On the structure of finitely generated subgroups of branch groups

Paul-Henry Leemann Xi'an Jiaotong-Liverpool University Joint work with D. Francoeur, R. Grigorchuk and T. Nagnibeda

10 July 2025

Branch groups

- Groups with a rich subnormal subgroup structure $(H = H_0 \trianglelefteq H_1 \trianglelefteq \cdots \trianglelefteq H_n = G);$
- Contains example of groups with exotic properties:
 - Finitely generated infinite torsion groups,
 - Groups of intermediate growth,
 - Amenable but non-elementary amenable groups;
- Naturally appears in the classification of just infinite groups (infinite groups whose proper quotients are finite);
- Admits a nice action on a rooted tree (and hence are residually finite);
- Many branch groups are recursively presented (a weaker notion than finitely generated).

Motivations

- ▶ What are branch groups, and why we would like to study them;
- Profinite topology and finitely generated subgroups;
- ► Consequences.

The profinite topology

Any group G can be endowed with the profinite topology: the topology generated by all left cosets of finite index normal subgroups.

- G is residually finite if and only if {1} is closed (for finitely generated groups: if and only if G acts faithfully on a locally finite rooted tree);
- If G is residually finite, recursively presented and has an algorithm listing all finite index normal subgroups, then the word problem is solvable.

Finitely generated branch groups with the *congruence subgroup property* have an algorithm listing all finite index normal subgroups.

Profinite topology: beyond residually finite groups

- A group G is LERF (locally extensively residually finite, or subgroup separable) if every finitely generated subgroup is closed in the profinite topology;
 - If G is LERF, recursively presented and has an algorithm listing all finite index normal subgroups, then the generalized word problem is solvable (subgroup membership for finitely generated subgroups),
 - Finite groups, f. g. abelian groups, virtually polycyclic groups, f. g. free groups, surface groups, limit groups, free metabelian groups, some right-angled Artin groups are LERF. Some branch groups are LERF.
- ► A group G has the Ribes-Zalesskiĭ property if for any n and every finitely generated subgroups H₁,..., H_n, the subset H₁H₂...H_n is closed;
 - n = 0 is residually finite, n = 1 is LERF,
 - Finite groups, f. g. abelian groups, f.g. free groups, limit groups, Kleinian groups and a few additional examples have the RZ property. Conjecture: some branch groups have the Ribes-Zalesskii property.

Classification of finitely generated subgroups: other consequences

- Can be used to describe weakly maximal subgroups (subgroups maximal among infinite index subgroups);
- G has the Howson property if for H, K finitely generated subgroups, H ∩ K is still finitely generated.
 - Most finitely generated branch groups do not have the Howson property [Francoeur 2025+]. But one hope to have an algorithm to decide whenever H ∩ K is finitely generated or not.

Regular rooted trees

▶ $T = T_d$: the *d*-regular rooted tree (the root has degree *d* and each other vertex has degree d + 1);

- Vertices of T_d are in bijection with finite words on the alphabet {0,..., d − 1} (root ↔ Ø the empty word);
- The nth level L_n of the tree is the set of vertices at distance n of the root;
- T_v is the subtree of T consisting of vertices below v.

Self-similar groups

Definition

A group $G \leq \operatorname{Aut}(T)$ is self-similar if for every vertex v in T we have $\pi_v(\operatorname{Stab}_G(v)) \leq G$.

Definition

A group $G \leq \operatorname{Aut}(T)$ is self-replicating (or fractal) if for every vertex v in T we have $\pi_v(\operatorname{Stab}_G(v)) = G$.

Some subgroups of $Aut(T_d)$

- Let $G \leq \operatorname{Aut}(T_d)$. The following subgroups play an important role:
 - Stabilizers of vertices Stab_G(v);
 - Pointwise stabilizers of levels $\operatorname{Stab}_G(\mathcal{L}_n)$;
 - Rigid stabilizer of vertices $\operatorname{Rist}_G(v)$,
 - ▶ Rigid stabilizer of levels: $\operatorname{Rist}_G(\mathcal{L}_n) := \prod_{v \in \mathcal{L}_n} \operatorname{Rist}_G(v)$. Carefull: $\operatorname{Rist}_G(\mathcal{L}_n) \neq \operatorname{Rist}_{\operatorname{Aut}(\mathcal{T})}(\mathcal{L}_n) \cap G$.

Some subgroups of $Aut(T_d)$

- Let $G \leq \operatorname{Aut}(T_d)$. The following subgroups play an important role:
- Stabilizers of vertices $\operatorname{Stab}_G(v)$ and of rays $\operatorname{Stab}_G(\xi)$, $\xi \in \partial T$;
- ▶ Pointwise stabilizers of levels $Stab_G(\mathcal{L}_n)$;
- Rigid stabilizer of vertices:

The congruence subgroup property

Definition

Let T be a rooted tree. A subgroup $G \le Aut(T)$ has the congruence subgroup property if for any finite index subgroup H there exists n such that $Stab_G(n) \le H$

G has the congruence subgroup property if and only if the profinite topology (generated by the finite index normal subgroups and their cosets) and the *natural topology on* Aut(T) (generated by the $Stab_G(n)$ and their cosets) agree.

The congruence subgroup property provides an algorithm describing finite index normal subgroups of G. If G is recursively presented, then the word problem is solvable (and the generalized word problem also, provided that G is LERF).

Branch groups

Definition

A subgroup G of Aut(T) is branch if for all n

- 1. G acts transitively on \mathcal{L}_n ,
- 2. Rist_G(\mathcal{L}_n) is a finite index subgroup of G.

Regularly branch groups

Example

The first Grigorchuk group \mathfrak{G} , the Gupta-Sidki *p*-groups ($p \ge 3$ prime), torsion GGS groups (acting on T_p , $p \ge 3$ prime).

All these examples:

- Are regularly branch;
- Have the congruence subgroup property;
- Are recursively presented;
- Are infinite, just infinite, torsion, all their maximal subgroups are of finite index, ...

Moreover \mathfrak{G} has intermediate growth, \ldots

Regularly branch groups

Definition

A self-similar subgroup G of Aut(T) is regularly branch if

- 1. G acts transitively on \mathcal{L}_n for every n;
- 2. There exists a finite index subgroup $K \leq G$ such that $K_{@v} \leq K$ for every vertex v, where $K_{@v} \coloneqq \{g \in \text{Rist}(v) \mid \pi_v(g) \in K\}$.

Regularly branch groups are branch.

The Gupta-Sidki *p*-group

The group G_p acts on T_p ($p \ge 3$ prime) and is generated by a and b, where

GGS groups

Let p ≥ 3 be a prime and let e = (e₀,..., e_{p-2}) be a vector in (Z/pZ)^{p-1} \ {0}. The GGS group G_e = ⟨a, b⟩ with defining vector e is the subgroup of Aut(T_p) generated by

a = cyclic permutation (12...p) of the first level vertices $b = (a^{e_0}, ..., a^{e_{p-2}}, b);$

• The group
$$G_{\mathbf{e}}$$
 is torsion if and only if $\sum_{i=0}^{p-2} e_i = 0$;

► The Gupta-Sidki *p*-group correspond to the special case e = (1, -1, 0, ..., 0).

Diagonal subgroups

Let $G \leq \operatorname{Aut}(T)$ be a finitely generated group regularly branch over K. Let v_1, \ldots, v_n be pairwise incomparable vertices and $\varphi_1, \ldots, \varphi_n$ be automorphisms of K. This datas define a diagonal subgroup (over K):

Diagonal subgroups are finitely generated.

Some finitely generated subgroups

Let $G \leq Aut(T)$ be a finitely generated group regularly branch over K. Then the following are finitely generated subgroups of G:

- ► K;
- \blacktriangleright $K_{@v}$ for every vertex v.

One can use the above to construct other finitely generated subgroups.

Block subgroups

Definition

A block subgroup (over K) is a finite product of diagonal subgroups over K (such that all the corresponding vertices are incomparable).

Example

Block subgroups are finitely generated, as well as virtually block subgroups ($H \le G$ such that there exists $B \le H$ of finite index which is block).

Main result

Main theorem

Let G be either the first Grigorchuk group or a torsion GGS group (for some prime p). Then every finitely generated subgroup of G is virtually a block subgroup over K.

For the first Grigorchuk group, $K = \langle [a, b] \rangle^{\mathfrak{G}} \leq_{16} \mathfrak{G}$. For a GGS group $G = G_{\mathbf{e}}$, $K = \gamma_3(G) = \langle [G', G] \rangle \leq_{p^3} G$ if \mathbf{e} is symmetric, or over $K = G' \leq_{p^2} G$ if \mathbf{e} is not symmetric.

Tree-primitive action

The action of a subgroup $G \leq \operatorname{Aut}(T)$ on T needs to preserve the tree structure and therefore cannot be primitive, even when restricted to some level \mathcal{L}_n .

For example, if $T = T_2$, then the partition $\{\{00, 01\}, \{10, 11\}\}$ of \mathcal{L}_2 is necessarily preserved by G.

Definition

The action of G on T is tree-primitive if for every n, the only partitions of \mathcal{L}_n preserved by the action of G are the partition that are already preserved by Aut(T).

Abstract version

Let G be a regularly branch group and let RB be the set of subgroups on which G regularly branch. RB admits a unique maximal element, which is called the maximal branching subgroup of G.

Theorem

Let $G \leq Aut(T)$ be a finitely generated, self-replicating regularly branch group and let K be its maximal branching subgroup. Suppose that:

- ► G acts tree-primitively on T;
- G has trivial branch kernel;
- ► G has the subgroup induction property.

Then every finitely generated subgroup of G is virtually a block subgroup.

Trivial branch kernel

Definition

A branch group $G \leq \operatorname{Aut}(T)$ is said to have trivial branch kernel if for every normal subgroup $N \subseteq G$ of finite index, there exists n such that $\operatorname{Rist}_G(n) \leq N$.

A branch group G can be endowed with the profinite topology (generated by the finite index normal subgroups and their subgroups), but also with the branch topology (generated by the Rist_G(n) and their cosets). G has trivial branch kernel if and only if these two topologies coincide. Branch group with the congruence subgroup property have trivial branch kernel.

The subgroup induction property

Definition

Let $G \leq Aut(T)$ be a self-similar group. A family C of subgroups of G is said to be inductive if

- 1. Both $\{1\}$ and G belong to X,
- 2. If $H \in \mathcal{C}$ and L contains H as a finite index subgroup, then $L \in \mathcal{C}$,
- 3. If H is a finitely generated subgroup of $\operatorname{Stab}_G(\mathcal{L}_1)$ and all first level sections of H are in C, then H is in C.

It is clear that the collection ${\mathcal C}$ of finitely generated subgroups of G is inductive.

Definition (Grigorchuk-Wilson, 2003)

A self-similar group G has the subgroup induction property (SIP for short) if for any inductive class of subgroups C, each finitely generated subgroup of G is contained in C.

The subgroup induction property: examples

The following groups have the subgroup induction property:

- ► The first Grigorchuk group [Grigorchuk-Wilson, 2003];
- The Gupta-Sidki 3-group [Garrido, 2016];
- ► Torsion GGS groups (for a prime *p*) [Francoeur-L., 2025].

The subgroup induction property: consequences

Theorem (Francoeur-L., 2025, (Grigorchuk-Wilson 2003, Garrido 2016))

Let G be a finitely generated branch group with the subgroup induction property. Then, G is torsion and just infinite.

- 1. If $G \leq \operatorname{Aut}(T_d)$ is self-replicating and $H \leq G$ is finitely generated, then H is commensurable with one of 1, G, G^2, \ldots, G^{d-1} ;
- 2. If $G \leq \operatorname{Aut}(T_p)$ with p prime, then every maximal subgroup of G is of finite index;
- 3. If G is self-similar, then it is LERF;
- 4. If $G \le \operatorname{Aut}(T_p)$ with p prime is self-similar and $H \le G$ is finitely generated, then every maximal subgroup of H is of finite index in H and every weakly maximal subgroup of H is closed in the profinite topology.

Consequences of the main result

Let G be either the first Grigorchuk group or torsion GGS group (for some prime p). Then;

- ► *G* is LERF (alternative proof);
- We have a classification of weakly maximal subgroups of G [L. 2025];
- We have a classification of finitely generated self-commensurating subgroups of G (can be used to construct irreducible representations of G) [Francoeur-L.-Nagnibeda 2025⁺⁺].

Some projects

Use Theorem A to:

- ▶ show that 𝔅 has the Ribes-Zalesskiĭ property;
- have a algorithm that given two finitely generated subgroups H and K of 𝔅 decide whenever H ∩ K is finitely generated or not.

A few words on the proof

A subgroup $H \leq G \leq \operatorname{Aut}(T)$ is fully supported if there exists a transversal $V \subseteq T$ such that for all $v \in V$, $\pi_v(\operatorname{Stab}_H(v))$ is finite or = G.

Let $G \leq Aut(X^*)$ be a finitely generated group and $H \leq G$ a subgroup. Then we have the following implications:

A few words on the proof

A subgroup $H \leq G \leq \operatorname{Aut}(T)$ is fully supported if there exists a transversal $V \subseteq T$ such that for all $v \in V$, $\pi_v(\operatorname{Stab}_H(v))$ is finite or = G.

Virtually block implies finitely generated

Since G finitely generated, so is K as well as any block subgroup. Indeed, blocks subgroups are isomorphic to K^n for some n. Therefore, all virtually block subgroups are finitely generated.

Finitely generated implies fully supported

Let $G \leq \operatorname{Aut}(T)$ be a self-replicating subgroup. One easily show that the class C of finitely generated fully supported subgroups of Gis inductive. By the subgroup induction property, we conclude that C is the whole class of finitely generated subgroups.

Some elements of the proof

A throughout study of almost normal subgroups: $H \le G$ such that H is normal in a finite index subgroup of G.

Definition

Let $H \leq G$ be an almost normal subgroup. An almost normal subgroup $K \leq G$ is a complement for H if: $H \cap K = \{1\}$, $[H, K] = \{1\}$ (i.e. HK is the direct product of H and K) and HK has finite index in G.

Proposition

Let G be a just infinite branch group and let $H \le G$ be an almost normal subgroup. Then H admits an almost normal complement.

Fully supported implies virtually block

Let *H* be a fully supported subgroup and let *V* be the transversal witnessing it. Let $F \subseteq V$ be the subset of vertices such that $\pi_v(\operatorname{Stab}_H(v)) = G$.

For any $v \in F$, one can find a *minimal dependance set* $W \subseteq F$ such that

 $\pi_{v}\left(\mathsf{Stab}(W)\cap\prod_{w\in W}\mathsf{Rist}_{H}(w)\right)\neq\{1\}.$

One can shows that: W does not depend on v. Moreover, if G is branch, just infinite and with a tree primitive action, and $W = \{w_1, \ldots, w_n\}$ is a minimal dependance set, then they exists $Z = \{z_1 \leq w_1, \ldots, z_n \leq w_n\}$ such that $\text{Stab}(Z) \cap \prod_{z \in Z} \text{Rist}_H(z)$ is a diagonal subgroup.

More groups satisfying the hypothesis of Theorem A?

Want G finitely generated, self-replicating, regularly branch, with trivial branch kernel, a tree-primitive action and the subgroup induction property.

Many examples of finitely generated, self-replicating, regularly branch groups with the congruence subgroup property (and hence with trivial branch kernel) are known.

It remains to show that some of these examples have a tree-primitive action and the subgroup induction property.

Checking for tree-primitive actions

Tree-primitivity is about the action on the whole tree. Hopefully, it is enough to check it on the first two levels only.

Theorem

Let G be a self-replicating group acting spherically transitively on T such that the action of G the first level \mathcal{L}_1 is primitive. Suppose moreover that:

- 1. Stab_G(\mathcal{L}_1) acts spherically transitively on T_x for all $x \in \mathcal{L}_1$;
- 2. For every $v, w \in \mathcal{L}_2$, the subgroup $Stab_G(\{v, w\})$ acts spherically transitively on T_v ;
- 3. There exists $x_0 \neq y_0 \in \mathcal{L}_1$ such that for every $v \in T_{x_0} \cap \mathcal{L}_2$ and $w \in T_{y_0} \cap \mathcal{L}_2$, we have $\operatorname{Stab}_G(v) \cap \operatorname{Stab}_G(y_0) \nleq \operatorname{Stab}_G(w)$.

Then the action of G on X is tree-primitive.

2. For every $v, w \in \mathcal{L}_2$, the subgroup $\text{Stab}_G(\{v, w\})$ acts spherically transitively on T_v ;

1. Stab_G(\mathcal{L}_1) acts spherically transitively on T_x for all $x \in \mathcal{L}_1$;

There exists g fixing y_0 and v, but moving w.

Checking for the subgroup induction property

Definition

Let $G \leq Aut(T)$ be a self-similar group. A family C of subgroups of G is said to be strongly inductive if

- 1. Both $\{1\}$ and G belong to X,
- 2. If *L* contains *H* as a finite index subgroup, then $L \in \mathcal{C} \iff H \in \mathcal{C}$,
- 3. If H is a finitely generated subgroup of $\operatorname{Stab}_G(\mathcal{L}_1)$ and all first level sections of H are in C, then H is in C.

Definition

A self-similar group G has the weak subgroup induction property (wSIP for short) if for any strongly inductive class of subgroups C, each finitely generated subgroup of G is contained in C.

It is clear that SIP \implies wSIP.

The weak subgroup induction property

Proposition (Francoeur-L. 2025)

Let G be a self-replicating group with the congruence subgroup property and such that for every $v \in \mathcal{L}_n$, $\pi_v(\operatorname{Stab}_G(\mathcal{L}_n)) = G$. Then if G has wSIP it also has SIP.

Proposition (Francoeur-L. 2025)

Let G be a finitely generated self-similar group with SIP. Then for every $v \in \mathcal{L}_1$, $\pi_v(\operatorname{Stab}_G(\mathcal{L}_n)) = G$.

Proposition (Grigorchuk-L.-Nagnibeda 2021)

Let G be a self-replicating group. Then G has the wSIP if and only if: for every finitely generated $H \leq G$, there is a transversal V of T such that for every $v \in V$ the section $\pi_v(\operatorname{Stab}_H(V))$ is either trivial or of finite index in G.

