
Article

CTLane: An end-to-end lane detector by a CNN
transformer and fusion decoder for edge
computing
Mian Zhou1, Guoqiang Zhu3, Zhikun Feng2, Haoyi Lian1, Siqi Huang1

1 School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool
University, Suzhou 215412, China, 2 School of Information and Software Engineering, University of Electronic
Science and Technology of China, Chengdu, 610000, Chengdu, Sichuan, China, 3 Tianjin University of
Technology, 300382, Tianjin, China

Corresponding author: Mian Zhou, Mian.Zhou@xjtlu.edu.cn

In advanced driving assistance systems and autonomous vehicles, lane detection plays a
crucial role in ensuring the safety and stability of the vehicle during driving. While deep
learning-based lane detection methods can provide accurate pixel-level predictions, they can
struggle to interpret lanes as a whole in the presence of interference. To address this issue, we
have developed a method that includes two components: a convolutional neural network
transformer and a fusion decoder. The CNN transformer extracts the overall semantics of the
lanes and speeds up convergence, while the fusion decoder combines high-level semantics
with low-level local features to improve accuracy and robustness. By using these two
components together, our method is able to effectively detect lanes in a variety of conditions,
even when interference is present. We tested our method on multiple lane datasets and
obtained superior results, with the best performance on the BDD100K dataset. Our method
has successfully addressed the challenge of accurately and completely detecting lanes in the
presence of interference, such as darkness, shadows, and strong light. The algorithm has been
employed in an edge computing device, an intelligent cart. The code has been made available
at: https://github.com/squirtlecc/CNNTransformer

Keywords: Convolution, deep learning, lane detection, transformer

1. INTRODUCTION

Lane detection is a crucial component of the perception phase in Advanced Driver
Assistance Systems (ADAS) and autonomous driving systems, playing an essential role
in ensuring vehicle safety and guiding driving paths. Unlike humans who rely on vision
and experience to judge lanes, lane detection uses algorithms to accurately identify lane
markings and road boundaries [1]. Vehicles acquire information about the road and its
surroundings through visual sensors (e.g., cameras) and they feed this data into deep
Convolutional Neural Networks (CNNs) to extract and analyse key features, providing
reliable foundational data for subsequent path planning and driving decisions.

With the rapid advancement of deep learning, many research methods [2, 3, 4] treat lane
detection as a segmentation task and employ end-to-end neural network frameworks.
During segmentation, the model must focus on every pixel and predict its category.
However, this pixel-wise processing makes it challenging for the model to treat the lane
line as a whole, leading to a loss of lane semantics in feature maps. This problem is
exacerbated under unfavourable lighting conditions, such as when shadows are cast on
lanes, vehicles block the lanes, or during nighttime driving, significantly impacting model
performance. Analysing lane feature maps generated by deep learning models reveals
that the network does not always focus on the lane regions during feature extraction,
which limits its detection performance. To address this, we propose introducing an
attention mechanism to enhance the network’s focus on key regions, thereby improving
the overall performance of lane detection.

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

© International Telecommunication Union, 2025
Some rights reserved. c b n d

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.
More information regarding the license and suggested citation, additional permissions and disclaimers is available at:

https://www.itu.int/en/journal/j-fet/Pages/default.aspx

https://github.com/squirtlecc/CNNTransformer

A transformer [5] is a deep learning technique that has
been widely applied in natural language processing [6],
speech processing [7], and vision tasks [8]. It excels
at parsing deep semantic information from images [9],
making it highly promising for lane detection tasks.

In recent years, a Vision Transformer (ViT) [9, 10] has
achieved remarkable results in image classification tasks.
Compared to traditional CNNs, ViT has a better ability to
parse deep semantic information from images [9]. How-
ever, since a transformer uses fully connected layers and
weight matrices to propagate and transfer global infor-
mation, directly embedding a transformer into existing
CNN architectures is difficult. ResT [11] was the first to
combine a transformer and CNN into a unified model,
and has provided some inspiration for our work.

Traditional transformers utilize large matrices as training
parameters, leading to a significant number of parameters
and slow network training convergence. Furthermore,
the advantages of convolution are not fully exploited
in hybrid models. To address these issues, we propose
replacing matrices with convolutions for computing at-
tention in feature maps, thereby reducing the number
of parameters and overcoming the challenges of heavy
training weights and slow training speeds associated
with traditional transformers.

In this study, we propose a method called CTLane, which
combines the powerful semantic extraction capability of
transformers with the efficiency of traditional CNNs. By
introducing CNNs into the structure of transformers, the
model not only significantly improves training speed
but also enhances generalization ability. The CTLane
model incorporates a multi-head attention mechanism to
effectively extract features in the image space, enabling
the model to focus more precisely on global lane features
in the feature map, thereby predicting more complete,
smoother, and continuous lane lines, as shown in Fig. 1.
We conducted a comprehensive evaluation of CTLane
on several benchmark lane detection datasets, and the
results demonstrate that the model maintains high lane
detection accuracy while achieving a higher F1 score and
a lower false detection rate.

Our main contributions are summarized as follows:

• We propose a CNN transformer to extract high-level
semantics of lanes and introduce a novel method to
compute self-attention.

• A CNN transformer combines the advantages of a CNN
and transformer to better aggregate spatial features
and can be easily deployed after the feature extraction
stage of any CNN.

• We propose the fusion decoder, which aggregates high-
level semantic features and low-level local features,
effectively preserving the original features in images
and restoring information in the decoder.

• We achieve state-of-the-art accuracy on the BDD100K
dataset and tier-1 performance on the Tusimple and
CULane datasets.

2. RELATED WORK

Within autonomous driving and ADAS applications, lane
departure is one of the main causes of traffic accidents,
highlighting the importance of lane detection. As the
rapid development of deep learning technology, this
detection has gradually shifted from traditional feature-
based methods to deep learning-based methods [12]. Tra-
ditional lane detection methodologies predominantly de-
pend on manually designed feature extraction techniques,
such as color segmentation, texture analysis, and edge de-
tection, and they subsequently employ post-processing
techniques like the Hough transform or Kalman filtering
to extract lane lines. However, these methods perform
poorly in complex scenarios, such as changes in lighting,
occlusion, and complex road structures.
Upon reviewing a substantial body of literature, we have
observed that the transformer [13] is a novel deep learn-
ing technique commonly employed in natural language
processing [14] and speech processing [15]. Unlike tradi-
tional CNN, the transformer, through its self-attention
mechanism, is capable of capturing global information
within images, thereby excelling in contextual modeling
and the capture of long-range dependencies. Several
studies [16] [17] have significantly enhanced the global
modeling capabilities of lane detection by incorporating
a transformer architecture. For example, by generating
conditional convolutional kernel parameters and inte-
grating a row-by-row classification strategy, these studies
have achieved high-precision and efficient lane detection.
In ResT [18], the first attempt to combine a transformer
and CNN into a unified model has provided valuable
insights for our research.
Currently, the main methods in lane detection are deep
learning-based methods. They can be divided into four
categories: semantic segmentation, row-wise classifica-
tion, anchor, and curve fitting.

2.1 Semantic segmentation-based methods

Lane detection methods based on semantic segmentation
achieve precise differentiation between lanes and back-
ground by transforming the task into a pixel-level classi-
fication problem and leveraging deep neural networks.
Typical approaches, such as UNet and its variants[19]
[20], employ encoder-decoder architectures combined
with multiscale feature fusion to enhance accuracy. ENet-
21[21] introduces lightweight convolutions and affinity
field techniques, maintaining high performance while
reducing model complexity. GANs further improve
feature extraction capabilities through adversarial learn-

©International Telecommunication Union, 2025150

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

(a) (b) (c) (d)

La
be
l

Ch
an
ne
l-0

Ch
an
ne
l-1

Figure 1 – The left-side (a) and (b) show the self-attention maps of the CTLane method on different channels, while the right-side (c) and (d) display
the corresponding original feature maps. The comparison demonstrates that, under the influence of our CNN-Transformer module, the lane features
are significantly enhanced, leading to the prediction of more complete, smooth, and continuous lane lines.

ing [22]. To address domain adaptation challenges, the
MLDA framework [23] optimizes at pixel, instance, and
category levels, while the integration of spatiotemporal
information [24] enhances detection stability through
hybrid spatiotemporal architectures. Additionally, the
combination of semantic segmentation and anchor-based
detection [25] achieves superior generalization and real-
time performance in multi-task perception.

2.2 Row-wise classification-based methods

Lane detection processes have been further streamlined
by the classic CNN row-by-row classification method
[26], which handles image features on a per-row ba-
sis. High-precision and efficient lane detection has been
achieved by some studies [16] [27] through the genera-
tion of conditional convolutional kernel parameters and
the integration of a row-by-row classification strategy.
GroupLane [28] has implemented efficient 3D lane de-
tection by employing a channel grouping strategy and a
row classification head design, combined with Birds-Eye
View (BEV) features and a Self-Organizing Map (SOM)
mechanism.

2.3 Anchor-based methods

Anchor-based methods extract lane features through pre-
defined anchors and generate candidate lanes based on
these anchors, significantly improving efficiency and ac-
curacy. For instance, some studies utilize anchor-chain
representations to model lanes and enhance the model’s

perception of lane instances through multi-reference de-
formable attention [29]. Furthermore, in order to reduce
computational costs, the introduction of local and global
polar coordinate modules decreases the number of an-
chors, while the triplet detection head enables end-to-end
detection without NMS, enhancing performance in dense
scenarios [17]. In 3D lane detection, the definition of 3D
anchors combined with iterative regression and global
optimization avoids the complexity of traditional bird’s-
eye view transformations [30]. Hybrid anchor-driven
ordinal classification further reduces computational costs
and improves localization accuracy [31].

2.4 Curve fitting-based methods

Lane detection methods are based on curve fitting model
lanes as continuous curves. For instance, PolyLaneNet
[32] utilizes deep polynomial regression to directly output
the polynomial coefficients of lane markings, achieving
accuracy comparable to existing methods while main-
taining a high frame rate (115 FPS). Another study [33]
enhances global context modeling through a transformer
network, directly regressing a parameterized lane shape
model and thus avoiding the intermediate segmenta-
tion steps and post-processing involved in traditional
methods. Furthermore, the selective focus framework
[34] introduces a lane distortion score to quantify the
impact of quantization errors, thereby further enhancing
detection performance.

©International Telecommunication Union, 2025 151

Zhou et al.: CTLane: An end-to-end lane detector by a CNN transformer and fusion decoder for edge computing

3. PROPOSED METHOD

The model is described as follows: Given an input image
I ∈ RC×H×W, the goal of CTLane is to output lanes I ∈
RN×H×W, where N denotes the maximum number of
scheduled lanes. Our overall model structure is shown
in Fig. 2. The encoder consists of a backbone network
that is used to extract the lane features from the images.
We use ResNet-34 [35] as the backbone, and the output
of the last convolution layer becomes the input of a
Feature Pyramid Network(FPN) [36], which is used to
fuse the multiscale features from the backbone, and the
output of the FPN network becomes the input of the
convolution attention (convolution transformer) module
we designed. The convolution attention (convolution
transformer) module is to further process high-level
features from FPN. In the decoder, the shallow semantics
and the deeper information are fused together. The
final feature map of lane segmentation is to predict the
presence of each channel and probability distribution,
then perform binary classification. This section shows the
details of our design model; firstly, there is an overview of
the model structure followed by a detailed presentation
of the attention module of the volume machine and its
decoder part, respectively.

3.1 Encoder

An encoder consists of a backbone network that is used
to extract the lane features from the images. We use
ResNet-34 [35] as the backbone, and the output of the
last convolution layer becomes the input of the Feature
Pyramid Network (FPN) [36], which is used to fuse the
multiscale features from the backbone, and the output of
the FPN network becomes the input of the convolution
attention (convolution transformer) module we designed.
During encoding, we keep the features of shallow lay-
ers in the feature extraction network to ensure that the
decoder can receive the top-level feature information.

3.2 CNN transformer

Due to the limitation of convolution operations to local
receptive fields, traditional feature representations make
each pixel’s features rely solely on its local region, lacking
global contextual information. This limitation hinders
the effective modeling of relationships between different
parts of the image.

To address these issues, we propose a feature interaction
mechanism. This mechanism fully integrates features
within each channel, transforming them into more com-
pact and globally enriched representations, enabling each
pixel to incorporate global contextual information. Fea-
ture interaction means features are fully blended into

a more dense representation. In the attention module,
we need each pixel to contain global information, so we
need to blend all the features for each channel. In this
submodule, the main task is to first scale the input so
that it maintains a moderate computational scale, then
to use the Fully Connection (FC) layer and ReShape to
reduce the feature into a new dimensional 2D matrix.

In the feature interaction, we can map the feature Mc×h×w
to Mc×h′×w′ in one FC layer. Therefore, to preserve the
location information, we create a positional code Pc×h×w
and embed the code into the original feature M =M + P.
The position encoder is introduced by using sine or cosine
functions to add to the original signal.

Most transformers applied in vision tasks normally cut
the input image up to a series of tokens and are linearly
mapped to the dimension Mn×d, which breaks the original
global spatial information. However, we directly use the
features extracted from the image and preserve the spatial
features from an image as much as possible. Moreover, d
is often larger than n for applying attention in vision, and
we can effectively reduce the computational complexity
of attention.

In the original transformer [5], to keep position informa-
tion between word embedding in the mapping process,
position encoding is introduced by using sine or cosine
functions to construct the value of each position so that
it encodes the positional relationship into embedding in
the computational process. As its extension in vision,
ViT [9] uses patches as the latitude of image tokens, en-
coding the position of each token in such a way that the
corresponding position information is maintained when
projected onto a 2D image.

As shown in Fig. 3, at the end of the CNN transformer
structure, we use similar operations to map the features
back to the original dimensions.

3.2.1 Convolution attention blocks

The traditional transformer method typically divides the
input image into a series of tokens and flattens them
into one-dimensional vectors to compute the global re-
lationships among all features.However, this approach
ignores the two-dimensional spatial structure of the im-
age, which can lead to the loss of spatial information
[37]. In the self-attention operation, the input matrix
Mn×din is first linearly transformed to generate the query
matrix Qn×dm , key matrix Kn×dm , and value matrix Vn×dm ,
where dq = dk = dv = dm. However,in CTLane, we
replace the linear mapping operations in the attention
block with Convolution Attention (CAttn) blocks us-
ing CQ(·),CK(·),CV(·), which compute query, key, and
value matrices equivalent to the linear mapping version

©International Telecommunication Union, 2025152

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

BackBone FPN

DecoderEncoder

Fusion
xN

CAttn Blocks

Feature Interaction

Q
MatMul

Sigmoid&BN

K V

Channels Aggregation

Feature Interaction

CNN-Transformer Loss

DiceLoss

ExistLoss

FocalLoss

Figure 2 – The overall structure of the network is shown in the figure, and the network structure is mainly divided into three parts: encoder, CNN
transformer and decoder. The encoder is used to extract the network to extract the image features, the CNN transformer is used to extract the deep
semantic information, and finally the decoder restores the feature map to the original input size.

V

K Q

Feature Interaction

Channels Aggregation

Feature Interation

CNN-Transformer

ReShape

FC Layer

Scale Feature

Position
Embadding

Flatten 2D

Scale Feature

FC Layer

Mx

MatMul

SigMoid

CAttn Blocks

K VQ

ReShape

Flatten 2D

BatchNorm

C1

C1

SM

C1

C1

SM

C1

C1

C1

RL

C1

C1

C1

C1

C1

LN

xN

R
eL

U
R

L

LN
La

ye
rN

or
m

2d
SMC

1
C

on
v2

d(
k=

1x
1)

So
ftM

ax
 (d

=1
)

Figure 3 – The CNN transformer has a specific structure in which the
mapping matrix is replaced by different convolution blocks. The MHA
does not scale the channels of each Q,K,V, but rather concatenates all
the channels to the original channels through concatenation in the final
stage. We also use sigmoid instead of softmax.

of transformers through 1 × 1 convolution, ReLU, and
softmax. In the CAttn block, the input Mc×h′×w′ is trans-
formed into the outputs Qc′×h′×w′ , Kc×h′×w′ , and Vc′×h′×w′

through convolution. We compute the dot product of
the query with all keys, divide each dot product result
by
√

h′ · w′, introduce batch normalization to normalize
the computed attention scores, and then apply the sig-
moid function to obtain the weights for the values. We
calculate the output matrix with the following formula:

CAttn(Q,K,V) = Sigmoid(BN(
QKT

√
h′ · w′

))V, (1)

where BN(·) is the batch normalization operation, and
Sigmoid(·) is the sigmoid function.

In the CAttn block, we take advantage of the fact that
different channels represent different image features; a
linear mapping of each channel feature is performed
using convolution. This gives us a more significant
speed-up than linearly mapping the entire information.

3.2.2 Multi-Head attention

In traditional multi-head self-attention mechanisms, the
query, key, and Value (V) are typically mapped to differ-
ent feature spaces through linear projections. Parallel
attention computations are then performed to capture
information from different subspaces. However, each
head in MHA will only pay attention to its own subspace,
which makes attention heads neglect each other. Our
method obtains the attention map through convolution
with reduced computational cost, enabling the use of
the complete channel to effectively merge the multi-head
attentions.

Our approach introduces convolution operations to gen-
erate Q, K, and V. In the multi-head attention mechanism,
we utilize different convolution operations CQ

i (·), CK
i (·),

and CV
i (·) to generate multiple heads of Qi, Ki, and Vi,

where i ∈ 1, 2, . . . , t, and t represents the number of atten-
tion heads. After obtaining Qi, Ki, and Vi for each head,
we perform parallel attention computations for each set
and concatenate the results of all heads using the Concat(·)
operation, ultimately producing the aggregated attention
map. The computational process can be expressed by the
following formula:

CMultiHead(M̂) = Concat(head1, . . . , headt),

headi = CAttn(CQ
i (M̂),CK

i (M̂),CV
i (M̂)),

(2)

where t is the number of attention heads.

3.2.3 Channels aggregation

To process the attention feature maps generated by MHA,
we need to use convolution to aggregate them for sub-
sequent computation. It is simple and efficient to aggre-
gate the attention maps obtained from different attention
heads using convolution. We aggregate the multi-headed
features Mc′·t×h′×w′×h′×w′ obtained from the previous step
using Concat(·) and output them as Mc×h′×w′ . The function
Aggr(·) represents the concatenation feature map, with
the dimension c · t× h′ ×w′ reduced to c× h′ ×w′ by 1× 1

©International Telecommunication Union, 2025 153

Zhou et al.: CTLane: An end-to-end lane detector by a CNN transformer and fusion decoder for edge computing

convolution and layer normalization. The entire process
can be described as:

CMHA(x) = Aggr(CMultiHead(M̂)). (3)

3.2.4 Time complexity analysis of MHA and
CMHA

In the MHA mapping stage, Mn×d is mapped to Mn×d
with a k× k convolution kernel, and its total complexity is
evaluated by O(n2k2d). In CT, we uses 1×1 kernel instead
of k × k for the mapping operation, so that the mapping
complexity is O(n2d). The MHA and Concat matrix Mnt×d
is compressed into Mn×d, and the complexity is O(tn2d).
Hence, the total compressing the multi-headed attention
Concat matrix as Mnt×d to Mn×d by total convolution, its
complexity is O(tn2d), so the total complexity is O(n2d +
n2d). In this case, d > n, the CMHA(·) complexity is lower
than MHA(·).

In comparison to the number of training parameters
required, the number of training parameters required
by the traditional transformer to generate Q,K,V for the
input features F =M1×l and once attention is 3×l×d, while
the number of parameters required to generate Q,K,V
with 1 × 1 convolution is 3 × n × 1, where n denotes the
times of convolutions used in Q,K,V.

In addition, the CMHA(·) is more suitable for the input
as images, because the image is a 2D matrix, and the
convolution can be used to extract the spatial features
from images, which is more suitable for the attention
mechanism.

3.3 Fusion decoder

The decoder component mainly reorganizes multiple
feature maps by deformation and it reconstructs the seg-
mentation output by reshaping. The detailed structure of
a fusion decoder is shown in Fig. 4. Since deep networks
may lose small or tiny targets during feature extraction,
incorporating shallow features focuses on global infor-
mation and prevents losing these type of features.

We use the tow features from lower layers in backbone
C f ×H1×W1,C f ×H2×W2 and one features C3×H3×W3
after the CNN transformer. The number of all features
of a channel would change to C f . Then the first and
second lower layers with sizes respectively are scaled to
the CNN transformer outputs feature size H3 ×W3 by
linear interpolation. Finally the features F are fused by
the Concat function, with the shape 3C f ×H3 ×W3.

To make the decoder arbitrarily scale, we add one channel
scale layer. The feature map F is scaled to S2

·N×H3×W3

then resize to N×Ho×Wo, where Ci×Hi×Wi , 0 < i < 4, i ∈
N denotes the number of feature channels in the ith layer.
N denotes the number of output channels, Ho,Wo denotes
the height and width of the output image, and S denotes
the scaling multiplier to satisfy S ·H3 = Ho, S ·W3 =Wo.

Channels Scale

Conv+BN+ReLU

Bilinear Interpolate

(Cf, H1, W1)
(Cf, H2, W2)

(Cf, H3, W3)

(C1 , H1 , W1)
(C2 , H2 , W2)

(C3 , H3 , W3)

(3 x Cf , H3, W3)

(S
2

x
N

 ,
H

3
, W

3
)

(N
 ,

S
x

H
3

, S
 x

 W
3

)

ReSize

Figure 4 – The main structure of the decoder is shown in the figure; the
shallow features obtained in the feature extraction layer and the deep
features are sampled to the same size by dustample, and then the size
is scaled to the appropriate size by convolution to scale the target size.

3.4 Losses

In order to cope with real-life situations where there
are intersections or partial turnoffs without lanes, we
introduce an additional Exist Loss to determine whether
lanes exist, determine whether the current lane has a
branch part of a decoder, get the possibility of lanes in
the current image then use Binary CrossEntropy Loss
(BCE) to calculate the loss,where li is the target value of
lane status, ei is the softmax output.

LExist = −
1
N

∑
i

[li · ei + (1 − li) · (1 − ei)] (4)

For our binary split branch, we use a weighted binary
cross-entropy loss, and in order to better handle the split
task of unbalanced examples, we use a loss function that
is improved on the basis of focal loss [38]. The loss is
calculated as

LFocal = −
1
N

∑
i

[tλi · log(oi) + (1 − ti)λ · log(1 − oi)] (5)

where ti is the target value of pixel i, oi is the softmax
output, the focal coefficient λ ≥ 0, and it becomes the
standard cross-entropy loss function when λ = 0.

©International Telecommunication Union, 2025154

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

To solve imbalance between examples, the dice loss [39]
is used for the segmentation output:

LDice =
1
N

N∑
i=1

(1 −
2(1 − oi)ti

oi + ti
) (6)

The weighted sum focal loss, dice loss and exist loss is
then used as the total loss function of CTLane, where
α, β, γ ≥ 0:

L = αLFocal + βLDice + γLExist (7)

4. EXPERIMENTS AND RESULTS

To compare the method we proposed, three widely used
lane detection datasets are adopted in the experiment.
They are CULane [2], Tusimple Lane [40], and BDD100K
[41]. The CULane contains 55 hours of video, including
urban and highway scenes, with nine different scenes
including normal, crowd, curve, dazzling night, night,
etc. The Tusimple Lane was collected with stable light
conditions on highways, where there are major differ-
ences between the various types of data. BDD100K has a
large number of different scenes, it contains road images
with weather, scene, lighting and other factors.

The details of the datasets are shown in Table 1.

4.1 Implementation

To augment training data, we use random Affine trans-
form, random horizontal flip, color shift and other tech-
niques to generate more examples. In the encoder, we use
the pre-trained ResNet [35] and DLA [48] as the backbone
to extract multiscale features. In Tusimple, all images are
zoomed into 352× 640, then generated into in four scales:
88×160, 44×80, 22×40, and 11×20. The latter two feature
maps are fused by FPN into a 22 × 40 feature map which
then is transferred into a CNN transformer using 3 head
and attention 6 times. The fused feature map is fused
again with the first two feature maps, and transferred
into the decoder to get the segmentation output with the
size of 352 × 640.

The optimization function we used is Stochastic Gradient
Descent (SGD) with learning rate set to 0.1, momentum
set to 0.9, and weight decay set to 0.0001. The scheduler
uses cosine annealing with the step set to 5 and warmup
set to 3. Tusimple lane has 200 epochs, CULane 40
epochs, and BDD100K 60 epochs.In the combined loss
function,γ = 0.1, α = 1.0 and β = 0.5. We train the model
on NVIDIA 1080TI and 4080.

4.2 Evaluation metrics

In Tusimple, there are three official assessment measure-
ment: accuracy, False Positive (FP), and False Negative
(FN). The accuracy is defined as

Accuracy =

∑
clip Cclip

sumclipSclip
.

where Cclip is the number of correctly predicted lane
points (predicated points within the range of 20 pixels
around ground truth points), and Sclip is the total number
of ground truth points in each clip. However, Tusimple
seems to become more saturated for many modern meth-
ods nowadays. Hence we add F1-score to evaluate the
performance of the model, which is defined as

F1score =
2 × precision × recall

precision + recall
,

in which precision and recall are defined

precision =
Cclip

Cclip + Fclip

recall =
Cclip

Cclip +Mclip

Fclip is the number of lane points predicted incorrectly
and Mclip is the number of ground truth points missed in
each clip.

For the CULane dataset the official suggestion is to eval-
uate precision, F1, and recall. Each channel is treated as
a 30-pixel-wide lane, using Intersecting Unions (IoUs) to
calculate predictions and ground truths. Where the pre-
dicted IoU is greater than the 0.5 threshold, it is marked
as a True Positive (TP). The evaluation function is defined
as:

F1 =
2 × Accuracy × Recall

Accuracy + Recall

Accuracy =
TP

TP + FP

Recall =
TP

TP + FN

4.3 Comparison

TUSimple We have conducted experiments several times
on the Tusimple to show its performance. Since the
accuracy in Tusimple is becoming saturated, we mainly
focus on the F1 score. Table 3 shows CTLane with
ResNet34 backbone made a significant improvement in
F1 score compared to other methods, where the FP value
outperforms better than others.

CULane For the more harsh dataset, CULane, the qual-
itative results are shown in Table 2. It indicate that for

©International Telecommunication Union, 2025 155

Zhou et al.: CTLane: An end-to-end lane detector by a CNN transformer and fusion decoder for edge computing

Dataset Scenario Road Type Frames Train Resolution Max Lane

Tusimple light traffic, day highway 6,408 3,236 1280×720 5
CULane night, day, traffic urban, rural and highway 133,235 88,880 1640×590 4
BDD100K light traffic, day highway 100,042 58,269 1280×717 4

Table 1 – Dataset type

Type BackBone Total Normal Crowded Dazzle Shadow No line Arrow Curve CrossR Night
UFLD[31] ResNet34 72.30 90.70 70.2 0 59.50 69.30 44.40 85.70 69.50 2037 66.70
SCNN[12] VGG16 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
MCA-UFLD[42] ResNet18 69.36 88.90 67.28 55.79 63.87 39.75 82.50 56.26 1741 63.30
STLNet[43] Swin 73.60 91.80 70.20 65.90 69.30 48.80 85.30 67.50 68.20
SAD[44] ResNet101 71.80 90.70 70.00 59.90 67.00 43.50 84.40 65.70 2052 66.30
PINet[45] Hourglass4 74.40 90.30 72.30 66.30 68.40 49.80 83.70 65.60 1427 67.70
E2E[26] ERFNet 74.00 91.00 73.10 64.50 74.10 46.60 85.80 71.90 2022 67.90
RESA[46] ResNet50 75.31 92.10 73.10 69.20 72.80 47.70 88.30 70.30 1503 69.90
LaneATT[47] ResNet18 75.13 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1020 68.58
Ours
CTLane ResNet34 74.31 91.49 72.68 67.31 68.33 45.27 87.60 68.94 1542 69.69
CTLane DLA34 75.39 92.24 73.48 66.87 74.18 46.46 88.20 69.23 1672 71.20

Table 2 – Comparison with state-of-the-art results on CULane dataset with IoU threshold = 0.5. For crossroad, only FP are shown.

Method BackBone F1(%) Acc(%) FP(%) FN(%)
PolyLaneNet[32] EfficientNetB0 90.62 93.36 9.42 9.33
FastDraw[49] ResNet50 94.44 94.90 5.90 5.20
SCNN[12] VGG16 95.97 96.53 6.17 1.80
RESA[50] ResNet18 96.84 96.84 3.25 2.67
E2E[26] ERFNet 96.25 96.02 3.21 4.28
LaneATT[32] ResNet34 96.06 96.10 5.64 2.17
FOLOLane[51] ERFNet 96.59 96.92 4.47 2.28
CondLaneNet[52] ResNet101 97.24 96.54 2.01 3.50
Ours
CTLane ResNet34 97.54 96.49 2.01 2.90
CTLane DLA34 97.45 96.50 2.14 2.96

some difficult scenes with more severe occlusions, such
as Crowded, Shadow, CrossRoad, Night, our method can
still successfully infer the correct lanes. It is noticed that
CTLane with DLA34 has achieved a large improvement
in major scenarios as shown in Fig. 5.

BDD100K The official lane segmentation results are given
for both sides of the lane. We draw the complete lane
mask for training and we keep the original lane in the
val set. We use pixel classification accuracy and lane IoU
as evaluation metrics. Finally validated on the val set
and output results are shown in Table 4.

To explain the effectiveness of our method more visu-
ally, we show the qualitative results of our designed
model and other models for the CULane dataset in Fig.
5. Traditional lane detection methods cannot identify
lane markings well in dark night, shadowed and strong
light situations, resulting in the final prediction of the
model breaking the continuity of the lanes. In contrast,
our model can solve this problem well by attention. The
results of our model show more robustness, and introduc-
ing our convolution attention rather than the traditional
segmentation module can give the network a stronger
ability to capture structured prior objects.

Our method shows that on some occasions where the
lanes are crowded and close to each other, it still separates
the lanes well. As shown in Fig. 5, even if the lanes in
images are very close, our method still distinguishes
them successfully.

Method BackBone Acc(%) IoU(%)
SCNN[12] VGG16 35.79 15.84
SAD[44] ENet 36.56 16.02
HWLane[53] ResNet34 73.93 33.25
YOLOPv8[54] CSPDarknet 84.90 28.80
HybridNets[55] EfficientNetB3 85.40 31.60
Ours
CTLane ResNet34 84.64 26.12
CTLane DLA34 85.55 26.68

4.4 Ablation

We have designed a series of ablation experiments to
analyse the effectiveness of different components in our
model.

Overall ablation study. We first investigated the effec-
tiveness of the CNN transformer and the fusion decoder
component. As a baseline, we choose ResNet-34 as the
backbone to extract features, and then we use a feature
pyramid to aggregate multiscale features to construct

Baseline CNN transformer Fusion decoder F1
✓ 94.57

✓ 96.93
✓ 96.65

✓ ✓ 97.54

Table 5 – Experiments of the proposed modules on TuSimple dataset
with ResNet-34 backbone.

©International Telecommunication Union, 2025156

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

Table 3 – Comparison results on TuSimple dataset.

Table 4 – Comparison results on BDD100K dataset.

Ground Truth ResNet50 SCNN CTLane

ctlane_34_driver_37_30fra
me-04020.png

ctlane_34_driver_37_30fra
me-05220.png

ctlane_34_driver_37_30fra
me-02555.png

Figure 5 – Example results from CULane dataset with ResNet50, SCNN and CTLane. It indicates that CTLane is immune to interference caused by
dark night, shadows, strong light, etc.

an encoder. We adopt deconvolution and bilinear inter-
polation in the decoder to up-sample the feature map
and finally output the segmentation. We integrate the
CNN transformer and fusion decoder respectively. The
F1-score is summarized in Table 5. We can see that both
components greatly improve the lane detection perfor-
mance, which proves the effectiveness.

40 50 60 70 80 90 100
94

95

96

97

98

Epoch

F1
(%

)

TuSimple Lane Detection Challenge

SCNN
SCNN with CNNTransformer

UFLD
UFLD with CNNTransformer

Figure 6 – CNN transformer applied on different models

Ablation study on generality of CNN transformer To
validate the generalizability and stability of CNN trans-
former, we have implanted it into Spatial Convolutional
Neural Network (SCNN) and Ultra Fast structure-aware

deep Lane Detection (UFLD). The Fig. 6 shows that
the model with the CNN transformer has a significant
improvement on accuracy. It also indicates that CNN
transformer helps convergence faster and is easily em-
bedded into existing framework.

4.5 Edge computing deployment

To demonstrate the practicality and efficiency of CTLane
in real-world automotive applications, we deployed the
lane detection model on the iFlytek U-car as shown in Fig.
7, an intelligent vehicle equipped with an NVIDIA Jetson
Nano edge-computing device. The Jetson Nano, with its
compact design and energy-efficient performance, is well-
suited for embedded systems in autonomous driving
and Advanced Driver Assistance Systems (ADAS). This
deployment aimed to evaluate the model’s real-time
performance, resource efficiency, and detection accuracy
in a practical automotive environment. Implementation
Details

• Hardware setup: The iFlytek U-car is powered by an
NVIDIA Jetson Nano, featuring a 128-core Maxwell
GPU and a quad-core ARM CPU. This hardware con-

©International Telecommunication Union, 2025 157

Zhou et al.: CTLane: An end-to-end lane detector by a CNN transformer and fusion decoder for edge computing

Figure 7 – The iFlytek U-car equipped with edge-computing capabil-
ities powered by the NVIDIA Jetson Nano is used by us in real-time
perception on lane marks.

figuration provides a balance of computational power
and energy efficiency, making it ideal for edge-based
lane detection tasks.

• Software environment: The model was optimized
using TensorRT, NVIDIA’s high-performance deep
learning inference library, to maximize inference speed
and minimize memory usage. The framework was
implemented in PyTorch, and the model was quantized
to FP16 precision to further enhance computational
efficiency without compromising detection accuracy.

• Input resolution: To ensure real-time performance
on the Jetson Nano, the input resolution was set to
352×640, striking a balance between detection accuracy
and computational load.

Performance metrics inference speed: On the Jetson
Nano, the model achieved an average inference speed
of 8 − 10 FPS (frames per second), close to meeting the
real-time requirements for lane detection in automotive
applications.

Resource utilization: The GPU utilization remained be-
low 75%, indicating that the model is lightweight and
leaves sufficient computational resources for other con-
current tasks, such as object detection or path planning.

Real-world testing We conducted extensive real-world
testing on urban roads and highways using the iFlytek
U-car to evaluate the model’s performance under diverse
driving conditions. The results showed that CTLane
performs exceptionally well in challenging scenarios,
including low-light environments, shadows, and occlu-
sions caused by other vehicles or road obstacles. The
model consistently maintained lane continuity and accu-
racy, proving its reliability for real-world deployment in
ADAS and autonomous driving systems.

5. CONCLUSION

In this paper, we present CTLane, a novel lane detec-
tion method that integrates two key components: CNN
transformer and fusion decoder. The CNN transformer
introduces a convolution-based self-attention mechanism,
which significantly improves computational efficiency by
leveraging 1 × 1 convolutions instead of traditional ma-
trix multiplications. This approach not only accelerates
training convergence but also addresses the challenges of
integrating transformer and CNN architectures. The fu-
sion decoder effectively combines low-level local features
from shallow layers with high-level semantic informa-
tion generated by the CNN transformer. This dual-layer
fusion enables the network to capture both fine-grained
details and global lane structures, enhancing the robust-
ness and accuracy of lane detection.

The proposed method demonstrates strong generaliza-
tion capabilities and can be seamlessly integrated into
existing frameworks. Extensive experiments on three
benchmark datasets, CULane, Tusimple, and BDD100K
show that CTLane achieves close to state-of-the-art per-
formance, particularly in challenging scenarios such as
low-light conditions, shadows, and occlusions. The re-
sults highlight the method’s ability to maintain lane
continuity and accuracy even under adverse conditions.
To further validate the practicality of CTLane, we de-
ployed the model on the iFlytek U-car, an intelligent
vehicle platform equipped with an NVIDIA Jetson Nano
edge-computing device. The deployment demonstrated
the model’s close to real-time performance.

Future work will focus on further optimizing the model
for real-time applications and exploring its potential in
other computer vision tasks. To enhance real-time per-
formance, we will investigate dynamic network pruning,
hybrid precision quantization, and hardware-customized
acceleration strategies. Additionally, we aim to extend
the framework to multi-task scenarios and cross-modal
systems (e.g., fusing camera and LiDAR inputs). Im-
proving robustness under extreme conditions (e.g., fog,
heavy rain) through adversarial training or synthetic
data augmentation will also be prioritized. The CTLane
framework provides a robust foundation for advancing
lane detection technologies, contributing to the devel-
opment of safer and more reliable autonomous driving
systems.

©International Telecommunication Union, 2025158

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

REFERENCES

[1] Aharon Bar Hillel, Ronen Lerner, Dan Levi, and Guy Raz. “Recent
progress in road and lane detection: a survey”. In: Machine
Vision and Applications 25.3 (Apr. 2014), pp. 727–745. issn: 0932-
8092, 1432-1769. doi: 10.1007/s00138-011-0404-2. (Visited on
04/04/2022).

[2] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and
Xiaoou Tang. “Spatial As Deep: Spatial CNN for Traffic Scene
Understanding”. In: AAAI Conference on Artificial Intelligence.
2017. url: https://api.semanticscholar.org/CorpusID:9164115.

[3] Tu Zheng, Hao Fang, Yi Zhang, Wenjian Tang, Zheng Yang,
Haifeng Liu, and Deng Cai. “RESA: Recurrent Feature-Shift
Aggregator for Lane Detection”. In: arXiv:2008.13719 [cs] (Mar. 25,
2021). arXiv: 2008.13719. (Visited on 04/04/2022).

[4] Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc
Proesmans, and Luc Van Gool. “Towards End-to-End Lane Detec-
tion: an Instance Segmentation Approach”. In: arXiv:1802.05591
[cs] (Feb. 15, 2018). arXiv: 1802.05591. (Visited on 04/04/2022).

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. “Attention Is All You Need”. In: arXiv:1706.03762 [cs]
(Dec. 5, 2017). arXiv: 1706.03762. (Visited on 04/04/2022).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of the 2019 Conference of
the North. Proceedings of the 2019 Conference of the North. Min-
neapolis, Minnesota: Association for Computational Linguistics,
2019, pp. 4171–4186. doi: 10.18653/v1/N19- 1423. (Visited on
04/04/2022).

[7] Linhao Dong, Shuang Xu, and Bo Xu. “Speech-Transformer: A
No-Recurrence Sequence-to-Sequence Model for Speech Recog-
nition”. In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). ICASSP 2018 - 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). Calgary, AB: IEEE, Apr. 2018, pp. 5884–5888. isbn:
978-1-5386-4658-8. doi: 10.1109/ICASSP.2018.8462506. (Visited
on 04/04/2022).

[8] Andrew Brown, Cheng-Yang Fu, Omkar Parkhi, Tamara L Berg,
and Andrea Vedaldi. “End-to-end visual editing with a gener-
atively pre-trained artist”. In: European Conference on Computer
Vision. Springer. 2022, pp. 18–35.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale”. In: arXiv:2010.11929
[cs] (June 3, 2021). arXiv: 2010.11929. (Visited on 04/04/2022).

[10] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. “End-to-
End Object Detection with Transformers”. In: Computer Vision –
ECCV 2020. Ed. by Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm. Vol. 12346. Series Title: Lecture Notes
in Computer Science. Cham: Springer International Publishing,
2020, pp. 213–229. isbn: 978-3-030-58451-1 978-3-030-58452-8. doi:
10.1007/978-3-030-58452-8_13. (Visited on 04/04/2022).

[11] Qinglong Zhang and Yubin Yang. “ResT: An Efficient Trans-
former for Visual Recognition”. In: arXiv:2105.13677 [cs] (Oct. 14,
2021). arXiv: 2105.13677. (Visited on 04/04/2022).

[12] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and
Xiaoou Tang. “Spatial as deep: Spatial cnn for traffic scene
understanding”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 32. 1. 2018.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
“Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding”. In: Proceedings of the 2019 conference of the
North American chapter of the association for computational linguis-
tics: human language technologies, volume 1 (long and short papers).
2019, pp. 4171–4186.

[15] Linhao Dong, Shuang Xu, and Bo Xu. “Speech-transformer: a no-
recurrence sequence-to-sequence model for speech recognition”.
In: 2018 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE. 2018, pp. 5884–5888.

[16] Long Zhuang, Tiezhen Jiang, Meng Qiu, Anqi Wang, and Zhix-
iang Huang. “Transformer generates conditional convolution
kernels for end-to-end lane detection”. In: IEEE Sensors Journal
(2024).

[17] Shengqi Wang, Junmin Liu, Xiangyong Cao, Zengjie Song, and
Kai Sun. “Polar R-CNN: End-to-End Lane Detection with Fewer
Anchors”. In: arXiv preprint arXiv:2411.01499 (2024).

[18] Qinglong Zhang and Yu-Bin Yang. “Rest: An efficient trans-
former for visual recognition”. In: Advances in neural information
processing systems 34 (2021), pp. 15475–15485.

[19] Der-Hau Lee and Jinn-Liang Liu. “End-to-end deep learning of
lane detection and path prediction for real-time autonomous
driving”. In: Signal, Image and Video Processing 17.1 (2023), pp. 199–
205.

[20] P Santhiya, Immanuel JohnRaja Jebadurai, Getzi Jeba Leelipush-
pam Paulraj, A Jenefa, S Kiruba Karan, et al. “Deep Vision: Lane
Detection in ITS: A Deep Learning Segmentation Perspective”.
In: 2024 Second International Conference on Inventive Computing
and Informatics (ICICI). IEEE. 2024, pp. 21–26.

[21] Seyed Rasoul Hosseini, Hamid Taheri, and Mohammad Tesh-
nehlab. “Enet-21: an optimized light cnn structure for lane detec-
tion”. In: arXiv preprint arXiv:2403.19782 (2024).

[22] Swati Jaiswal and B Chandra Mohan. “Deep learning-based path
tracking control using lane detection and traffic sign detection
for autonomous driving”. In: Web Intelligence. Vol. 22. 2. SAGE
Publications Sage UK: London, England. 2024, pp. 185–207.

[23] Chenguang Li, Boheng Zhang, Jia Shi, and Guangliang Cheng.
“Multi-level domain adaptation for lane detection”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 4380–4389.

[24] Yongqi Dong, Sandeep Patil, Bart Van Arem, and Haneen Farah.
“A hybrid spatial–temporal deep learning architecture for lane
detection”. In: Computer-Aided Civil and Infrastructure Engineering
38.1 (2023), pp. 67–86.

[25] Jiao Zhan, Jingnan Liu, Yejun Wu, and Chi Guo. “Multi-task
visual perception for object detection and semantic segmentation
in intelligent driving”. In: Remote Sensing 16.10 (2024), p. 1774.

[26] Seungwoo Yoo, Hee Seok Lee, Heesoo Myeong, Sungrack Yun,
Hyoungwoo Park, Janghoon Cho, and Duck Hoon Kim. “End-
to-end lane marker detection via row-wise classification”. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops. 2020, pp. 1006–1007.

[27] Xinyu Zhang, Yan Gong, Jianli Lu, Zhiwei Li, Shixiang Li, Shu
Wang, Wenzhuo Liu, Li Wang, and Jun Li. “Oblique convolution:
A novel convolution idea for redefining lane detection”. In: IEEE
Transactions on Intelligent Vehicles 9.2 (2023), pp. 4025–4039.

[28] Zhuoling Li, Chunrui Han, Zheng Ge, Jinrong Yang, En Yu, Hao-
qian Wang, Xiangyu Zhang, and Hengshuang Zhao. “Grouplane:
End-to-end 3d lane detection with channel-wise grouping”. In:
IEEE Robotics and Automation Letters (2024).

[29] Zhongyu Yang, Chen Shen, Wei Shao, Tengfei Xing, Runbo Hu,
Pengfei Xu, Hua Chai, and Ruini Xue. “LDTR: Transformer-based
lane detection with anchor-chain representation”. In: Computa-
tional Visual Media 10.4 (2024), pp. 753–769.

©International Telecommunication Union, 2025 159

Zhou et al.: CTLane: An end-to-end lane detector by a CNN transformer and fusion decoder for edge computing

https://doi.org/10.1007/s00138-011-0404-2
https://api.semanticscholar.org/CorpusID:9164115
https://arxiv.org/abs/2008.13719
https://arxiv.org/abs/1802.05591
https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICASSP.2018.8462506
https://arxiv.org/abs/2010.11929
https://doi.org/10.1007/978-3-030-58452-8_13
https://arxiv.org/abs/2105.13677

[30] Shaofei Huang, Zhenwei Shen, Zehao Huang, Zi-han Ding, Jiao
Dai, Jizhong Han, Naiyan Wang, and Si Liu. “Anchor3dlane:
Learning to regress 3d anchors for monocular 3d lane detection”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023, pp. 17451–17460.

[31] Zequn Qin, Pengyi Zhang, and Xi Li. “Ultra Fast Deep Lane
Detection With Hybrid Anchor Driven Ordinal Classification”. In:
IEEE Trans. Pattern Anal. Mach. Intell. 46.5 (May 2024), pp. 2555–
2568. issn: 0162-8828. doi: 10.1109/TPAMI.2022.3182097. url:
https://doi.org/10.1109/TPAMI.2022.3182097.

[32] Lucas Tabelini, Rodrigo Berriel, Thiago M Paixao, Claudine
Badue, Alberto F De Souza, and Thiago Oliveira-Santos. “Poly-
lanenet: Lane estimation via deep polynomial regression”. In:
2020 25th international conference on pattern recognition (ICPR).
IEEE. 2021, pp. 6150–6156.

[33] Ruijin Liu, Zejian Yuan, Tie Liu, and Zhiliang Xiong. “End-to-end
lane shape prediction with transformers”. In: Proceedings of the
IEEE/CVF winter conference on applications of computer vision. 2021,
pp. 3694–3702.

[34] Yunqian Fan, Xiuying Wei, Ruihao Gong, Yuqing Ma, Xiangguo
Zhang, Qi Zhang, and Xianglong Liu. “Selective focus: inves-
tigating semantics sensitivity in post-training quantization for
lane detection”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 38. 11. 2024, pp. 11936–11943.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
Residual Learning for Image Recognition”. In: arXiv:1512.03385
[cs] (Dec. 10, 2015). arXiv: 1512.03385. (Visited on 04/04/2022).

[36] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath
Hariharan, and Serge Belongie. “Feature Pyramid Networks for
Object Detection”. In: arXiv:1612.03144 [cs] (Apr. 19, 2017). arXiv:
1612.03144. (Visited on 04/04/2022).

[37] Gang Li, Di Xu, Xing Cheng, Lingyu Si, and Changwen Zheng.
“SimViT: Exploring a Simple Vision Transformer with sliding
windows”. In: arXiv:2112.13085 [cs] (Dec. 24, 2021). arXiv: 2112.1
3085. (Visited on 04/04/2022).

[38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. “Focal Loss for Dense Object Detection”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 42.2 (Feb. 1,
2020), pp. 318–327. issn: 0162-8828, 2160-9292, 1939-3539. doi:
10.1109/TPAMI.2018.2858826. (Visited on 04/04/2022).

[39] Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang, Fei Wu,
and Jiwei Li. “Dice Loss for Data-imbalanced NLP Tasks”. In:
arXiv:1911.02855 [cs] (Aug. 29, 2020). arXiv: 1911.02855. (Visited
on 04/04/2022).

[40] Tusimple. Tusimple lane detection benchmark. 2017.

[41] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao,
Vashisht Madhavan, and Trevor Darrell. “BDD100K: A Diverse
Driving Video Database with Scalable Annotation Tooling”. In:
CoRR abs/1805.04687 (2018). arXiv: 1805.04687. url: http://arxiv
.org/abs/1805.04687.

[42] Lingyun Han, Kun Xu, Wensheng Hu, and Zhanwen Liu. “Lane
Detection Method Based on MCA-UFLD”. In: 2023 IEEE 8th
International Conference on Intelligent Transportation Engineering
(ICITE). IEEE. 2023, pp. 146–152.

[43] Yufeng Du, Rongyun Zhang, Peicheng Shi, Linfeng Zhao, Bin
Zhang, and Yaming Liu. “ST-LaneNet: lane line detection method
based on swin transformer and LaneNet”. In: Chinese Journal of
Mechanical Engineering 37.1 (2024), p. 14.

[44] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy.
“Learning lightweight lane detection cnns by self attention distil-
lation”. In: Proceedings of the IEEE/CVF international conference on
computer vision. 2019, pp. 1013–1021.

[45] Yeongmin Ko, Younkwan Lee, Shoaib Azam, Farzeen Munir,
Moongu Jeon, and Witold Pedrycz. “Key points estimation and
point instance segmentation approach for lane detection”. In:
IEEE Transactions on Intelligent Transportation Systems 23.7 (2021),
pp. 8949–8958.

[46] Tu Zheng, Hao Fang, Yi Zhang, Wenjian Tang, Zheng Yang,
Haifeng Liu, and Deng Cai. “Resa: Recurrent feature-shift aggre-
gator for lane detection”. In: Proceedings of the AAAI conference on
artificial intelligence. Vol. 35. 4. 2021, pp. 3547–3554.

[47] Xu Cao, Weisheng Liu, and Zhijian Wang. “Adaptive ROI Opti-
mization Pyramid Network: Lane Detection for FSD under Data
Uncertainty.” In: Engineering Letters 33.2 (2025).

[48] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell.
Deep Layer Aggregation. Jan. 4, 2019. arXiv: 1707.06484[cs]. url:
http://arxiv.org/abs/1707.06484 (visited on 09/05/2022).

[49] Jonah Philion. “Fastdraw: Addressing the long tail of lane detec-
tion by adapting a sequential prediction network”. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition.
2019, pp. 11582–11591.

[50] Dan Zhang, Guolv Zhu, Shibo Lu, and Chang Li. “Lane Detec-
tion Based on Improved RESA in Power Plant”. In: 2024 IEEE
4th International Conference on Power, Electronics and Computer
Applications (ICPECA). IEEE. 2024, pp. 108–112.

[51] Zhan Qu, Huan Jin, Yang Zhou, Zhen Yang, and Wei Zhang.
“Focus on local: Detecting lane marker from bottom up via key
point”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2021, pp. 14122–14130.

[52] Lizhe Liu, Xiaohao Chen, Siyu Zhu, and Ping Tan. “Condlanenet:
a top-to-down lane detection framework based on conditional
convolution”. In: Proceedings of the IEEE/CVF international confer-
ence on computer vision. 2021, pp. 3773–3782.

[53] Jing Zhao, Zengyu Qiu, Huiqin Hu, and Shiliang Sun. “HWLane:
HW-transformer for lane detection”. In: IEEE Transactions on
Intelligent Transportation Systems (2024).

[54] Shuyan Wang, Ya Liu, and Feng Zhang. “A Multi-Task Au-
tonomous Driving Environment Perception Network Based on
CA-YOLOPv8”. In: 2024 20th International Conference on Natu-
ral Computation, Fuzzy Systems and Knowledge Discovery (ICNC-
FSKD). IEEE. 2024, pp. 1–9.

[55] Dat Vu, Bao Ngo, and Hung Phan. “HybridNets: End-to-End
Perception Network”. In: arXiv e-prints (2022), arXiv–2203.

AUTHORS

Mian Zhou received a Doctor’s
degree from the Department of
Computer Science, University of
Reading, UK. He is currently a
senior associate professor at the
School of AI and Advanced Com-
puting, XJTLU Entrepreneur Col-
lege (Taicang), Xi’an Jiaotong-
Liverpool University. His re-

search interests include computer vision, image pro-
cessing, and pattern recognition.

Guoqiang Zhu is a graduate stu-
dent at Tianjin University of Tech-
nology, specializing in computer
vision and machine learning. His
research focuses on leveraging
deep learning techniques for im-
age recognition.

©International Telecommunication Union, 2025160

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

https://doi.org/10.1109/TPAMI.2022.3182097
https://doi.org/10.1109/TPAMI.2022.3182097
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/2112.13085
https://arxiv.org/abs/2112.13085
https://doi.org/10.1109/TPAMI.2018.2858826
https://arxiv.org/abs/1911.02855
https://arxiv.org/abs/1805.04687
http://arxiv.org/abs/1805.04687
http://arxiv.org/abs/1805.04687
https://arxiv.org/abs/1707.06484 [cs]
http://arxiv.org/abs/1707.06484

Zhikun Feng is pursuing a PhD at
the University of Electronic Sci-
ence and Technology of China.
His research interests include ma-
chine learning and computer
vision.

Haoyi Lian is an undergraduate
student at the School of AI and
Advanced Computing, XJTLU
Entrepreneur College (Taicang),
Xi’an Jiaotong-Liverpool Univer-
sity. She is majoring in data sci-
ence and big data technology and
is particularly interested in the
fields of machine learning, deep
learning and computer vision.

Siqi Huang is an assistant pro-
fessor in the School of AI and
Advanced Computing at XJTLU
Entrepreneur College (Taicang).
He received his Ph.D. in electri-
cal engineering at The University
of North Carolina at Charlotte in
2022, and BEng in software en-
gineering from Sun Yat-sen Uni-

versity in 2015.His research interests include AI-driven
video streaming system optimization; energy and la-
tency analysis and optimization of AI (DNN) models on
mobile devices (TinyML); real-time HD map generation
and updates for autonomous driving and software OTA
update services for autonomous vehicles; mobile edge
computing with embedded AI devices; mobile AR/VR
and human-computer interaction system.

©International Telecommunication Union, 2025 161

Zhou et al.: CTLane: An end-to-end lane detector by a CNN transformer and fusion decoder for edge computing

	CTLane: An end-to-end lane detector by a CNN transformer and fusion decoder for edge computing
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Semantic segmentation-based methods
	2.2 Row-wise classification-based methods
	2.3 Anchor-based methods
	2.4 Curve fitting-based methods

	3. PROPOSED METHOD
	3.1 Encoder
	3.2 CNN transformer
	3.2.1 Convolution attention blocks
	3.2.2 Multi-Head attention
	3.2.3 Channels aggregation
	3.2.4 Time complexity analysis of MHA and CMHA

	3.3 Fusion decoder
	3.4 Losses

	4. EXPERIMENTS AND RESULTS
	4.1 Implementation
	4.2 Evaluation metrics
	4.3 Comparison
	4.4 Ablation
	4.5 Edge computing deployment

	5. CONCLUSION
	REFERENCES
	AUTHORS

