occluded targets, dark environment and strong light interference

123



Multimedia Tools and Applications

Fig. 16 The challenge of multiple entity clustering

worth exploring.Moreover, as Fig. 16 shows, identifyingwhether the extracted named entities
refer to the same vehicle is a considerable challenge, equivalent to clustering named entities
according to context.

The first limitation of our VehicleFinder is that a description can only contain the attributes
of one vehicle. Our VehicleFinder is not adaptive to context with multiple vehicles because
we only adoptNER in keyword extraction instead of combiningNERwith relation extraction,
which is also a challenge in the future. The second limitation is that the granularity of the
keywords used to describe the attributes of the vehicles is not fine enough, which is attributed
to the limitation of the human cost of the annotation effort. We will continue to pay attention
to and research this field in the future.

Acknowledgements The authors acknowledge XJTLU-JITRI Academy of Industrial Technology for giving
valuable support to the joint project. This work is also partially supported by the Xi’an Jiaotong-Liverpool
University (XJTLU) AI University Research Centre, Jiangsu (Provincial) Data Science and Cognitive Com-
putational Engineering Research Centre at XJTLU (funding: XJTLU-REF-21-01-002). The authors sincerely
acknowledge Sihao Dai, Zhou Yuan, Wenjie Zhou for their help in the project.

Code Availability All the code are available to access in the first author’s GitHub repository.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Wen L, Du D, Cai Z, Lei Z, Chang M-C, Qi H, Lim J, Yang M-H, Lyu S (2020) Ua-detrac: A new bench-
mark and protocol for multi-object detection and tracking. Computer Vision and Image Understanding
193:102907

2. Hongye, L., Tian, Y., Wang, Y., Pang, L., Huang, T.: Deep relative distance learning: Tell the difference
between similar vehicles. computer vision and pattern recognition (2016)

3. Liu, X., Liu, W., Mei, T., Ma, H.: A deep learning-based approach to progressive vehicle re-identification
for urban surveillance. European conference on computer vision (2016)

4. Liu, X., Liu, W., Ma, H., Fu, H.: Large-scale vehicle re-identification in urban surveillance videos.
international conference on multimedia and expo (2016)

5. AdaimiG,Kreiss S, Alahi A (2021)Deep visual re-identificationwith confidence. Transportation research
part C: emerging technologies 126:103067

123

http://creativecommons.org/licenses/by/4.0/


Multimedia Tools and Applications

6. El Hamdani S, Benamar N, Younis M (2020) Pedestrian support in intelligent transportation systems:
challenges, solutions and open issues. Transportation research part C: emerging technologies 121:102856

7. Ganin AA, Mersky AC, Jin AS, Kitsak M, Keisler JM, Linkov I (2019) Resilience in intelligent trans-
portation systems (its). Transportation Research Part C: Emerging Technologies 100:318–329

8. Chien C-F, Chen H-T, Lin C-Y (2020) A low-cost on-street parking management system based on blue-
tooth beacons. Sensors 20(16):4559

9. Sharma P, Singh A, Singh KK, Dhull A (2022) Vehicle identification using modified region based convo-
lution network for intelligent transportation system. Multimedia Tools and Applications 81(24):34893–
34917

10. Kong F, Zhou Y, Chen G (2020) Multimedia data fusion method based on wireless sensor network in
intelligent transportation system. Multimedia Tools and Applications 79(47):35195–35207

11. Park, E.-J., Kim, H., Jeong, S., Kang, B., Kwon, Y.: Keyword-based vehicle retrieval. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4220–4227 (2021)

12. Zhao, C., Chen, H., Zhang, W., Chen, J., Zhang, S., Li, Y., Li, B.: Symmetric network with spatial
relationship modeling for natural language-based vehicle retrieval. (2022)

13. Bai, S., Zheng, Z., Wang, X., Lin, J., Zhang, Z., Zhou, C., Yang, H., Yang, Y.: Connecting language
and vision for natural language-based vehicle retrieval. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4034–4043 (2021)

14. Xu, B., Xiong, Y., Zhang, R., Feng, Y., Wu, H.: Natural language-based vehicle retrieval with explicit
cross-modal representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3142–3149 (2022)

15. Nguyen, T.M., Pham, Q.H., Doan, L.B., Trinh, H.V., Nguyen, V.-A., Phan, V.-H.: Contrastive learning
for natural language-based vehicle retrieval. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4245–4252 (2021)

16. Feng, Q., Ablavsky, V., Sclaroff, S.: Cityflow-nl: Tracking and retrieval of vehicles at city scale by natural
language descriptions. arXiv: Computer Vision and Pattern Recognition (2021)

17. Zhang, J., Lin, X., Jiang, M., Yu, Y., Gong, C., Zhang, W., Tan, X., Li, Y., Ding, E., Li, G.: A multi-
granularity retrieval system for natural language-based vehicle retrieval. (2022)

18. Deruyttere, T., Vandenhende, S., Grujicic, D., VanGool, L.,Moens,M.F.: Talk2car: Taking control of your
self-driving car. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 2088–2098 (2019)

19. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin,
P., Clark, J.,: Learning transferable visual models from natural language supervision. In: International
Conference on Machine Learning, pp. 8748–8763 (2021). PMLR

20. Rao, Y., Zhao, W., Chen, G., Tang, Y., Zhu, Z., Huang, G., Zhou, J., Lu, J.: Denseclip: Language-
guided dense prediction with context-aware prompting. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 18082–18091 (2022)

21. Morwal, S., Jahan, N., Chopra, D.: Named entity recognition using hidden markov model (hmm). Inter-
national Journal on Natural Language Computing (IJNLC) Vol 1 (2012)

22. Xu, Z., Qian, X., Zhang, Y., Zhou, Y.: Crf-based hybrid model for word segmentation, ner and even pos
tagging. In: Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing (2008)

23. Gui, T., Ma, R., Zhang, Q., Zhao, L., Jiang, Y.-G., Huang, X.: Cnn-based chinese ner with lexicon
rethinking. In: Ijcai, pp. 4982–4988 (2019)

24. Huang, Z., Xu,W., Yu, K.: Bidirectional lstm-crf models for sequence tagging. arXiv preprint http://arxiv.
org/abs/1508.01991arXiv:1508.01991 (2015)

25. Li, X., Yan, H., Qiu, X., Huang, X.: Flat: Chinese ner using flat-lattice transformer. arXiv preprint http://
arxiv.org/abs/2004.11795arXiv:2004.11795 (2020)

26. Sui, Y., Bu, F., Hu, Y., Yan, W., Zhang, L.: Trigger-gnn: A trigger-based graph neural network for nested
named entity recognition. arXiv preprint http://arxiv.org/abs/2204.05518arXiv:2204.05518 (2022)

27. Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: Language-independent named
entity recognition. arXiv preprint cs/0306050 (2003)

28. Balasuriya, D., Ringland, N., Nothman, J., Murphy, T., Curran, J.R.: Named entity recognition in
wikipedia. In: Proceedings of the 2009 Workshop on the People’s Meets NLP: Collaboratively Con-
structed Semantic Resources (People’s Web), pp. 10–18 (2009)

29. Derczynski, L., Nichols, E., van Erp, M., Limsopatham, N.: Results of the wnut2017 shared task on novel
and emerging entity recognition. In: Proceedings of the 3rd Workshop on Noisy User-generated Text, pp.
140–147 (2017)

123

http://arxiv.org/abs/Computer
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/2004.11795
http://arxiv.org/abs/2004.11795
http://arxiv.org/abs/2204.05518


Multimedia Tools and Applications

30. Weischedel, R., Palmer, M., Marcus, M., Hovy, E., Pradhan, S., Ramshaw, L., Xue, N., Taylor, A., Kauf-
man, J., Franchini,M., et al.: Ontonotes release 5.0 ldc2013t19. Linguistic Data Consortium, Philadelphia,
PA 23 (2013)

31. Ding, N., Xu, G., Chen, Y., Wang, X., Han, X., Xie, P., Zheng, H., Liu, Z.: Few-nerd: A few-shot
named entity recognition dataset. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 3198–3213 (2021)

32. Li, J., Fei, H., Liu, J., Wu, S., Zhang, M., Teng, C., Ji, D., Li, F.: Unified named entity recognition as word-
word relation classification. arXiv preprint http://arxiv.org/abs/2112.10070arXiv:2112.10070 (2021)

33. Scribano, C., Sapienza, D., Franchini, G., Verucchi, M., Bertogna, M.: All you can embed: Natural
language based vehicle retrieval with spatio-temporal transformers. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4253–4262 (2021)

34. Khorramshahi, P., Rambhatla, S.S., Chellappa, R.: Towards accurate visual and natural language-based
vehicle retrieval systems. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4183–4192 (2021)

35. Sun, Z., Liu, X., Bi, X., Nie, X., Yin, Y.: Dun: Dual-path temporal matching network for natural language-
based vehicle retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4061–4067 (2021)

36. Le, H.D.-A., Nguyen, Q.Q.-V., Nguyen, V.A., Nguyen, T.D.-M., Chung, N.M., Thai, T.-T., Ha, S.V.-U.:
Tracked-vehicle retrieval by natural language descriptions with domain adaptive knowledge. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3300–3309
(2022)

37. TT PHUNG, T., Q. LY, N., T. VO, T., TN HO, M.: Deep feature learning network for vehicle retrieval.
In: 2021 The 5th International Conference on Machine Learning and Soft Computing, pp. 18–21 (2021)

38. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint http://arxiv.org/abs/1810.04805arXiv:1810.04805 (2018)

39. Floridi L, Chiriatti M (2020) Gpt-3: Its nature, scope, limits, and consequences. Minds and Machines
30(4):681–694

40. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image
database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009).
IEEE

41. Goel, S., Bansal, H., Bhatia, S., Rossi, R.A., Vinay, V., Grover, A.: Cyclip: Cyclic contrastive language-
image pretraining. arXiv preprint http://arxiv.org/abs/2205.14459arXiv:2205.14459 (2022)

42. Stubbs A, Uzuner Ö (2015) Annotating longitudinal clinical narratives for de-identification: The 2014
i2b2/uthealth corpus. Journal of biomedical informatics 58:20–29

43. RangiLyu: NanoDet-Plus: Super fast and high accuracy lightweight anchor-free object detection model.
https://github.com/RangiLyu/nanodet (2021)

44. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

45. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint http://arxiv.org/abs/1803.
08375arXiv:1803.08375 (2018)

46. Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information.
Transactions of the association for computational linguistics 5:135–146

47. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space.
arXiv preprint http://arxiv.org/abs/1301.3781arXiv:1301.3781 (2013)

48. Pennington, J., Socher, R.,Manning, C.D.: Glove: Global vectors for word representation. In: Proceedings
of the 2014 Conference on EmpiricalMethods in Natural Language Processing (EMNLP), pp. 1532–1543
(2014)

49. Souza, F., Nogueira, R., Lotufo, R.: Portuguese named entity recognition using bert-crf. arXiv preprint
http://arxiv.org/abs/1909.10649arXiv:1909.10649 (2019)

50. Schweter, S., Akbik, A.: Flert: Document-level features for named entity recognition. arXiv preprint
http://arxiv.org/abs/2011.06993arXiv:2011.06993 (2020)

51. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint http://arxiv.org/abs/
1711.05101arXiv:1711.05101 (2017)

52. VILCEK, A., MOTTAGHINEJAD, S., SHI, S., GUPTE, K., PASUMARTY, S., PANG, L., MEHRO-
TRA, P.: Transformer-based deep siamese network for at-scale product matching and one-shot hierarchy
classification (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2112.10070
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2205.14459
https://github.com/RangiLyu/nanodet
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1909.10649
http://arxiv.org/abs/2011.06993
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101


Multimedia Tools and Applications

Authors and Affiliations

Runwei Guan1,2,3,4 · Ka Lok Man2 · Feifan Chen2 · Shanliang Yao1,2,3,4 ·
Rongsheng Hu5 · Xiaohui Zhu2 · Jeremy Smith1 · Eng Gee Lim2 ·
Yutao Yue3,4,6

Runwei Guan
Runwei.Guan@liverpool.ac.uk

Ka Lok Man
Ka.Man@xjtlu.edu.cn

Feifan Chen
sgfchen5@liverpool.ac.uk

Shanliang Yao
shanliang.yao@liverpool.ac.uk

Rongsheng Hu
1033170432@stu.jiangnan.edu.cn

Xiaohui Zhu
Xiaohui.Zhu@xjtlu.edu.cn

Jeremy Smith
J.S.Smith@liverpool.ac.uk

Eng Gee Lim
enggee.lim@xjtlu.edu.cn

123

http://orcid.org/0000-0003-4532-0924


Multimedia Tools and Applications

1 Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool,
United Kingdom

2 School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
3 XJTLU-JITRI Academy of Technology, Xi’an Jiaotong-Liverpool University,

Suzhou 215123, China
4 Institute of Deep Perception Technology, JITRI, Wuxi 214000, China
5 Faculty of Information Engineering and Automation, Kunming University of Science and

Technology, Kunming 650500, China
6 Department of Mathematical Sciences, University of Liverpool,

Liverpool L69 7ZX, United Kingdom

123


	FindVehicle and VehicleFinder: a NER dataset for natural language-based vehicle retrieval and a keyword-based cross-modal vehicle retrieval system
	Abstract
	1 Introduction
	2 Related work
	2.1 Named entity recognition
	2.2 Text-image vehicle retrieval
	2.3 Contrastive language image pretraining

	3 The construction of FindVehicle
	3.1 Brief introduction
	3.2 Entity types
	3.2.1 Coarse-grained entity
	3.2.2 Fine-grained entity
	3.2.3 Flat and overlapped entity

	3.3 Corpus collection
	3.4 NER annotation

	4 Data statistics of FindVehicle
	4.1 Size and distribution of FindVehicle
	4.2 Dataset split

	5 VehicleFinder
	6 Experiments of FindVehicle
	6.1 Settings of training and evaluation
	6.2 Baselines of FindVehicle
	6.3 Comparison of models on different NER datasets

	7 Experiments of VehicleFinder
	7.1 Experiments of vision detector
	7.2 Experiments of text detector
	7.3 Experiments of CTIM
	7.3.1 Settings of training and evaluation
	7.3.2 Evaluation results
	7.3.3 Comparison of CTIM with other models

	7.4 Evaluation of VehicleFinder
	7.4.1 Settings of evaluation
	7.4.2 Evaluation results


	8 Conclusion and future work
	9 Discussion
	Acknowledgements
	References


