7 Homework 1 — Math 5323 “
Due: Fridays, 28 Jan 2022, by 11:59 p.m. CDT

Question 4.1: Show that F = {(a,00) : a € R}, with the convention that (0o, 00) = @ is a topology on R which is
Tp but not T3. (We denote R = R U {oo, —0c0})

Proof. By Definition 4.1.1, to show that the collection F is a topology on R, we are required to show that
(i) @ € F, R € F. This is because by the convention (00, 00) = @ € F as oo € R, and R = (—o0,00) € F as —oc € R.

(ii) F is closed under the (arbitrary) union. We choose a collection {U, € F : « € I} of F. By Definition of F, we can
write

Us = (an,0)
for some a, € R. We have that by Definition of intervals and Definition of F

UJUa=00)eF

acl
where we denote b :=inf{a,:a €I} €R
(iif) F is closed under the finite intersection. We choose a finite elements Uy, --- ,U, € F for some n € N. By Definition
of F, we can write
U; = (a;,00)
for some a1, --- ,a, € R. We have that by Definition of intervals and Definition of F

ﬁ U, = (b,OO) e F
=1

where we denote b := max{a;:i=1,--- ,n} € RCR.

We choose x,y € R with = # y. Without loss of generality, we can assume = < y. By the completeness of the real numbers,
we have z := 3% € R C R. Hence we have z ¢ (z,00), y € (2,00) and (z,00) € F. By Definition 4.1.4, we proved that the
topology F is Ty. To disprove that F is Ti, it is enough to give a counter-example. We consider 1,2. We cannot find an
element (a,oc0) of R such that

1 € (a,00) but 2 ¢ (a, o).
This is true since we have the implication
1 € (a,00) implies that 2 € (a, ).

by the properties of the real numbers. By Definition 4.1.4, we proved that F is not T7. O
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Question 4.2: Let F be the collection of subsets of R? containing &, R?, and all the complements of finite number
of lines and points. Prove that F is a topology on R? which is 75 but not Hausdorff.

Proof. By the condition, we have for any A C R?
A € F if and only if either A =@, A =R2, A° = U{ai s a; € R%or a; = (z;,y;) with y; = mgz; +n;}
i=1

for some n € N and some m;,n; € R.
(i) @,R? € F is true without doubt.

(ii) We choose {A;}ie; C F. If there is one A; is R?, there is nothing to prove. We consider the case A; # R? for all i € I.
If A; # @ for all i € I, there is nothing to prove since the arbitrary union of empty sets is still empty. Now we have
the statement: there exists p € I such that

either A} = U{ai a; € R?} or A = U{(I“yl) eR? 1 y; = myz; + 14}

=1 1=1

for some n € N and some m;,n; € R. Now by De Morgan’s law, we have

(4 =45 c 4.

i€l icl
Since we have the subset of finite number of line and points is still a finite number of line and points, we have
(U A;)¢ is a finite number of lines and points, which immediately implies that U A, e F.
il iel
(iii) We prove F is closed under a finite n intersection by induction on n. There is nothing to prove for the base step n = 1.

For the inductive step, by the induction hypothesis, we have B := ﬂ A; € F and by the condition, A := A, 11 € F.

i=1
n+1

We denote C := BN A. Then C = m A; and by De Morgan’s law C¢ = B¢U A€. If each of B and A is the empty set

or the full space, this case is tr1v1al Now we consider both B¢ and A€ are a finite number of lines and points. Since

the finite union of finite number of lines and points is still the finite number of lines and points, we immediately have
n+1
that C° is a finite number of lines and points hence by Definition of F, m A, =C¢eF.

i=1
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Question 4.3: Let X be a metric space with the metric p and F' C X be closed. For any z € X, define

(a) Prove that p(x, F') =0 if and only if z € F.
(b) Prove that U = {z € X : p(z, F) < ¢} is an open set containing F for any ¢ > 0.

(c) Prove that X is normal.

p(z, F) = inf{p(z,y) : y € F'}

Proof. (a) We want to prove that p(z, F) = 0 implies that € F'. By Definition of inf, we can choose a sequence y; € F

such that lim p(z,y;) = 0 which implies that
11— 00

y; approach x in the metric space X.

By Definition of closeness, we immediately have that x € X. We want to prove that = € F implies that p(x, F) = 0.
This is so obvious by definition of metric spaces, we have p(x,z) = 0 and p(z,y) > 0 for any 2,y € X.

We choose ¢ > 0 randomly. By (a), we have F' C U since for any « € F, p(z, F) = 0 and 0 < ¢. Now we prove that U
is open. By Definition of a topology, it is equivalent to prove that X \ U is closed. We choose a sequence z;, € X \ U
such that p(zg,2) — 0 for some z € X. By Definition of closeness, it required to prove that z € X \ U. Then by
Definition of U and Lemma, 0.1, for each & € N such that

¢ < plar, F) < pla,ax) + pla, F),

after pushing both sides to oo, due to klim p(x,zr) = 0, we have
— 00

c<p(z, F).

and by Definition of U, we have z € X \ U.

By Definition (e)4.1.4, we firstly need to prove that it is 71. We choose z,y € X with  # y randomly. By Definition
of metric spaces, we have d := p(z,y) > 0. Now we consider W := {z € X : p(z,2) < 4}. W is obviously open since
it is an open ball as W = B(z, g) Also it is obviously z € W as p(z,z) = 0 by Definition of metric spaces. It is also
true y ¢ W by our Definition of d. Similarly we can also find open set V such that y € V and z ¢ V. Since such z,y
was chosen randomly , by (b) of Definition 4.1.4, we proved that X is T;. We choose randomly two closed sets A and
B such that AN B = @. We consider Uy := {z € X : p(z,A) < p(z,B)} and Up := {z € X : p(x, A) > p(x,B)}.
There is no doubt that Uy N Ug = & and there is no doubt that A C U4 and B C Ug and trust that mathematicians
use this Definition to catch the geometrical meaning well. Now we want to prove that Uy and Upg are both open. We
prove that Uy is open and similarly we can prove that Up is open. Now by Definition of a topology, it is equivalent to
prove that X \ Uy, is closed. We choose a sequence yi € X \ Ua such that p(yg,y) — 0 for some y € X. By Definition
of closeness, we are required to prove that y € X \ Us. Now we have

Py, B) < p(y,yx) + p(yr, B) < p(y, ) + p(yr, A) < p(y, A) + Yk, y) + p(Yk» y)

where the first and the last is due to Lemma 0.1, the second is due Definition of U, after pushing both sides into co
and using p(yk,y) — 0 as n — oo, we have p(y, B) < p(y, A) and by Definition of Uy, we have y € X \ Ug4.
O

Lemma 0.1. Let X be a metric space with x,y € X and B C X be a closed set. Prove

p(x, B) < p(x,y) + p(y, B).

Proof. By Definition of inf, we can choose z; € B such that p(y, B) = klim p(y, zk). Then by Definition of inf with 2z, € B
— 00

and triangle inequalities, we have for each

p(z, B) < p(z, z) < p(z,y) + p(y, 21),

after pushing both sides into co, we have

p(z,B) < p(z,y) + lim p(y, z) = p(z,y) + p(y, B)
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(Question 4.4: Prove that in a Hausdorff space X, every singleton set {z} is closed. )

Proof. We are not interested in the empty space and the space contains the only point or two points. We choose x € X
randomly. By Definition of closeness, it is equivalent to prove that X \ {z} is open. For each a € X \ {z}, by Definition of
the set operation, we know that a # x and hence by Definition of Hausdorff space, we have a pair of disjoint open sets U,
and V, such that

a€U, and x € V,.

We denote W := Uan\{w} U,. Then W is open by Definition of topological space and each U, is open and it is obviously
that X \ {#} € W. Now for each a € X \ {z}, z € V, and U, NV, = @ implies that = ¢ U,, which says that U, C X \ {z}
and hence we have W C X \ {z}. So far we proved that X \ {z} = W is open.

O

Page 4 of 5
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JQuestion 4.5: Let
F={UU((VNQ):U,YV open in Euclidean topology R}

Prove that F is a topology on R which is Hausdorff but not regular.

Proof. (i) By Definition of F and Definition of topology spaces, we have
g=oU@NQ) e FandR=RU((©ZNQ) € F.
(ii) We choose a collection {4;};c; C F randomly. By Definition of F, for each i € I, we can write in the following form
Ai=U;U(V;NQ)
for some open sets U, V;. Then by De Morgan’s law and Definition of topology spaces

Uier 4i =Uic, Ui U (Vin Q) = (Ui, U) U (Ui, Vi) NQ) € F

(iii) We choose a finite number Ay,---, A, € F randomly. By Definition of F, for each 1 < ¢ < n, we can write in the
following form

A =U; U (ViNnQ)

for some open sets U;, V;. Then by De Morgan’s law and Definition of topology spaces

n n

(A= EnQ = (U UV NQ) € F.

i=1 i=1
Now we prove (R, F) is Hausdorff. We choose z1,z2 € R with 1 # x2 randomly. We consider
B(z1,7) = B(z1,7) U (B(z1,7) NQ) € F and B(xa,7) = B(za,r) U (B(z2,7r) NQ) € F

due to Definition of F and B(z1,r), B(z2,7) open in R where we denote r := 1|21 — 25| > 0 by Definition of norms. There
is no doubt that x; € B(x1,r) and xo € B(xe,r). If 2 € B(x1,7) N B(x2,7), then by the triangle inequality, we have

|21 — xo| <|z1 — 2| + |22 — 2] < 2r = %|x1 — 9|
which gives us a perfect contradiction. So we proved that B(x1,7) N B(z2,7) = @ and due to (c)Definition4.1.4, we proved
that F is Hausdorff. We disprove F is regular by counterexample. We consider A := Q°. Now Q = N (RN Q) € F and
we proved that F is a topology. So A is closed. We consider 1 € Q. We choose By, By € F randomly with By N By = @.
Then by Definition of F, we can write By = U; U (V1 N Q) and By = Uy U (Vo N Q) for some open sets Uy, Uz, V1 and V5. If

1 ¢ By, then we are done. So we consider the case 1 € B;. (we need to argue it in more explicit way)
O
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Due: Fridays, 4 Feb 2022, by 11:59 p.m. CDT

Question 4.8: Let X be a topological space, A C X be closed, and g € C(A) with g =0 on OA. Prove that
G(z) = g(z) for z € A and G(z) = 0 otherwise,

is continuous on X.

Proof. We choose K C R closed randomly. By Definition 4.1.5 and G=}(X \ K) = X \ G7}(K), it is equivalent to prove
that G=1(K) closed in X. We prove this in 2 cases. We consider the first case, i.e. 0 € K. Then by Definition of G, we
have G™1(K) = ¢~} (K) U (int(A))°. This is true since for any z € G~Y(K), if z € A, then z € g7 1(K), if z ¢ A, then
either z € A° or x € A and (intA)¢ = (A° U dA) and since for any z € A°UJAU g 1(K), if z € A, then G(z) = 0 and
hence z € G71(K) since 0 € K, if z € dA, then x € G~(K) since 0 € K and definition of g and if z € g~ (K), then
g(z) € K and x € A implies that 2 € G™1(K). Now since K is closed and g € C(A), by Definition 4.1.5, we have g~ (K)
is closed in A. By Definition of relative topologies, we know ¢g~1(K) = AN E for some E closed in X. Then by Definition
of topologies, we know G~!(K) is closed. We consider the second case, i.e. 0 ¢ K. Since 0 ¢ K implies that G~ (K) C A4,
G Y K) = g 1(K) and we proved that g~1(K) is closed in X. So we are done.

O
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Question 4.9: Let X be a topological space, Y be a Hausdorff space, and f,g € C(X,Y). Prove that
(a) {x € X : f(x) = g(x)} is closed, and
(b) If f = g on a dense subset of X, then f =g on X.

Proof. (a) We denote A := {x € X : f(x) = g(x)}. We choose a sequence z; € A with z; — x for some z € X. Now
by Definition of closeness, it is equivalent to prove that x € A. By Definition of A, it is equivalent to prove that
f(z) = g(z). Since z € A, by Definition of A, we have f(xr) = g(x)) which implies that f(xy) — g(xr) = 0. Since
C(X,Y) is an algebra implying that f — g € C(X,Y’), we have

fl@) —g(z) = (f = g)(x) = lim (f(zx) - g(ar)) =0

which implies that f(z) = g(z) immediately.

(b) We denote A be such a dense subset of X such that f = g on A. We choose € X randomly. By Definition of dense

subsets, we can choose a sequence zp € A such that klim x = x. Now by the condition f,g € C(X,Y) we have
—00

f(@) —g(z) = lim f(zy) — lim g(zg) = lim (f(zx) — g(zx)) =0
k—o0 k— o0 k—o0
where the last equality is due to f = g on A, which implies that f(z) = g(x). But such z € X was chosen randomly.

So we proved that f =g on X.
O

Comment: Where do we need the Hausdorff condition posed on the target space?

Page 2 of 5
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Question 4.10: Let (R, F.) and (R, F.) be the cofinite and Euclidean topological spaces on R, respectively. Prove ‘
that every continuous function f : (R, F.) — (R, F.) is a constant function.

Proof. We choose a continuous function f : (R, F.) — (R,F.). We argue it by contradiction and suppose that f is not
constant, then we assume f has at least 2 values p and ¢ with p # ¢. Since R is Hausdorff, we can choose two disjoint open
sets U and V such that p € U, ¢ € V and UNV = @. Since f is continuity, by Definition 4.1.5, we have f~1(U) and f~1(V)
open and f~Y(U)N f~1(V) = @ by Definition of preimages. Then we have

R\ fTHO)URNfTHV) =R\ (fTHU)NfH(V)) =R. (1)

Now by Definition of confinite topologies and the union of finite sets is still finite, R\ f~1(U)UR\ f~1(V) is finite and this
contradicts with that R is infinite due to (1).
O

Page 3 of 5
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JQuestion 4.11: Let X be a Hausdorff space. Prove that the following statements are equivalent.
(i) X is normal
(if) For any disjoint closed sets A, B, there exists a f € C(X,[0,1]) such that f =0 on A and f =1 on B.
(iii) Any f € C(A, [a,b]) with A closed can be extended to a function F € C(X, [a,b]) such that F|A = J.

Proof. We finish this proof by the following process

()
/N

(i) —> (iii)

We prove (i) = (ii) by Urysohn’s Lemma. We choose closed sets A, B C X with AN B = & randomly. Since X is normal,
by Theorem 4.1.10, we have f € C(X,]0,1]) such that f =0 on A and f =1 on B.

We prove (iii) = (i). We choose A, B closed in X with AN B = @. We define f; : A — [0,1] on f1(z) = 0 and define
f2: B —[0,1] on fa(x) = 1. Since any constant function is continuous, by the given condition, we have F; € C(X,[0,1])
and Fy € C(X,[0,1]) such that F; |A = f1 and F2|B = fo. We define F' := F; + F5 and there is no doubt that F' is continuous

since the sum of continuous functions is still continuous. Now V := F~1([0, 1)) is open in X and A C F~([0, 1)) since F is
continuous. Similarly U := F~((2,1]) is open in X and B C F~((2,1]). There is no doubt that VNU = @. Then by Defini-
tion 4.1.4(e), we proved that X is normal since such A, B is chosen randomly and the Hausdorff condition is stronger than T;.

We prove (ii) = (2i¢). (details needed to be done)
O
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< Question 4.12: Prove that a topological space X is Hausdorff if and only if the limit of any convergent net is unique.)

Proof. First we prove = direction. We choose a net A — X;a — x, with z, —  as a — oo for some z € X. We argue
this by contradiction and suppose z,y € X with x # y such that z, — = and y, — y. Since X is Hausdorff, by Definition
4.1.4, we have disjoint open sets U,V such that x € U and y € V. Since x4 — x, by Definition of —, there exists § € A
such that for any a € A

Ba=uzx, €U (2)
Similarly we can find v € A such that for any o € A
yXa=x,€V. (3)

Then by Definition 4.2.1 and Definition 4.2.2, we have § € A such that 8 < 0 and v < §. Then by (1) and (2), we have
zseUNV

which immediately implies that U NV # @. This contradicts with our choice of U and V.
Second we prove < direction. We argue this by contradiction and by Definition 4.1.4, we can choose points z,y € X with
x # y such that for all open sets U,V with x € U and y € V, U NV # &. We define the directed set

A={(U,V):U,V areopenand x € U,y € V}
with the partial order
(U1, V1) 2 (U2, V2) & Ur 2 Uz and Vi D Vs

The checking that this is a well-defined directed set is left for readers. The only interesting part is (iii) in Definition 4.2.1.
By axiom of choice, we can choose a net (z(,v))w,v)ea in X such that for each (U,V) € A, z@,vy € UNV. Now by the
condition, it is enough to prove that () — x and x(,y) — y. Now for any open set Uy of X with z € Uy, we have by
Definition 4.2.1

(U0, X) = (U, V) = a@wvy) €UNV CU C U,

which implies that z(yy) — 2 by Definition of —. Similarly we can prove that x(yy) — y and hence we achieve a
contradiction. O

Page 5 of 5
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Due: Fridays, 11 Feb 2022, by 11:59 p.m. CDT

<Questi0n 4.14: Prove that every sequentially compact space is countably compact. )

Proof. We denote X be a sequentially compact space. We denote {4;};en be a countable cover of X. We argue this by
contradiction. Then by Definition 4.3.14, for each n € X, A; U---U A, C X. Then we have a sequence z,, € X such that

ZTn & Ay, for all m < n. (1)

Then by Definition 4.3.14, we have a convergent sequence x,, with a limit z € X. By Definition of covers, we have some
I € N such that z € 4;. Since x,,, — = as p — 0o, we can choose [ € N such that z,,, € A;. By Definition of subsequences,
we have [ < n;. So by (1), we have z,,, ¢ A;. So far we got a contradiction and hence we finished the proof.

O
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Question 4.15: Let X be a topological space and E C X. Prove that a set K C E is relatively compact in F if and \
only if it is compact in X.

Proof. We want to prove that K is relatively compact in E implies that K is compact in X. We choose an open cover
{Ui}ier of K. Then by Definition 4.3.1 we have

K c|Ju
iel
Then we have by K C E and De morgan’s law
K=KnEcEn|JU=|J(EnU)
i€l iel
Then by Definition 4.1.2, 4.3.1 and 4.3.2, there exists finite number 1, - - 4, such that

n n

K C U(EQU“) C UU”
=1 =1

Then by Definition 4.3.2, we proved that K is compact in X.

We want to prove that K is compact in X implies that K is relatively compact in E. We choose an open cover {A;};cr of

K in E. Then By Definition 4.3.1 we have

K C U A;
il
and by Definition 4.1.2, we have for each 4
A, =UnNE

for some U; open in X. Then we have by De morgan’s law

Kcl|Juine)y=En{JU: c U

iel icl i€l
Then by Definition 4.3.2, we have finite number i1, -- - , 4, such that
n
K cl|Ju,

=1

Then we have by K C E and De morgan’s law

=

Ui)NE=|]JU;,nE)=
1 =1 l

=

K=KnEc( A;

1

Then by Definition 4.3.2, we proved that K is relatively compact in F since A;, open in F. [

Page 2 of 6
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Question 4.17: Let X be a locally compact Hausdorff space and K C X be compact, and U D K be a precompact \
open set.

(a) Prove that every f € C(K) can be extended to a function g € C(U) such that g =0 on U \ U.
(b) Prove that every f € C(K) can be extended to a function F' € C(X) such that F' =0 on U°.
Proof. (a) We choose f € C(K) randomly. Since X is a locally compact Hausdorff space and K compact, U open with
K C U, by Theorem 4.4.4, we have h € C(X,[0,1]) C C(X) such that h =1 on K and h = 0 on X \ A for some

compact set A with A C U. Since X is a locally compact Hausdorff space with K compact, there exists F' € C(K)
with F’K = f on K. There is no doubt hF € C(X) since C(X) is an algebra. We denote g := hF‘ﬁ. There is no

doubt g € C(U) since the restriction of continuous maps is still continuous. Now it remains to prove that
g=fonKandg=0onU\U

Now for z € K, g(z) = h(x)F(x) = 1- f(z) by our choice of h and F'. Now it remains to prove g = hF'|; = 0 on
U\U. Since h =0 on X \ A, it is enough to prove U \ U C X \ A by Definition of restriction of functions. But this is
so obviously since A C U implies X \ U C X \ A and U open implies that U\ U =0U C X \ U

(b) We choose f € C(K) randomly. By (a), we have g € C(U) such that g = 0 on U. Now we define
G(r) = g(x) for z € U and G(x) = 0 otherwise.

Then by Question 4.8 with U closed, we have G € C(X). Now it is enough to prove that G = 0 on X \ U. Since U is
open, by Definition 4.1.1, we have

X=UuoUuux\U.
Then X \U =0UUX\U. Forz € X\U, if x € 90U, G(x) = g(z) = 0 since OU = U and if z € X \ U, G(z) =0 by

Definition of G. So we proved that G is the desired extension.
O
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Question 4.18: (One-point compactification.) Let (X, F) be a non-compact topological space. Pick any element
not in X and denote it by co. Define

X*=XU{oo}, F*=FU{X\ KU{oo}: K C X is compact in (X,F) and X \ K € F}
Prove that

(a) F* is a topology on X* such that (X, F) is the relative topological space of (X*, F*) and

\ (b) (X*,F*) is a compact space.

Proof. (a) First we prove that 7* is a topology on X*.

(i) @ € F* by Definition 4.1.1 and Definition of F*. X* = X \ @ U {cc} € F* by Definition of F* and Definition
4.1.1 with & compact in (X, F) and X \ @ € F.
(ii) We choose A; € F* with ¢ € I randomly. We denote A := U A;. We prove A € F* in two separate cases. In
iel
case one, we consider there exists j € I such that co € A;. Then by Definition of F*, A; = X \ K, U {oc0} for
some K; C X compact. Then we find

A= (A\{oo}) U {oo} = X'\ KU {oo}

where we denote X \ K := A\ {oo} for some K C X. Now by Definition of F*, it remains to show that K is
compact. But from Definition of A and with little set operations, we find that K C K;. Now since the subset of
a compact set is still compact, we are done in this case. In case two, we consider for any ¢ € I, co ¢ A;. Then by
Definition of F*, we know that A; € F for any ¢ € I. Since F is a topology, by definition of topologies, there is
no doubt A € F and hence A € F*.

n

(iii) We choose Ay, -+, A, € F* randomly. We denote A := ﬂ A;. We prove A € F* in separate cases. In case

i=1
one, we consider that for all 1 < ¢ < n, co € A;. Then by Definition of F*, we have that for each 1 < i < n,
A; =X\ K; U{oo} for some K; C X compact. Then after little set operations, we have

n

A=X\(JFK)u{}.

i=1

Now by Definition of F*, it remains to prove that [ J;_, K; is compact. And this is true since the finite union of
compacts sets is still compact. So we are done with the case one. Then by Definition of F*, we have A; € F. In
case two, we consider that there exists some 1 < j < n such that co ¢ A;. We denote I :={1<i<n:oo¢ A4;}
and J:={1<i<n:oo€ A;}. Then fori e J, we write A; = X \ K; U {oo} for some K; C X compact. Then

we have
A= (4N () X\ K.

iel ieJ
sorry I dont know how to argue it furthermore A € F without condition that X \ K; € F

Now we want to prove that (X, F) is the relatively topology space of (X*, F*). There is no doubt that X C X*. We
choose U € F randomly. Now by Definition 4.1.2, it is enough to prove that U = X NV for some V € F*. But we
have

U=UnX

since U C X and U € F* by Definition of F* with U € F.
(b) We choose A; € F* be an open cover of X*. Then by Definition 4.3.1, we have

x*=J4.

iel
Since oo € X*, we have oo € A, for some p € I. Then by Definition of F*, we have
A, =X\ KU{c0}

for some K compact in (X, F). We denote J := {i € I : oo € A;}. Then we have

Kcx clJA\{=}u | 4

=r ieI\J

Page 4 of 6



Yunting (ao Homework o5 — Math 0520

By Definition of F* and Definition 4.3.1, we know that {A4; \ {0} : 4 € JyU{A; : i € I\ J} is an open cover of K.
Then by Definition 4.3.2, we have

n p
K c A \{oc}u ] 4.
=1 =1
for some i1, - ,i, € J and some iy,---,4, € I\ J. Then we have
n p
X*=X\KU{oco} UK =A,U|JA4; \{oc}U [ ] 4.
i=1 =1

By Definition 4.3.1, we found an finite subcover of X* and hence by Definition 4.3.2, we proved the result.
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Question 4.19: Keeping notations in Question 4.18, prove that the space X* is Hausdorff if and only if X is locally \
compact and Hausdorff.

Proof. First we want to prove that X* is Hausdorff implies that X is locally compact and Hausdorff.

We prove that X is Hausdorff. We choose z,y € X with x # y. By Question 4.18, we have x,y € X* with x # y. Since
X* is Hausdorff, by Definition 4.1.4, we have U,V € F* with z € U and y € V and U NV = &. by Question 4.19, we have
U,V € F where x # oo and y # co. Then By Definition 4.1.4,

We prove that X is locally compact. We choose x € X randomly. By Question 4.18, we know that x # co. Also we have
x,00 € X*. Since X* is Hausdorff, by Definition 4.1.4, we have U,V € F* with x € U , co € V and U NV = &. Now since
oo € V, by Definition of F*, we have V = X \ K U {oo} for some K compact in X and since co € V with UNV = &, by
Definition of F*, we have U € F. Now by Definition 4.4.1, it is enough to prove that

UCK.
which is equivalent to X \ K C X \ U and this is proved quickly by U NV = & implying V. C X \U and X \ K C V.

Second we want to prove that X is locally compact and Hausdorff implies that X* is Hausdorff. We choose x,y € X* with
x #y. If x,y € X, then since X is Hausdorff, by Definition 4.1.4, we have xt €e U, y € V and UNV = & for some U,V € F.
Then by Definition of F*, we have U,V € F*. Then by Definition 4.1.4, we proved that X* is Hausdorff. If one of y, x is oo,
with loss of generality, we assume z € X and y = oco. Since X is locally compact, by Definition 4.4.1, we have K compact
in X and U € F such that x € U C K. Since X is locally compact Hausdorff, with K compact and X open, we have a
precompact set V such that

UcCKCcCV,

where we denote V' to be the closure of V' in (X, F), and hence X \ V € F, which implies that U N X \ V = @ and hence
UN (X \VU{occ}) =@. Since V is precompact, by Definition 4.3.2 we know V' is compact and hence by Definition of F*,
U, X\ VU{o0} € F*. By Definition 4.1.4, we immediately proved that X* is Hausdorff. O
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circle S! in R?

( Question 4.21: Prove that in Euclidean topology, the one-point compactification of R is homeomorphic to the unit J

Proof. Using the idea of stereographic projection and moving up the unit circle, we consider the following picture

y axis

X axis

We denote S := {(z,y) € R? : 22 + (y — 1)> = 1}. With the knowledge of plane geometry, we consider the map
f: St — R* defined by (z,y) — % for (z,y) # (0,2) and (z,y) + oo. There is no doubt that this is well-define
since (z,y) # (0,2) implies that y # 2. There is nothing needed to prove that f is injective since we can solve equations
224+ —1)2 =122+ (y2—1)> =1 and 227””;1 = 22;'”52 by parameterization (x,y) by (cos¢,1 + sin¢) . Also the blue
line indicates its subjectivity perfectly. So far we proved that f is bijective. There is nothing to doubt that S! is closed
and bounded since the boundary is always is closed as S' = 9{(z,y) € R? : 22 + (y — 1)? < 1} = 9B((0,1),1) and
St c{(z,y) e R?: 22+ (y—1)? < 2} = B((0,1),2). Then by Heine-Borel theorem, we have S* is compact since we are only
interested in Euclidean topology. Since R is locally compact Hausdorff as x € B(x,1) C B(x,1), by Alexandroff Theorem,
we know that R* is Hausdorff. Now by Proposition 4.3.12, it is enough to prove that f is continuous, i.e. the preimage
of open sets is still open. For U open in R*, by Definition 4.21, we have either U C R open in R or U = R\ K U {o0}
for some K compact in R. In the first case f~1(U) = g~ }(U) where g := f’sl\{(o 2} and it is open since it is made by
elementary functions and elementary functions are always continuous. In the second case by elementary set operations, we
have f~1(U) = S\ f~1(K)U{(0,2)}. Then we have by De morgan’s law S*\ f~1(U) = f~1{(K)n ST\ {(0,2)} = f~H(K).
Now by Definition 4.1.1, it is enough to prove that

C = f~YK) closed in S*.

. We choose zj, € C with x;, — z for some z € S*. Now by property of closeness, it is enough to prove that
zeC ie f(x)eK

By our choice of xj and the continuity of f, we have f(zy) € K and f(x) — f(x) for some f(z) € R*. Since K is compact
in R, by sequentially compactness, we have a convergent subsequence f(xy,) with f(xy,) — y for some y € R. By the
uniqueness of the limit in the Hausdorff space R*, we must have y = f(x) € R. Now K is closed in R. We must have
f(z) € K.

O
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Question 4.22: Let U be an open subset of a compact Hausdorff space X and U* be the one-point compactification \
of U. Prove that the function f : X — U* defined by

f(z) =z for z € U and f(x) =00 for z € X \U

is continuous.

Proof. We denote (U*, F*) be the one-point compactification of U. By Definition 4.4.8 and Definition 4.1.2, we have
U*=UU{o0}and F*=FU{U\ KU {oo}: K CU is compact and U \ K € F}.

where we denote F := {V C U : V open in X}. We choose V € F* randomly. By Definition of continuous maps, it is
enough to prove that f~1(V) is open in X. If V € F*, then by Definition of F*, we have

either V.€ For V=U\ K U {o0}

for some K C U compact in U and X \ K € F. In the first case, by Definition of F, we have V' C U and V open in X.Then
by Definition of f, f~1(V) =V open in X. In the second case, we write

V=U\KU/{oo}

By Definition 4.1,1, it is enough to prove that X \ f=(V) is closed in X. Since K is compact in X and X is Hausdorff, by
Proposition 4.3.7, we have K is closed in X. So now it is enough to prove that

X\fH(V)=K
which is equivalent to show that
Knf'(Vy=gand fF/Y{UV)UK=X

Now by Definition of f and K C U, if z € KN f~1(V), then z € K and x = f(z) € U\ K U {oo} implying f(z) € U\ K,
which gives us a perfect contradiction. Now it remains to prove that X C f~1(V) U K, which is equivalent to prove the
statement for x € X

re f'(V)orze K
which is equivalent to prove the statement for z € X \ K
flz)eV
by Definition of V', which is equivalent to prove the statement for x € X \ K,
f(2) €U\K or f(z) = o

Given z € X \ K, if z € U, then by Definition of f, x = f(x) e UNX\ K =U\ K, if z € X \ U, then by Definition of f,
f(x) = 0. O
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Question 4.23: (The Stone-Weierstrass Theorem for noncompact spaces.) Let X be a noncompact locally compact
Hausdorff space, and A be a subalgebra of Cy(X,R) that separates points. Prove that either A = Cy(X,R) or
A={f € Co(X,R): f(zo) =0} for some z¢ € X. (Hint: If there is an x( such that f(zo) = 0 for all f € A), then
consider the one-point compactification of X \ {z¢} with co = 2. Otherwise consider the one-point compactification
of X.)

Proof. We prove the statement
either A = Co(X,R) or A= {f € Co(X,R) : f(xg) = 0}.

We prove this statement by considering it in two separate cases. In the first case, we consider f(z¢) = 0 for all f € A for
some xg € X. We consider the one-point compactification of X \ {z¢} with oo := xy. By Definition 4.4.8, we have that Y*
is compact where Y := X \ {zo}. Before we use the Stone-Weierstrass Theorem for compact Hausdorff spaces, i.e. Corollary
4.5.7, we need to check that A is a subalgebra of C'(X). There is no doubt that A C C(Y™*). Also there is no doubt that A
is a subalgebra since Co(X,R) C C(Y™*). As a set, X is identical to Y*, there is doubt that A separates points Y* by the
given condition. Now by Corollary 4.5.7, we have

either cl(A) = C(Y™*) or there is an yo € Y* such that cl(A) = {f € C(Y*) : f(yo) = 0}
Then immediately we have
either A = Co(Y*) or A= {f € Co(Y*) : f(yo) = 0} for some yp € X.

where A denotes the closure in the subspace since Co(Y*,R) and {f € Co(Y*,R) : f(yo) = 0} denote the subspace of C(Y*)
and {f € C(Y*,R) : f(yo) = 0} respectively. Now since as a set, X is identical to Y*, we have

either A = Co(X,R) or A= {f € Co(X,R): f(y0) =0)}

Now we consider the second case. We denote X* be the one-compactification of X. Since f € Cy(X,R) be extended to a
function in C'(X*,R*) in the following way,

f:X* = R* defined by f(z) = f(z) on X and f(c0) = 0.

We can embed A into C(X™*) as a subset. There is no doubt that A is still an sub algebra of C(X*) by the given condition.
Now we need to check A separates points of X*. We choose z,y € X* with x # y randomly. If x,y € X, by the condition
that A separates points, we can find that f € A such that f(x) # f(y). If £ = co, we can choose f € A such that f(y) # 0
since we are in the second case. Then By Corollary 4.5.7, we have

either A = C(X*) or there is an yg € X* such that A= {f € C(X*): f(yo) = 0}

Obviously there are bijections between the set C(X*) and Co(X,R) and the set {f € C(X*) : f(yo) = 0} and {f €
Co(X,R) : f(yo) = 0} and hence there are the identical topological spaces. So we proved that statement

either A = Co(X,R) or A= {f € Co(X,R) : f(yo) = 0} for some yo € X*.
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Question 4.24: Let X and Y be compact Hausdorff spaces. and assume that X x Y is compact Prove that
A={>" gi@hiw) : 9: € C(X),h; € C(¥),n €N}
i=1
is dense in C'(X x Y') with the uniform topology.

Proof. We want to use Corollary 4.5.7 to prove the result. The X x Y is compact is given by the condition. There is almost
nothing to prove that X x Y is Hausdorff and this is given by the product topology. We also have the constant one function
in A and this is because

L(z)1(y) € A

where (X 32— 1€R)eC(X)and (Y 5y— 1€ R) e CY). For any (z1,y1), (z2,92) € X x Y with (z1,y1) # (x2,¥2),
we have 1 # x9 or 9 # yo and without loss of generality, we assume that x; # x2. Since P(X) separates C(X), we have
p1,p2 € P(X) such that p;(x1) # p2(x2). And hence pi(x1)1(y1) # pa(x2)1(y2) where 1 denotes the constant function in
C(Y). To achieve the result

A=0(X)

,by Theorem 4.5.6, it only remains to show that A is a subalgebra. First we want to prove that A is a subalgebra. First, A
is a vector subspace and there is no doubt it is closed under addition and scalar production. We need to check that A is
closed under production. We choose a,b € A randomly. By Definition of A, we have

a(z,y) = Zgz(x)hz(y)
i=1
for some g; € C(X) and some h; € C(Y) and n € N, also we have
b(a,y) = gi(x)hi(y)
i=1

for some g; € C(X) and some A} € C(Y) and m € N. Then we have for (z,y) € X x Y

m n m

a(z,y)b(z,y) =Y gi(@)hi(y) D i@ ) =YY gi(x)g)(x)hi(y)h(y) =
i=1 i=1

- j= i=1j=1
91(@)gh (W) (@)Bs (y) + -+ + g (2) g (2) B (y) i ()
and then there is no doubt that ab € A since both C(X) and C(Y) are an algebra.
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Question 4.25: Let g € C([a,b]) be strictly increasing, a < b in R. Prove that for any f € C([a,b]) and for any
€ > 0, there are ag, a1, - ,a, € R such that

gfnﬁ|f(x)‘*(ao4falg($)4*a292($)*F"'+*an9"(x)N <e

Proof. We denote
B:= {1795927"'}

and denote
A = span(B).

We prove that A is a subalgebra of C([0,1],R). From Definition of span, there is no doubt that A is a subspace of C(a, b])
over R. Now it remains to prove that A is closed under multiplication. We choose a,b € A randomly. By Definition of span,
we can write

a:=ag+arg' + asg® +azg® + - + ang” and b:= by + big' + bag® + b3g® + -+ + bng™

for some n,m € N, aqg,--- ,a, € R and some by, - ,b,, € R. Then we have
ab = aObO i anbmgner S span(B)(z -A)

since (R, -) is a multiplicative group. But a,b € A was chosen randomly. We proved that A is a subalgebra of C([a, b]) since
it is itself an algebra over R. Also the constant function ([0,1] > z— 1€ R)=1-1 € A. For any z,y € [a,b] with x # y, by
the monotonicity of g, g(x) # g(y). Also g € B C A. We proved that A separates points of [a,b]. Furthermore, since [a, ]
is compact Hausdorff space, by Stone-Weierstrass theorem, we have

A= C([a,b],R).
We choose f € C([a,b]) and € > 0 randomly. By Definition of dense and the norm space, we have
B(f,e) = {h e C(la,b) : h— f| < e} NA#£ @
which says that we can choose h € A such that ||h — f|| < e. Then by Definition of span, we can write
h=ao+aig+ -+ ang"

for some n € N and some ag, - - ,a, € R. Furthermore, by definition of sup norm and applying the extreme value theorem
to h — f on [0,1] we have

¢ > = 71= gy W) = SO = g V@) = (ot aug) 4o+ ang@)

which says that we finish the proof since such f € C([a,b]) and € > 0 were both chosen randomly. O
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Question 5.1: Let X be a normed space over R. Prove that the vector addition, « : X X X — X; (z,y) = 2 +vy,
the multiplication by a scalar, 5: R x X — X; (¢,x) — cz, and the norm, n : X — R;z — ||z, are all continuous. y

Proof. We choose (a,b) € X x Y randomly. We choose (z;,y;) — (a,b) in the product space X x X. We are required
to prove that a(z;,y;) — a(a,b) in the space X, which is equivalent to prove that ||a(z;,y;) — a(a,b)|| — 0 since the
topology is induced by the norm. Actually we have by triangle inequalities

(i, yi) — e, D) = [|2i + yi — a = bl < ||li — af| + [ly: — ]| (1)

Since (x;,y;) — (a,b), by Definition of product spaces, we have z; — a and y; — b in X which implies that ||z; —a| — 0
and ||y; — b|| — 0 due to the fact the topology on X is induced by the norm. Finally after pushing both sides of (1) into
oo, we proved « is continuous since (a,b) € X x Y was chosen randomly.

We choose (¢, z) € R x X randomly. We choose (¢;, x;) — (¢, 2) in the product space R x X. We are required to prove
that ||8(ci, ;) — B(c, z)|| = 0 in the space X, which is equivalent to prove that ||3(c;, ;) — B(c, x)|| — 0 since the topology
is induced by the norm. Actually we have by triangle inequalities

18(ciszi) = Ble, o)l = lleswi — exl| = [leswi — cxi + cwi — cx|| <leiwi — cail| + [lews — ca|| = |ei = cf [@i]] + |ef || — =]
< ei = el max || + |ef [ — x|
€N
(2)
where max;en ||z;|| € R since the convergence sequence is bounded. Since (¢;,x;) — (¢, z), by Definition of product
spaces, we have ¢; — ¢ in R and z; — « in X which implies that |¢; — ¢| — 0 and ||z; — z|| = 0 by Definition of normed

spaces. Finally after pushing both sides of (2) into co, we proved that § is continuous since (¢,z) € R x X was chosen
randomly.

We choose = € X randomly. We choose z; — x in the space X. Now we have

lim [n(w:) = n(@)| = Jim [llzi] = 2l < lim 2 o]l = | Jim @; ~ af = 2= o] = o] =0
1—> 00 71— 00 71— 00 1—r 00
where the equality is due to || - || is continuous, the second is by our choice of x; and the last is due to properties of norm

and the first inequality is due to triangles inequalities, which implies that n(z;) — n(z) in R by the fact (R,|-]) is a
normed space.
O
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<’ Question 5.2: Let X be a normed space. Prove that the closure of a subspace Y is a subspace of X. )

Proof. By Definition of closure, we have Y = {y € X : y = lim y;,y; € Y for each i € N}. Now by Definition of linear
11— 00

subspaces, it is closed to check it is closed under the addition and the scalar product. We choose a,b € Y randomly.
Then we can write a = hm a; and b = hm b; for a;,b; € Y. By the product space, we have (a;,b;) — (a,b) and hence

by Question 5.1, we have a —|— b= hm (al —|— b;). Since Y is a subspace of X, a;,b; € Y implies that a; +b; € Y. So by
Definition of Y, we have a + b € Y. We choose a € Y and ¢ € R randomly. Then we can write a = lim a; for a; € Y.

1—00

Then by Definition of product spaces, we have (¢,a;) — (¢,a) and hence by Question 5.1, we have ca = lim ca;. Since
1—>00

Y is a subspace of X over R, ¢ € R and a; € Y implies that ca; € Y. So by Definition of Y, we have ca € Y.
O
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fQu

estion 5.4: Let X be a n—dimensional vector space over R and {ej,---,e,} be a basis for X. For any h

r=aie; + -+ ane, € X, defined

Jlloe = max|as)

Prove the following statements.
(a.) || - lloo is @ norm on X.

(b.) The map ¢ : (R™, |- ) = (X,| - lc) defined by

(}5((0,1, T aan)) =aie1 + -+ aney

is continuous, where || - || on R™ is the Euclidean norm.

(c.) Theset K = {z € X : ||z|ls0 = 1} is compact in (X, || - [|o0). (Hint:p~!(K) is compact in R™.)

(d.) All norms on a finite dimensional vector space over R are equivalent. )
Proof. (a) By Definition 5.1.1, we are going to check that
(i) There is no doubt that || - ||cc : X — [0, 00) is a well-defined map.
(ii) ||z]|co = max;|a;| = 0 iff a; = 0 for each i iff z = 0 by Definition of basis and Definition of max.
(iii) Now for any z,y = bye; +- - -+ bpe, € X, which implies that z+y = (a1 + b1, -+ , an +by), we have by triangle
inequalities and Definition of max
2+ ylloo = mas a; + bi] < max fas| + mae o] = 12l + ]
(iv) For ¢ € R, we have cx = (ca1,- - ,cay) by Definition of linear spaces and Definition of basis. So ||cz|e =
max |cai| = |¢[max |ai| = cf[|z[|oc

¢ is a linear map since ¢((a1,- - ,an) + (b1,-+ ,bn)) = arer + -+ + ane, = ¢((a1 + b1, ,a, + b,)) and
cd((ar, -+ ,an)) = (car)er + -+ + (can)en, = ¢((cay, -+ ,cay)) for any (a1, - ,ay), (b1, - ,b,) € R" and ¢ € R.
Now by Proposition 5.2.2, it is enough to prove that ¢ is continuous at (0,--- ,0) € R™. We choose (agi)7 e ,agf)) —
(0,---,0) in R™. Then we have

I9((al”, 1 af2)) = B0, ODlloo = larel? + - + anel? oo = max|af”] < /(af)2 + - + (all))2 =
(@, al?) = (0, ,0)]
and we immediately proved the result after pushing both sides to oco.

Since ¢ is continuous, by the fact that continuous maps send compact sets to compact sets, it is enough to prove
that

K = ¢(¢71(K))
There is almost nothing to prove that K C ¢(¢~!(K)) and almost nothing to prove that K C ¢(¢~!(K)) either.

We denote n := the dimensional of X for some n € N. We choose a set {e1, - ,e,} to be a basis for X and we
are only interested in the finite dimensional real vector spaces, but there is almost no extra work for the complex
case. We denote (X, | - |1) and (X,| - |2) be norms on X. By the transitive property of equivalent norms, it is
enough to prove that (X, || - ||1) and (X, || - [|s) are equivalent. For simplicity, we denote || - || := | - ||1. We denote
C:=|le1]l+ -+ |len|| for some C € (0,00). For any x = z1e1 +-- -+ zne, € X, by the triangle inequality of norms
and properties of norms, we have

2]l = lz1er + -+ znen|| < |zalller]| +- - +lzallen]] < max fzjllles]| + - + max |zjlllen]| = Cllz]oo-
<j<n 1<j<n

We denote the identity map c¢: (X, - [|so) = (X, || - ||);  — 2 and there is almost nothing to prove that c is linear.
Then c is continuous by Proposition 5.2.2 and Definition 5.2.1. Since continuous maps send compact sets to compact

sets, by (c.), we know that ¢(K) := {x € X : ||z|lec = 1} is compact in (X, || - ||). Now since || -|| : K — [0,00)
is continuous by the extreme value theorem, we can denote ||a| := miII% ||z|| for some a € K. Now for any = € X,
BAS
_ Azl — 1 snlies — =l : ;
Hﬁ“m = Hi\lm = 1 implies that [j— € ¢(K) and hence ||| = ”;ﬁw > ||la|| implying that [|z| > ||a||||%]co-

So far we proved that for any x € X,
lallllzllee < llzll < Clj[|so-
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So by Definition 5.1.3, we finished the proof.
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" Question 5.5: Let X,Y be a normed spaces and X be finite dimensional. Prove that any linear operator h
T:X —Y is bounded. (Hint:Show that T is continuous at 0. See exercise 5.4.) y

Proof. We choose T : X — Y be a linear operator randomly. Since X, Y are both normed spaces, by Proposition 5.2.2, it is
enough to prove that 7" is continuous at 0. Since X is a finite dimensional space, by Definition of finite dimensional space,
we can choose a set of linear independent vectors x1,--- ,x, € X such that X = span{xy,---,x,} where n := dim(X)
for some n € N. We randomly choose a sequence y; € X such that y; — 0. Then for each j € N, we can write

g =2+ +ala,

for some agj), e ,ag) € C. Then by properties of limit, we have
0= lim y; = lim (ozgj)xl +-+aWe,) = lim (agj)xl) + -+ lim (@P2,) = (lim agj))xl + -+ (lim aV)z,
J—r0o0 J—00 J—00 J—00 J—00 J—00

(3)

The last equality is true since for each 1 < ¢ < n, we have by properties of norm and definition of the vector addition for
any j € N _ _ _ '
logz; - (lim af)aillx = oy” — lim af [l x
J—00 j—o0o

which immediately implies that after pushing j into oo,

ozgj)xi — ( lim ozgj))xi in X.
j—o0

From (3), by definition of a basis, we have that for each 1 <1i < n,

0= lim agj).
Jj—o0o

Furthermore, by Definition of linear operators and properties of limit, we have
lim T(y;) = lim T(agj)
j*}OO

j—o0

Ty 4+ -+ ag)xn) = (lim agj)T(xl)) + -+ (lim agj)T(xn))
j*}OO

J—0o0

= (lim o) T(21) + - + (lim af)T(w,) = 0-T(w1) + -+ 0 T(an) = 0
J—r00 J—o0

where the third equality is due to Lemma 0.1 O
Lemma 0.1. Let (X,] -||) be a norm space over C and x € X and o; € C be a convergent sequence with the limit o € C.
Prove that

a;r — ar in X

Proof. Left for readers. O
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LQuestion 5.6: Prove that any finite dimensional real normed vector space is a Banach space. (Hint: Exercise h

5.4.

) J
Proof. Firstly, we know that every real n-dimensional vector space is isomorphic to (R™,R). So it is enough to prove that
the normed space (R™, || - ||) is a Banach space. By Question 5.4 (d), we know that the topology on a finite dimensional

space is actually independent of equipped norms, so once we prove it is complete w.r.t a well-defined norm, it is complete
w.r.t any well-defined norms. That is to say we can study the topology of a finite dimensional space by equipping it with
a norm. By (a) of Question 5.4, it is enough to prove that (R™, || - |lo) is a Banach space. By Definition 5.1.2, it remains
to prove the completeness. We randomly choose a Cauchy sequence {ax}72, in (R™,] - |leo). For each k € N, we denote
ar = (ag), e ,a,(cn)) for some a,(cl), e ,a,(cn) € R due to Definition of the product of sets. Now by Question 5.4(a), we
have for each 1 < j < n, for any m,l € N, we have

08 — o’ < max [0 ~ a”| = lan — il
where the last inequality is due to a,, — a; = (afﬁ)7 e ,agf)) - (al(l)7 e ,al(")) = (a%) - al(l), e ,aS,?) — al(")), which says
that for each 1 < j < n, the real sequence {afj)},;“;l is a Cauchy sequence in the normed space (R, |- |). Then by its
completeness, we have a¥) € R such that a,(j) — a¥ in R for each 1 < j < n. We denote a = (a(l), e ,a(”)). There is
no doubt that a € R™. For less confusion, we denote || - || := || - ||co. Now it remains to prove that klim llar — a|| = 0. For
— 00

each k € N, we have
lax — al| = max{|a{” —a®|:1<p < n} = o) —alPo)]

where we denote pg := the index which value is the maximum of the set {\a}f ) aP)| 11 < p < n} and the second equal-
ity is due to the definition of max and the set is finite, which immediately implies that after pushing & into oo,

llax —al =0
since 1 < pg < n. O

Remark 0.2. The argument can be rehearsed for a finite-dimensional complex normed space.
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Homework 6 — Math 5323 h
Due: Fridays, 4 Mar 2022, by 11:59 p.m. CDT )

" Question 5.7: Let X be a Banach space. h

(a) Prove that for any R € L(X, X) with ||R|| <1, >;°, R" converges in L(X, X) and I — R is invertible with
I-R)'=XZ,R"

(b) Prove that the set of all invertible operators in L(X, X) is open by showing that if T" is invertible and

1
I8 =Tl < by

then S is invertible. (Hint: ST~! =1 — (I — ST~!) and the given condition implies that || — ST1|| < 1.)

/

Proof.  (a) We choose R € L(X, X) with || R|| < 1 randomly. By Definition, we are required to prove that {>_" , R*}52,

is converges in L(X, X). Since X is Banach space, by Definition 5.1.2, we know that X is complete. Then by
Proposition 5.2.5., we know that L(X, X) is complete. Now by Definition of completeness, it is enough to prove

n
that {Z R'}°° | is Cauchy. We choose ¢ > 0 randomly. We are required to prove that there exists N € N such

i=0
that

<€ (1)

A = H Zn:Ri . iRi
=1 =1

for any n > m > N. But actually we have by triangle inequalities,

A= || 30 B S RIS Y IRE =] IRI| = | S IRE - Y IRE| = ane (2)
i=m-+1 i=m-+1 % t=m+1 i=m-+1 =1 =1
and we have that there exists N €¢ N
Qm,n <e€ (3)

o0
for any n > m > N by Definition of completeness since Z |R||" where |R|| < 1 is a geometric series and R is
i=1
complete. So combing (2) and (3), we proved (2) immediately. To complete the whole proof, it only remains to
prove (). We can prove it by induction on ¢ and the inductive step can be finished quickly by Remark 5.1 where
R':= Ro---0oR. By Definition of groups, we are required to prove that

7 terms

(I—R)oA=1 (4)
Ao(I-R)=1 (5)

where we denote A := Z R for some A € L(X,X). But actually we have by distributive law of composition of
i=0

maps and 4 € L(X, X)

(I-R)joA=(I—-R)o(I+R+R*+R*+--)=(I+R+R*+ R+ )—(R+R*+R*+.. . )=A—-(A-1)=1

which says that we proved (4) and similarly we can prove (5).

(b) We denote B :={T € L(X, X) : T is invertible } and we choose T' € B randomly. Since open balls form a basis for

the topology L(X,Y), by Definition of basis, we are required to find R > 0 such that for any S € L(X,Y) with
|S—T| < R, S is invertible. By Remark 5.2 and Definition L(X, X), we have 0 < ||T o T~ < ||T||[|T~*|| which
implies that ||[77!|| > 0. Now we prove that ﬁ is a desired R. We choose S € L(X, X) with ||S —T| < ﬁ
randomly. By Remark 5.2, we have ||[I — ST || = |T-Y(S - T)|| < [IT7H|IS = T| < 1 and hence by (a),
A= —(I—-ST1) !t =(ST1)! exists in L(X, X). By Definition of invertible maps, we have

Ao(SoT YY=Tand (SoT HoA=1



Yunting Gao Homework 6 — Math 5323

which implies that

(T7'oA)oS=T"1o(AoSoT HoT=Tand So(T " 1oA)=1
where we conjugate the first equation by T and here we note that the group (L(X,Y),0) is not commutative, which
implies that S=! = T~! o A exists in L(X,X). Since such S was chosen randomly, we proved that B is open in

L(X, X).
O
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" Question 5.8: Let X be a normed vector space and M be a proper closed subspace of X. Prove the following h
statements

a. ||z + M| =inf{||lz+y| :y e M}

is a norm on X/M.
b. For any € > 0, there exists an € X such that ||z|| =1 and ||z + M| > 1 —e.
c. The projection 7 : X — X /M defined by 7(z) = © + M has norm 1.

d. X/M is complete if X is complete. y

Proof. (a) We confirm that

(i)
(i)

(iii)

There is no doubt that the map X/M — [0,00);2 + M — inf{||lz + y| : y € M} is well defined since by
Definition of inf, it cannot achieve oco.

Now for any « € M, we have —z € M by Definition of subspaces, and hence ||z + M| = 0 by Definition of
inf and Definition 5.1.1 (a) since (X, | -||) is a normed space. Also if ||x + M| = 0, then by Definition of inf
and Definition of normed spaces, we have as sequence —y; € M such that —y; — x in X. By Definition of
closeness, we have x € M which immediately implies that « + M = 0 € X/M by Definition of quotient spaces.

We choose z + M,y + M € X/M randomly. By Definition of triangle, we are required to prove that
=] + Il <[]0+ lTylll-

By Definition of inf, we can choose a sequence a;, € M such that ||[z]|| = klim |z + ax|| and similarly we can
— 00

choose a sequence by € M such that ||[y]|| = klim |ly + bg]|- Then we have
bde el
2]l + Iyl = lim [Jz + all + lim [y +bell = lim [[(z +y) + (ax + b) || = [|[z + 9]
k— o0 k— o0 k—o0

where the first inequality is due to triangle inequalities and the second inequality is due to Definition stated
in the question where ay, by, € M implies that ar 4+ b, € M by Definition of subspaces

We choose ¢ € R and [z] € X/M randomly. We are required to prove that

lelllf ]| = [lex]| (6)

(6) holds obviously for ¢ = 0. We consider the other case. For any z € M, by Definition of inf, we have, since
2 € M by Definition of subspaces,

ez + 2|l = |elllz + 2| = |e|[x].
This immediately implies that
[[ex]l] = inf{[lcz + 2 : 2 € M} = |c[[|[]]]. (7)
For any z € M, by Definition of inf, since cz € M by Definition of subspaces, we have
inf{llex + 2| : 2 € M} < [ellla + 2]| = llew + 2] (8)

which immediately implies that

1
Hinf{”cm—i—zH cze€ M} <z + z|. (9)

This immediately implies that

L el < N1 (10)

] -
which implies that

Ie]ll < lel[]] (11)

Combing (11) and (7), we proved (6) immediately.
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(b)

We choose ¢ > 0 randomly. If ¢ > 1, there is nothing to prove since the norm is non negative function and for any
z € X \ {0} we have ”H%\IH = % = 1 by properties of norms. So we can consider the case 0 < € < 1. We are not

interested in the trivial case X/M = {0}. Now we choose z; € X \ M. Then % > |lz1 + M| in this case and
by Definition of inf, we can choose y € M such that

21 + M]|

[ =l tyl 2l + M (12)
Now we denote z := HZiZH where z; ¢ M implies that z; + y # 0 and consequently ||z1 + y|| # 0. Then we have
o+ M| = I = N2l = bl + 91l = bl 21—

where the second equality is by Definition of z1, the third is due to Definition of norms, the forth is due to y € M
and the last inequality is due to (12).

There is no doubt that the canonical map 7 is linear from X to X/M and by Definition of L(X, X/M), we are
required to prove

sup{|lz+ M| : z € X and ||z]| =1} =1 (13)

By (c), we have that for any € > 0, there exists z € M such that
sup{|lz+ M| :z€ X and ||z|| =1} > |z + M| >1—¢
by Definition of sup. This immediately implies that
sup{|lz+ M| :z€ X and ||z| =1} > |z + M| > 1 (14)
For any z € X with ||z|| = 1, we have
Iz 4+ M| < [lz+0] = [[2]| =1

by Definition of norms with 0 € M. By Definition of sup, this implies that

sup{|lz+ M| :z€ X and ||z]| =1} <1 (15)
Combing (14) and (15), we proved (13).
We randomly choose an absolutely convergent series >~ ; a, + M in X/M. Now by Theorem 5.1.5, it is equivalent

to prove that >~ ; a, + M converges. By Definition, we have

oo
> lan + M| < oc. (16)

n=1

Now for each n € N, by Definition of quotient norms, we have b,, € M such that
1
lan = bnll < flan + M| + 5. (17)

Combing (16) and (17), we have

Sl = bull < 3 llan + M+ 3 o < o0
n=1 n=1 n=1

which says that the series > ° | (a,, — by) is absolutely converges. Since X is a Banach space, by Theorem 5.1.5,
we have the series > " (a,, — b,,) converges in X. We denote z := Y -, (a, — by,) for some z € X. Now it remains
to prove that > ,_; ar + M — z + M in X/M. But actually we have for each k € N

n

1D (an+ M) = (@ +M)[| = | Y (ax + M) = (z+ M) =Y (b + M)| (18)
k=1

k k=1

I
-

NE

= 1(Q_(ar + bx) — ) + M| (19)

k=1

1M

(ar, —bg) — || (20)

~
Il

1
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where (18) is due to by € M for each k, (19) is due to Definition of addition for quotient spaces and (19) is due to
Definition of norms for quotient spaces, which immediately implies that after pushing n into oo,

i || (g + M) — (@ M) < T (| (0~ be) — 2 = 0
k=1 k=1

which says that

Zak+M—>m+M1nX/M.
k=1

O

Lemma 0.1. Let X,Y be normed spaces. Let L(X,Y) denoted the normed space collecting bounded linear maps from X
toY. Letx € X and T € L(X,Y). Prove that ||L||||z| > || L(x)]]

Proof. For ||z|| = 0, we have nothing to prove. We consider the case ||z| > 0. We have
121 2 IL(EDI = o lE@)

where the first is by Definition of operator norms since Hﬁ || = 1 and the second is by Definition of norms, which implies
that

LIzl > (| L (=)
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" Question 5.9: Let X and Y be normed spaces and T € L(X,Y). Prove that h
N(T):={x € X :T(z) =0}

is a closed subspace of X. )

Proof. By Definition of inverse images, we have N(T) = T—1({0})=ker(T). From basic algebra knowledge, there is no
doubt that N(T') is a subspace of X. Now it remains to prove that N(T) is closed in X. By Proposition 5.2.2, we know
that T is continuous. By Remark 4.1, it is enough to prove that {0} is closed in Y. There is no doubt that {0} is compact.
By Proposition 4.3.7, it is enough to prove that Y is Hausdorff. We choose z,y € Y with = # y randomly. By Definition
of basis, we know that B(z, 5) and B(y, §) open in Y where r := |z — y|| > 0. Obviously B(z,r) N B(y,r) # @. Since
such x,y was chosen randomly, by Definition 4.1.4(c), we proved Y is Hausdorfl and hence we finished the proof.

O
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’ Question 5.11: Prove that a linear functional f on a normed space X is bounded if and only if f~1({0}) is h
closed. (Hint: If |f(z,)| — oo for a sequence of unit vectors {z,}, then y,, = 7y — 0, but fyn) - 0.) y

Proof. We denote f : X — R be a linear functional. First we want to prove that if f is bounded, then f~*({0}) is closed.
By Proposition 5.2.2, we know T is continuous. By Remark 4.1, it is enough to prove that {0} is closed in R. Since R is
Hausdorff and {0} is compact, by Proposition 4.3.7, we immediately proved that {0} is closed in R and hence we finished
the implication.

Second we want to prove that if f=1({0}) is closed, then f is bounded. Equivalently we prove its contraposition, i.e., if
f is unbounded, then f~1({0}) is not closed. By Definition 5.2.3, we know that sup |f(x)| = co. By Definition of sup,

llzll=1
we can choose a sequence xy € X with [|zx|| = 1 such that |f(xg)| — oco. We choose e € X such that f(e) = 1. We
can always do it, since we are not interested in a trivial map and we can choose a € X such that f(a) # 0 and consider
7oy € X. Now we consider the sequence y;, := e — % in X. We have f(yx) = f(e ) = f(e) - f(xkg = 0 by

linearity of f. So we have y; € f~1({0}) for each k. We have by Definition of norms and our ch01ce of zy for each k € N

1 1
Tk H — (21)

Iy = ell = Hﬂxk) = 1ol = )

which implies that by our choice of z, after pushing both sides of (16) into oo, we proved that yr — 0 in X due to the
i

Ty (zk) _

topology on X is induced by norms. But we have f(yx) = f( jien )) o =1 by linearity of f. So we find a sequence

yr € f71({0}) such that yx — e with e ¢ f~({0}). By Definition of closeness using sequences, we proved that f~1({0})
is not closed. O

Lemma 0.2. Let X be a normed space and f : X — R be a linear map. Assume that f~1({0}) is closed. Prove that f
is bounded.

Proof. Idea: the composition of continuous maps is continuous and the natural projection of quotient spaces is continuous.
U
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" Question 5.12: Let X be a normed vector space. h
(a) Prove that if M is a closed subspace and = ¢ M ,then M + Cz is closed in X. (Hint: Theorem 5.2.10a).)

(b) Prove that every finite-dimensional subspace of X is closed. )

Proof. (a) We note that M + Cz = {z + cx : z € M, c € C}. We randomly choose a sequence zj + cxz € M + Cx such
that zx + cgx — a in X. By Definition of closeness, it is enough to show that a € M + Cz. Since X is a normed

space with M a closed subspace, By Theorem 5.2.10(a), we can choose f € X* such that f(x) # 0, f v 0 and
I/l = 1. Then we have for each k € N by Linearity of f , f(zx) = 0 and Lemma 0.1

e f (@) = fla)| = [ flew — a) + (1) = [ Fon + cz = 0)| < Iflllzw + enw — all = 12k + cpw —al

which immediately implies ci f(z) — f(a) in R after pushing both sides into co by our choice of z; 4+ cxz, which

implies that ¢, — ;Ei; by properties of limits with f(z) # 0. Now since a = a — %Z%x + ;Eggm, to finish the proof
it remains to show a — L%z € M. Since M is closed and 2z € M, it is enough to show that z — a — Ha) o in X.

f@)
Now we have by triangle inequalities and properties of norms, for each k € N

f(@)

f(a)

z — (@ — ——=x)

f(x)

f(a)

2k +cpr —a+ —=<x — cpx

f(x)

< ||zx + ckx — al| +

_ 1)
o~ syl

f(a)
f(=@)

which immediately implies that z, — a— %x after pushing both sides into co by zx +cxz — a in X and ¢ —
in R, and ||z|| < co. So we finished the proof.

(b) We denote M C X be a finite-dimensional subspace randomly. We denote n := dim(M) for some n € N by
Definition of subspaces to be finite-dimensional since M is finite-dimensional. We want to prove that M is closed
by induction on n. For the base step n = 1, by Definition of basis, we can write M = span{z} = Cz (over C)
for some x € M \ {0}. Then we have M = {0} + Cz. There is no doubt that the trivial subspace is closed in the
normed space X. Also 2 # 0. Then by (a), M is closed. For the inductive step, we assume the statement:

every finite dimensional subspace of X is closed

is true when this subspace is of dimension n and we are required to prove that this statement holds when this
subspace is of dimension n 4+ 1. By Definition of basis and the knowledge of linear algebra, we can write M =
Cx1®---®Cxpyy = N+ Cxpyyq for some basis {x1, 22, -+ ,2p41} where we denote N := Cxy & --- & Cx,,. Since
M is of dimension n + 1, z,41 € N and by the knowledge of linear algebra, IV is finite-dimensional subspace of X
of dimension n. Then by the inductive hypothesis, we know that N is closed. Furthermore since x,+1 ¢ N, by (a),
we have M = N + Cx,,4; is closed. So we proved this statement holds for n+1 and hence we finished the inductive
step and we proved the result by the induction method.

O
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Due: Fridays, 11 Mar 2022, by 11:59 p.m. CDT )

Question 5.13: Let X be an infinite -dimensional normed vector space. )
a. Prove that there is a sequence of unit vectors {z;} such that ||z; — xx|| > § fo j # k. (See Exercise 5.8 b.)

b. Prove that X is not locally compact by showing that B, = {x € X : ||z|| < €} is not compact for any
€ > 0.(Hint: Consider {ex;} for the {z;} in a.) )

Proof. a. First after normalizing, we can choose a unit vector z; € X. There is no doubt that span{z;} is a proper
closed subspace of X by Question 5.12 b.) since X is an infinite-dimensional normed space. Applying Exercise 5.8
b) with span{z1} and € = %, we can choose a unit vector 3 such that ||z + span{z1}| > 5. Then by Definition of
norms and Definition of span, we have |lzo — 21| > [lz2 + span{z1}|| > 5. Inductively we can choose n such unit
vectors x, € X. There is no doubt that span{zi,--- ,x,} is a proper closed subspace of X by Question 5.12 b.)
since X is an infinite-dimensional normed space. Applying 5.8 b) with span{z1, -+ ,z,} and e = %, we can choose
a unit vector z, 11 € X such that ||z,41 +span{z, -+ ,z,}|| > 3. For each i € {1,--- ,n}, by Definition of inf and
Definition of span, we have ||2,11 — x| > ||zn+1 + spanf{xy, - 2. }|| > % By our construction of such sequence
Ty, € M of unit vectors , there is no doubt that for any j # k ||z; — x| > 5. We use constructive proof to finish

this part.

b. We choose ¢ > 0 randomly. By Definition 4.4.1 and Definition of basis, and the topology on X is induced by a
norm, it is enough to prove that B, := {z € X : ||z|| < e}(= B(0,¢€)) is not compact. Since any normed space is
a metric space and in a metric space, a space is compact if and only if it is sequentially compact, it is equivalent
to find a sequence y; € B, without a convergent sequence. Now by (a), we can choose a sequence z; € X of unit
vectors such that ||x; — x| > % for j # k. For each j € N, we denote y; := ex;. Now it is enough to prove that
such sequence y; € X is the one in B, which is lack of a convergent sequence. There is no doubt that y; € B,
by our choice of x; since ||y;|| = ||ex;|| = |e|||z;]| = |e|. Now if it has a convergent sequence y;, then it must be a
Cauchy sequence, then we can find N € N such that by Properties of norms with ¢ > 0

HyjN - yjN+1|| = ”'ijzv - 6x]’fw@” = |€|||ZL‘]‘N —Tint1 H = eijN - xjN+1|| < %
which implies that
Hij - 'TjN+1|| < %
which obviously contradicts our choice of z; since jny # jn4+1. So such sequence y; € B. has no convergent

sequences.
O
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",Question 5.14: Let M be an finite-dimensional subspace of a normed space X. Prove that there is a closed )
subspace N such that X = M @ Nie., X =M + N and M NN = {0}. (Hint: Theorem 5.2.10 (a) ) )
Proof. We denote n := dim(M) for some n € N since M is of finite-dimensional. We denote {e1,--- , ey} C M be a basis

for M. For each j =1,---,n, we denote A; = span({e1,--- ,e,}\{e;}). For each j, there is no doubt that A; is a closed
subspace of X by Question 5.12(b). Then for each j, By Theorem 5.2.10 with A; and e; ¢ A;, we have f; € X* with

fj‘A,- =0 and f;(e;) # 0. We denote N := ﬂ ker(f;). Now we prove that X = M 4+ N and M N N = {0}. We choose
j=1

x € MNN. Since z € M, we can write x = aje; + - - - + an e, by Definition of basis. Now z € N implies that for each j,

0= fj(z) = fjlauer + -+ anen) = aifjler) + - -+ anfj(en) = a; fj(e;) which implies that a;; = 0 by our choice of f;.

So x = 0. We proved that M N N = {0}. There is no doubt that M + N C X. It remains to prove that M + N D X.

We choose z € X randomly. For each j =1,--- ,n, we denote «; := ;_"((ezl)). Now since
J J
z=(z—aje; — - —aney) + (a1e1 + -+ + apey)
, to prove that z € M + N, it is equivalent to prove that z — aje; —--- — ane, € N. For each j, by linearity of f; and
our choice of f; and Definition of o
filz —arer =+ —amen) = fi(2) —onfier) — - —anfjlen) = fi(2) — a;fi(e;) =0,
which implies that z — ane; — --- — ape, € ker(f;). This immediately implies that z — apeq — -+ — ape, € N. by

Definition N. Since z € X was chosen randomly, we finished the whole proof.
O
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' Question 5.16: Let || - ||y and || - ||2 be norms on a vector space X, and both (X, |- ||1) and (X, ] - ||2) are Banach\
spaces. Assume there is a ¢ > 0 such that || - |3 < ¢|| - ||2. Prove the norms are equivalent. (Hint: Corollary 5.2.17.) )

Proof. By Definition 5.1.3, we are required to find ¢y, c2 > 0 such that

cllzlly < ||z)l2 < eallz|y for any z € X

Now || - [ < || - |2 implies that || - [y < || - [l2 where ¢ > 0.So we find ¢; := L. Now it remains to find such c; > 0. We
consider the identity map T : (X, | - |l2) = (X, || - |l1);x — x. There is no doubt that T is a bijective linear map. Since
TN =111 <ell - |l2, by Definition 5.2.1, T € L(X, X). Since (X, | - ||2) and (X, ] - |1) are both Banach spaces, by

Corollary 5.2.17, we know T is an isomorphism. By Definition 771 : (X, || - |[1) — (X,] - ||2) is bounded. By Definition
5.2.1, we can choose ¢y > 0 such that

-1l = 1771 C)ll2 < el - l1a

where in Definition of inverse functions, T-!(z) = z for any z € X. We found such ¢z > 0 and hence we finished the
proof. O
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" Question 5.17: Let X and Y be Banach spaces, T € L(X,Y), N(T) = {z € X : T(z) = 0}, and M = range(T). h
Prove that X/N(T') and M are isomorphic if and only if M is closed. (See Exercises 5.8 and 5.9.) )

Proof. First we prove that if X/N(T) and M are isomorphic, then M is closed. We choose a sequence y, € M such that
yr — y in Y. By Definition of closeness, we are required to prove that y € M. By Definition of the range of a maps, we
can write y, = T(zy) for some z;, € X for each k. Now by Definition of closeness, it remains to prove that y € M. Since
X/N(T) and M are isomorphic, by Definition 5.2.6 , we know that S=!: M — X/N(T);y — x + N(T) where T(z) =y
is a bounded linear. Then by Definition 5.2.1, we have some ¢ > 0 such that for any &k, € N,

[(@e + N(T)) = (@1 + N(D))|| < cllye — will (1)

Since yy, converges in Y, yi is Cauchy in Y. Then by (1), zx + N(T') is Cauchy in X/N(T'). Since X is Banach space
and N(T) is a closed subspace of X by Question 5.9., X/N(T') is Banach by Question 5.8(d). So by Definition 5.12.,
zp + N(T) — x + N(T) for some z € X. Since S : X/N(T) — M;z + N(T) — T(z) is a bounded linear map, by
Definition 5.2.1, we have some d > 0 such that for each k € N,

1T(x) =yl = 1T (x) = T(zx)|| < dl(z + N(T)) = (zx + N(T))|.-

Then by zx + N(T) = v+ N(T) in X/N(T), we have yr, — T'(z) in Y after pushing both sides into co. We know that
normed space must be Hausdorff and the limit must be unique in Hausdorff. So y, — y and y;, — T(z) implies that
y = T(zx), which implies that y € M = range(T') immediately by Definition of the range of a map.

Second we want to prove that if M is closed , then X/N(T) and M are isomorphic. By Definition 5.2.6, it is enough to
prove that

S:X/NT)— M;z+ N(T) — T(z)

is a well-defined bijective map, S € L(X/N(T),M) and S~! € L(M,X/N(T)). S is well-defined map since for any
x1,22 € N, 21+ N(T) = xo + N(T) implies that T'(x1) —T(xz2) = T(x1 — x2) = 0 by Definition of L(X,Y") and Definition
of N(T) since T € L(X,Y). S is linear since for z,y € X and « € C, by Definition of quotient spaces, Definition of
L(X,Y) and Definition of S, we have

Sla(z+N(T)+ (y+ N(T))) =S(ax+y)+ NT)) =T(ax+y) =aT(z) +T(y) = aS(x + N(T)) + S(y + N(T)).
Now we want to prove that
S=1:M — X/N(T);y — x+ N(T)

where y = T'(z) for some x € X, is well defined. Such z € X exists by Definition of M. Now if T(z1) = T(x2), then
since T € L(X,Y), 0 =T(z1 — x2) = T(z1) — T(x2) implying that z; + N(T') = z2 + N(T). There is almost nothing to
prove that So St =1d: M — M and S~ o S = Id: X/N(T) — X/N(T). The proof of the linearity of S~! is left for
readers as an exercise. Since M is a closed subspace of Y and Y is a Banach space, by the fact that closed subspaces of
a Banach space is a Banach space, we know that M is a Banach space. Since X is a Banach space, by Exercise 5.8 and
5.9, we have X/N(T) is a Banach space. Now by Corollary 5.2.17, to finish the whole proof, it is remains to prove that
S~1 is bounded. By Proposition 5.2.2, it is enough to prove that S~! is continuous. We choose U + N(T') be open in
X/N(T) randomly with U open in X. By Definition of continuity, it remains to prove that S;1(U + N(T)) open in M.
Since X and Y be Banach space and T' € L(X, M) surjective, by open mapping Theorem, we know T is open. Since U
open in X, by Definition 5.2.14, we know that T'(U) open in M. So now it remains to prove that

(A:=)S7H(U + N(T)) =T(U)

For y € A, by Definition of preimages and S~!, we know that x € U for some # € X where T(x) = y, then y € T(U) by
Definition of images. For y € T(U), by Definition of images, we know y = T(x) for some z € U, then S™!(y) = 2+ N(T)
by Definition of S~!, which implies that y € S; (U + N(T)) by Definition of preimages. O
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' Question 5.18: Let X be a Banach space and S C X such that sup|f(z)| < oo for all f € X*. Prove that h
zeS
sup ||z|| < oo.
eSS

/

Proof. We choose x € S randomly. Now we define T : X* — R by Z(f) = f(x). Now we want to apply Theorem 5.2.23
called Uniform Boundedness Principle to it. We denote A := {T : X* — R : z € S}. Now we want to check that
T € L(X*,R) for each x € S. The checking that T is linear is left for readers. We only check that Z is bounded, which is

sup [Z(f)] < oo
fex-

For each f € X*, we have |Z(f)| = |f(z)| < sup|f(a)| < oo since x € S. This implies that sup |[Z(f)| < sup|f(a)|. So
a€s fexx a€s

we proved that A C L(X*,R). Furthermore for each f € X*, we have

sup [Z(f)] < sup [Z(f)] < o0
TEA fexx

Since X is a Banach space and R is a normed space, by Theorem 5.2.23, we have since {T: x € S} = {T : T € A} by our
Definition of A

sup [Z]| = sup [[7[| < o0

zes zE
Now to finish the proof, it remains to show that for each z € S. ||Z|| = ||z||. By Theorem 5.2.10(d), Lemma 0.1 and
Definition 5.2.6, we know that ||Z|| = ||T(x)|| < ||T||||z|| = 1 - ||z| where we denote T : © + Z. Also by Definition of
operator norms, we have ||Z|| = sup [Z(f)] > |Z(g)| = ||=|| where we denote g : x — ||z|| and such g € X* exists

fEX* and || f|l=1
given by Theorem 5.2.10(b).
O
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| Homework 8 — Math 5323 h
Due: Fridays, 25 March 2022, by 11:59 p.m. CDT )

Question 5.19: Let X and Y be Banach spaces and T : X — Y be a linear operator . Prove that if foT € X* )
for every f € Y* | then T is bounded. y

Proof. Since X, Y are both a Banach space and T is a linear operator, by Theorem 5.2.22, it remains to prove that T is
closed. By Definition 5.2.21, we are required to prove that

N(T) ={(z,y) e X xY :y =T(x)}

is closed in X x Y. We choose a sequence (xg, yx) € T'(T) with (zg,yx) — (z,y) in X x Y. By Definition of closeness, we
are required to prove that (z,y) € I'(T), i.e. y = T'(z). By the product topology, we have x;, — z in X and y; — y in
Y. We choose f € Y* randomly. By the given condition, we have f oT" € X* which says that f oT is continuous. So we
have

f(T(xr) = foT(xx) = foT(z) = f(T(x)) (1)

By the continuity of f, we have by Definition of T'(T")
f(T (@) = flyr) = [(y) (2)
Since R is Hausdorff, by the uniqueness of limits, (1) and (2) implies that f(y) = f(T'(z)). But Such f €* was chosen
randomly, by Lemma 0.1 we must have y = f(x). So far we finished the proof. O

Lemma 0.1. Let X be a real vector space and x,y € X. Prove that if f(x) = f(y) for any f € Y*, then z = y.

Proof. We argue this by contradiction and suppose that  # y. Then by Theorem 5.2.10(c), there is g € X™* such that
g(x) # g(y), which gives us a contradiction. O
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n—r oo

" Question 5.20: Let X and Y be Banach spaces and {T},} C L(X,Y) such that lim T, (x) exists for every z € X. h
Define T'(x) = lim T, (z). Prove that T is a bounded linear operator from X to Y.
n—oo

.

Proof. We denote A = {T,, : n =1,---,}. Then we have A C L(X,Y) by the given condition. Now for each z € X,
since converge sequences must be bounded, lim T, (z) exists implies that sup ||T,(x)|] < oo. So we have for each

xz € X, sup ||Tn(z)|| < oo. Then, since X be a Banach space and Y be a normed space, by Theorem 5.2.23, we have
TheA

sup ||Tn|| < co. We choose z € X with ||z| = 1 randomly. For each n € N, by Definition of sup, we have
T,eA

1T ()] < sup || Ti(2)l|(=: M),
TieA

for some M € R, which immediately implies that after pushing both sides into oo, we have by Definition of T and the
continuity of norms

o . 3
1T = | lim T} = lim [T ()| < M

But such x € X was chosen randomly. So we proved that 7' is bounded by Exercise 5.3.
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- N
Question 5.21: Let H be an inner product space, Prove that S+ = SL for any S C H.
/

Proof. We choose S C H randomly. There is no doubt that St C St by Definition 5.3.7 since S C S. Now it remains
to prove that S+ C S—. But we have by Remark 5.4 and S C S

st= oy c N £ oy =5

yes y€eS

So we finished the proof. O
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" Question 5.22: Let M be a subspace of a Hilbert space H. Prove that A

1l _ 77
. M= =M /

Proof. Since H is a Hilbert space, by Definition 5.3.4, we have H is an inner product space. By Question 5.21, we have

MLt =731 and hence M+ = M Now it remains to prove that M = M Since M is a subspace, then M is a
closed subspace. So by Lemma 0.2, we finish the proof immediately.
O

Lemma 0.2. Let M be a closed subspace of a Hilbert space H. Prove that
M =Mt

Proof. We choose a € M randomly. We choose b € M+ randomly. By Definition 5.3.7, we have
(a,by = 0.

But such b € M+ was chosen randomly. So by Definition 5.3,7 we proved that a € M++. But such a € M was chosen
randomly. So we proved that M C M+, We choose a € M+ randomly. Since M is a closed subspace of a Hilbert
space H , by Theorem 5.3.9, we can write a = by + bo for some by € M and by € M+, Then by Definition 5.3.7 and
Definition 5.3.1.

<b2,b2> = <a — bl,b2> = <a,b2> - <b1,b2> =0-0=0

which implies that by = 0 by Definition 5.3.1(iii). So we have a = b; € M. But such a € M+ was chosen randomly. So
we proved that M+ C M and hence we finished proof. O
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" Question 5.23: Let H be a Hilbert space and T' € L(H, H). Prove the following statements. h

a. There is a unique T* € L(H, H), called the adjoint of 7', such that (T'(z),y) = (x,T*(y)) for all x,y € H,
T** =T, and ||T*|| = ||T|| -.(Hint: Theorem 5.3.10)

b. range(T)* = null(T*) and null(T)* = range(T*). )

Proof. a. We are only interested in the real normed space. We first prove the existence. We choose y € H randomly.
We define the map I, : H — R by  — (T'(x),y). We check its linearity. For o € R, z1, 22 € H, by the linearity of T
and Definition of inner product spaces, I, (ax1 +x2) = (T (az1 +22),y) = a(T(z1),y) + (T(22),y) = aly(z1) +1y(22).
We check its boundedness. For any « € H with ||z|| = 1, we have by Schwartz inequalities and Definition of operator
norms, |l,(z)| = (T(x),y)| < |1T@) |yl < ITzlllyll = ITIllyll. Now by the Riesz-Frecher theorem, there is a
unique z € H with [, (z) = (z, z) for all x € H, with ||l,|| = ||z||. We define T*(y) = z by the above relations. The
uniqueness of z ensures the this map is well-defined a linear operator. We only check that || T*|| < oo. For y € H
with |ly|| = 1, we have

Izl =yl = sup  [(T(z),y)l<  sup  [T(@)lllyll<  sup T[] = [T < o0

)
z€H and ||z||=1 z€H and ||z||=1 z€H and ||z||=1

where the first is due to Riesz-Frechet theorem, the second is due to Definition of operator norms, the third is by
Schwartz inequalities, the forth is by Definition of operator norms, and the last is due to T' € L(H, H). So we proved
that T* € L(H, H). Now we want to prove the uniqueness. We choose T7 € L(H, H) satisfying this condition. We
choose y € H randomly. Then

(T(x),y) = (x,Ty(y))for all z € H (3)
Also we have

(T(x),y) = (x,T*(y)) for all z € H (4)
Combing (3) and (4), we have

0= (2, T1(y) — T*(y)) for all = € H,

which gives that

0= (Ti(y) — T*(y), Ta(y) — T*(y))

which immediately implies that T3 (y) = T*(y) by Definition 5.3.1(iii). But such y € H was chosen randomly. We
finished the proof of the uniqueness of the adjoint. We choose y € H randomly. Then by Definition 0.2.1 and
Definition 5.3.1(ii), we have

(T*(x),y) = (x, T (y)) for any © € H (5)
and
(x,T(y)) = (T*(x),y) for any z € H. (6)
Combing (5) and (6), we have
(x,T(y) — T**(y)) for any = € H,

which implies that after plugging x = T'(y) — T**(y), we have

0= (T(y) — T (y), T(y) — T**(y))

which implies that by Definition 5.3.1(iii), T'(y) = T**(y). But such y € H was chosen. We proved that T' = T**.
By the inequality in the box and definition of operator norms, we proved that || 7*|| < ||T’||. Then similarly, we have
I7**|| < IT*||. Then furthermore by T = T**, we have ||T*|| < ||T|| = ||T**|] < ||T*||, which implies immediately
that [T = [T

b. First we prove that range(T)* = null(T*). For any x € range(T)*,

(T(z), T*(2)) = (T(T"(x)),x) = 0
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where the first inequality is due to Definition 0.2.1 and the second is due to Definition 5.3.6 and Definition of images
of maps. This implies that we proved that range(T)* C null(T*). For any = € null(T*)

(z,2) = (T'(y),r) = (y, T*(x)) = (y,0) =0

holds for any z € range(T) we denote z = T(y) for some y € H, where the first equality is due to Definition of
range of maps, the second is due to Definition 0.2.1, the third is due to Definition of null of maps and the last is
due to the sequence of Definition 5.3.1(i). This implies that null(T*) C range(T) by Definition 5.3.7.

We prove that null(T)* = range(T*). Actually we have
null(T)* = null(T*)* = range(T*)*+ = range(T*)
where the first is due to (a), the second is due to the previous result and the third is due to Question 5.22 since

range(T™) is a closed subspace of the Hilbert space H by the knowledge of basic linear algebra.
O

Definition 0.2.1. Let H be a Hilbert space and T € L(H, H). There is a unique T* € L(H, H), called the adjoint of T,
such that

(T'(x),y) = (2, T (y))

holds for any x,y € H.
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| Homework 9 — Math 5323 h
Due: Fridays, 1 April 2022, by 11:59 p.m. CDT )

Question 5.24: Let K be a closed convex set in a Hilbert space H. Prove that )

a. Any sequence in K whose norms approach to in}f{ ||| is a Cauchy sequence, and
TE

b. K has a unique element of minimal norm.

(Hint: The parallelogram law.) )

Proof.  a. We randomly choose a sequence x,, € K such that ||z,| — in}f{ lz]| in R. We choose € > 0 randomly.
TE

By Definition of limits, we have in}f{ |z|]| € R. We denote d := inlf( ||| for some d € R. But actually we have
1S faS]

Tn + Ty

2
5| < 2leall” + 2z - 402 (1)

|z = al” = 2]z + 2| ~ 4

where the first is due to Theorem 5.3.6. and the second is due to Definition of convex sets which gives that
Tn, Tm € K implies that % € K and Definition of inf. By Definition of limits, this gives a N1 € N such that

€+ 4d?

; @)

lzn|® <
holds for any n € N with n > N;. Similarly, we have a Ny € N such that

€+ 4d?

Jam? < <5

holds for any m € N with m > N3. Then Taking N := max{N;, N2}, combing (1), (2) and (3), we have
Hzm - :1771,||2 < 26+2d2’ + 27€+id2 - 4d2 =€

holds for any m,n € N with m,n > N. But such ¢ > 0 was chosen randomly. By Definition of Cauchy sequences,
we finished the proof.

b. First we prove the uniqueness. We choose x,y € H such that ||y|| = ||z| = in}f{ |lz||. We denote d := in}f{ lIz|l. Then
z€ ze

(1) gives that
lz = ylI* < 2l|2[|* + 2]ly||* — 4d* = 2d* — 2d* — 4d* = 0,

which immediately implies that x = y by Definition of norms. We prove the existence.
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| Question 5.25: Let (X, M, i) be a measure space and {E,} be a partition of X. Let fnr € L?(u) with n,k € N h
be a collection of measurable functions. Prove that if {f,xXxg, : k¥ € N} is an orthonormal basis for L*(E,, u),
n=1,2,---, then {fux : n,k € N} is an orthonormal basis for L?(j). )

Proof. We denote B := {fn : n,k € N}. We prove that B collects unit vectors. We choose f, € B randomly. Then

ankH2 = (fnks fnk) (4)
X
= /U;ol E, fnkfnkdﬂ (6)
= nkfnkd
;/Epf kSnkdp (7)
= <fnana fnan>En (9)
=1 (10)

where (4) is by Definition 5.3.1, (5) is by Example 5.4(e), (6) is by Definition of a partition, (7) is by properties of
integration, (8) is by the given condition, (9) is by Example 5.4(e) and (10) is by Definition 5.3.11 and Definition 5.3.14,
which implies that || f,x]| = 1 immediately.

We prove that elements of B are orthogonal with each other. We choose fyx, fpi € B such that (n, k) # (p,{) randomly.
Then

L= (e fot) = /X Fut Fndis (11)
-y /E FurFclp (12)

m=1 m
=5 [ e focs.de (13)

m=1" Em

Now if n # p, (13) says I = 0. We consider n = p then k # [ since (n,k) # (p,1). Then (13) says

I =/ JnkXE, fruXE, dit = (fukXE,» friXe, ) B, =0
B,

where the last equality is due to Definition 5.3.11 and Definition 5.3.14 with k ## [. Finally we prove the completeness
and hence by Definition 5.3.14, Definition 5.3.11 and Theorem 5.3.13, we finish the proof. We choose g € L?(1) such that
(g, fnk) = 0 for any n, k € N randomly. We fix n € N randomly. Then we have

0= (g, fak) = (9XB,., fakXE,) B,
holds for any k, which says that
9xE, =0

by Theorem 5.3.13 and Definition 5.3.14. But such n € N was chosen randomly. So we have gxg, = 0 for each n € N.
Then by Definition of characteristic functions and Definition of partitions

o0 o0
9=9xx =9x\J= 5, =90 _Xp)=) gxp, =00:0=0
" n=1

n=1

By Theorem 5.3.13(a), we proved the completeness. O
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| Question 5.26: Let {f,,} and {g,} be orthonormal bases for L?(u) and L?(v) over o—finite measure space h
(X, M, ) and (Y, N, v), respectively. Prove that {h,;, = fm(7)gn(y)} is an orthonormal basis for L?(u x v) J

Proof. We denote B := {h(y, n) : m,n € N}, where we define h(,, ) : X XY = R; (2,9) = fin(2)gn(y) for each m,n € N.
We prove that B C L?(u x v) is orthonormal. We choose Ay, hiy € B with (m,n) # (k,1). Then we have

(s i) = /X o))l x ) (14)
- / Fon) g () fi () g1 () % v) (15)
XxXY
-/ (fm<x>fk<w>) (gn<y>gl<y>)d<u < ) (16)
- ( / fm(w)fk(x)du>< / gn<y>gl<y>du) an
= < m»fn><gnvgk> (18)
=0 (19)

where (4) is due to Definition of L?(u x v), (5) is due to Definition of hy,,, (7) is by Fubini Theorem, (8) is due to
Definition of L?(u) and L?(v) and (9) is by our choice of hy, and hy; and Definition 5.3.11 and Definition 5.3.14 where
{fm} and {g,} are orthonormal bases for L?(u) and L?(v) respectively. We choose h,, € B randomly. Then we have

(i o) = /X B ) 9 x ) (20)
- / Fon ()90 () Fn (29 ()1 % ) (21)
XxXY
- / £2.(2)g2 (w)d (s x v) (22)
XxXY
_ ( / ffm)du)( / gi@)dv) (23)
= <fm7fm><gn7gn> (24)
—1.1 (25)
=1 (26)

where (10) is due to Definition of L?(u x v), (11) is due to Definition of A, (13) is by Fubini Theorem, (14) is by
Definition of L?(u) and L?(v), (15) is by Definition 5.3.11 and Definition 5.3.14 where {f,,} and {g,} are orthonormal
bases for L?(u) and L?(v) respectively. We prove that B is a basis for L?(u x v). We randomly choose ¢ € L?(u x v)
such that (@, k) = 0 for any m,n € N. Then for any m,n € N, we have

0= <¢,hmn> = /X v ¢(xay)hmn(x7y)d(/u‘ X V) (27)
— / / (2, ) o (2, ) dp () () (25)
Y JX
- / / (@) (29 (9) dp()d (1) (20)
Y JX
-/ gn<y>( /. ¢y<x>fm<x>du<x>)du<y> (30)
- /Y In ()Y, fu)dv(y) (31)
= [ gn(y)-0dv(y) (32)
Y
-0 (33)

where we denote ¢¥(x) := ¢(x,y) for each y € Y where (17) is due to Definition of L?(u x v), (18) is by Fubini’s Theorem,
(21) is by Definition of L?(u) and (22) is By Fubini Theorem which implies that ¢¥ € L?(u) for each y € Y and Definition
5.3.14. Finally by Definition 5.3.14, we proved that B is an orthonormal basis for L?(u x v). O
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" Question 5.27: Prove the following statements h
a. The set of all polynomials is dense in L?([0, 1], m).(Hint: Theorems 6.1.8 and 4.5.6)
b. L2([0,1],m) is separable. (Hint: Proposition 5.3.16)

c. L%(R,m) is separable.(See Exercise 5.25)

d. L?(R™,m) is separable. (See Exercise 5.26) y

Proof.  a. We denote P := {p :[0,1] — R’p(:r) =ag+arr+---+a,x" where a,, - ,ap € R with a,, #0 and n € N}.

We denote C.(]0,1],R) = {f :[0,1] — R continuous

3 a compact K C [0,1] such that f(z) =0 Vz € [0, 1] \K} .
By Theorem 6.1.8 with n = 1 and p = 2, we have

OC([Oa 1]7 R) = LQ([Oa 1]7 m) (34)
We want to use Theorem 4.5.6 to prove that
P =C([0,1],R) = C.([0,1],R) (35)

There is no doubt that P C C([0,1],R) since polynomials are always continuous. There is no doubt that [0, 1] is
a compact Hausdorff space since a subspace of a Hausdorff space is always Hausdorff and any closed and bounded
subset of R is compact due to Heine-Borel theorem. We prove that P is a subalgebra. The checking that P is a
subspace of C'([0,1],R) over R is left for readers. There is no doubt that the multiplication of polynomials is still a
polynomial. There is no doubt that P separates points in [0, 1] and quadratic functions can finish this work. Also
the constant function is in P since ([0,1] 3 z = p(z) := 1 € R) is a polynomial. Now by Theorem 4.5,6 we prove
(25). Combing (24) and (25), by Definition of dense and Definition 4.1.1, we proved that P is dense in L?([0, 1], m).

b. Since L?(]0, 1], m) is a Hilbert space, by Proposition 5.3.16, it is equivalent to prove that L?([0, 1], m) has a countable
orthonormal basis. We finish this question by a constructive proof. We denote By = {1,x,22,---}. We apply the
Gram-Schmidt orthogonalization to By to get its orthonormal set. We do it in the following inductive way. We set

— o u _ 1 _
Z‘l '—1> ) €1 fua =1 7
‘ U, v
Up 1= Vg — Proju, (v2) = vy — —2 2L 1:.%7/ xdu(z) =z — = ez = (z—1)
(w1, uq) [0,1] 2
Uz ‘= U3 7p7'0ju1 (’03) — proju2 (v3) = vg — és:::)bj; uy — ésj:zzé Ug = xz — T+ % €eg = :L’4 — 21"3 + %x2 — %x +

By this process, there is no doubt that (e;,e;) =1 for i # j and (e;, e;) = 1 for all i. We have that

n—1

w, =, 5 ) (36)
-1 <’u'la ’U,l>
and we have
Uy,
e, = ——— 37
(Up, wp) 87)

We denote By := {eq,---,}. We choose g € C([0,1],R) randomly. By Definition 5.3.14 and Theorem 5.3.13(b), it
remains to prove that

gl =" (g, em)|” (38)

n=1

By (a), we can choose a sequence p; € P such that
lim p; =g
l—o0

So now it is enough to prove that for each | € N,

il =" (o1 en)|” (39)

since by the continuity of norms and the serious converges where we can exchange limits freely
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o0 o0 o]
2 . 2 9. 2 9. 2 . 2 2
lgll® = I lim pil|* = Tim flpo|® = lim 37 |, en)|” = D [(lim proen)|” =D [(pen)]

n=1 n=1 n=1

For making life easier, we denote p := p;. Now it is enough to prove the assertion:
=)|plI* = Z [(p,en)| (=: B)
where e, is given by (26), (27) and v,, = 2™ for each n € N. we denote
p(z) = ap + a1z’ + asa® + -+ + a,z"

for some n € N with n # 0, and ag, -+ ,a,, € R with a,, # 0. Now we want to prove this by induction on degree(p).

For the base step which degree(p) = 0, we have by Definition 5.3.1
A= <a0, Cl0> <1 1> = CLO

and we also have

:;Hao,enﬂ :;‘ao(l,en z:: 1 en g Tmun>>

This is left as an exercise left for readers. From the previous discussion, we know that it is now enough to prove
that B spans P By Gram-Schmidt process and the knowledge of linear algebra, we know that if B; spans P,
then B spans P. Now it is enough to prove that B; spans P by Definition 0.0.1. We choose p € P such that
{p,x') = 0 for each | € N. By Theorem 5.3.13 and Definition 5.3.14, it remains to prove that p = 0. We denote
p(x) = ag + a1z + - -+ + apz™ for some ag, -+ ,a, € R with a,, # 0 where n := degree(p). Now by our choice of p,
we have

<p71>:0’ 7<p7xn>:0

Then by Definition 5.3.1, we have

0=ao(p,1) = (p,ao), - ,an(p,z") = (p,anz") =0

Adding them together, by Definition 5.3.1, we have

0=(p,ao) + -+ (p,anz") = (p,a0 + -+ + anz™) = (p,p)
which immediately implies that by Definition 5.3.1. p = 0.

c. Since L?(R,m) is a Hilbert space, by Proposition 5.3.16, it is equivalent to prove that L?(R,m) has a countable
orthonormal basis. We fix n € Z randomly. By (b), we know that L?([n, n+ 1], m) is separable. Then by Proposition
5.3.16, L?([n,n + 1],m) has countable orthornormal and we denote it by {p"l’[n e [ € N}. Now by Question

5.25, if we prove that {[n,n + 1] : n € Z} is a partition of R, then {p,; : I € Nn € Z} is an orthonormal basis
for L?(R,m) and obviously it is countable. There is a little confused here that {[n,n + 1] : n € Z} is a partition
of R since [1,2] N [2,3] # @. ALso in the previous proof, the compactness of [n,n + 1] is critical in the use of
Stone-Weierstrass Theorem.

d. Since A := L?(R",m) is a Hilbert space, by Proposition 5.3.16, it is equivalent to prove that A has a countable
orthonormal basis. Now by Question 5.26 and the inductive method, it is enough to prove that L*(R,m) has a
countable orthonormal basis. Then by Proposition 5.3.16, it is equivalent to prove that L?(R,m) is separable, which
is given by (c). We denote an orthonormal basis for L?(R(*) m) by

Blz{fl(i):leN}

for each 1 =1, -+ ,n Now we define from R"™ to R

n

g (M My = Hfl(z)( @)

i=1
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foreachi=1,--- ,nand [ € N Then B := {gil i=1,---,n, l € N} is an orthonormal basis for L?(R™,m).
O

Definition 0.0.1. Let H be an inner product space and Let B C H be a subset. B is said to span H if it satisfies one of
the following equivalent conditions
a. For anyv € H, if (v,a) =0 for any a € B, then v =0.

b. For anyv € H, Z |<U7CL>|2 = ||”H2
aeB

c. Foranyve H, v= Z(v,a>a
acB
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" Question 5.28: Let H be an infinite-dimensional Hilbert space. Prove the following statements. h
a. Every orthonormal sequence in H converges weakly to 0.

b. For any « € H with [|z|| < 1, there is a sequence {u, : n € N} of unit vectors such that u,, — z weakly. )

Proof. a. We choose an orthonormal sequence z,, € H randomly. We choose f € H* randomly. Now by Definition
5.2.25 and Definition of normed spaces, it is enough to prove that

) = 10 >0 (40)
Since H is Hilbert space, by Theorem 5.3.10, we can choose y € H such that
f(z) = (z,y) for any x € H. (41)

Now we have

Z fzn) = f(O)] = Z (Tn,y) —(0,y) (42)
n=1 n=1
=3 @ n) (1)
= [y, ) (44)
< lyll? (45)
< 0 (46)

where (32) is due to (31), (33) and (34) are due to Definition 5.3.1., (35) is due to Theorem 5.3.12 where {z,, : n € N}
is an orthonormal set, and (36) is due to H is an Hilbert space, which implies that by the knowledge of babe real
analysis

2
=0.

n— oo

lim \ﬂxn) - J(0)

This proves (30) by the continuity of product functions.

b. We choose » € H with ||z|| < 1 randomly. We denote E := {x}*. There is no doubt that E is a closed subspace
of H. Since H is a Hilbert space, by Theorem 0.1 and Definition 5.3.4, we know E is a Hilbert space. Then by
Proposition 5.3.15, we know that F has an orthonormal basis. There is no doubt by the knowledge of linear algebra
and Definition 5.3.7 that

H = span{z} ® E

which implies that dim(H) — 1 = dim(F) by Definition of dimension and immediately says that E is of infinite-
dimensional since H is of infinite-dimensional. Now we denote B := {z, € H : n € N} be infinite countable
orthonormal basis for . Now for each n € N, we denote u,, = = + a, 2, for some a,, € C and we are trying to find
a, € RY such that (u,,u,) = 1. But by Definition 5.3.1 and Definition 5.3.11

L= (up, un) = ||2[* +|an|?
which says that we can choose a,, = y/1 — ||z||?> where ||z|| < 1. Now we have a sequence {u, =z + /1 — ||z|]?z, :

n € N} of unit vectors. Finally we want to prove that u,, — = weakly and hence finish the proof. We choose f € H*
randomly. By Definition 5.2.24, we are require to prove that

fun) = f(z)

But we have by linearity of f and (a) where {u,} C H is orthonormal
lim f(un) = lm_ f(z+ /1= [|l2]22,) = f(z) + V1 = |J2]]* lim f(zn) = f(z) + V1= [z]|*-0=0
n—00 n—00 n—oo

which says that we finished the proof.

Theorem 0.1. A closed subspace of a complete space is still complete.
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Due: Fridays, 8 April 2022, by 11:59 p.m. CDT )

Question 6.2: Let (X, M, 1) be a o—finite measure space. Let 1 < p < ¢ < r < co. Prove that LP + L" is a N
Banach space with norm

I£]l = inf{max(llgllp, [Rll-) : f =g+ h g€ L he L7}

and the inclusion map L? — LP + L" is continuous. (See Proposition 6.1.13.) y

Proof. In this question we are only interested in the real normed vector space and o—finite measure space (X, M, u)
which implies that u(E) < oo for any bounded set F C X with u(X) < 1. We prove that A := LP + L" is a vector space
over R. By The proof in the page 175, we know that L¥ and L" are both vector space over R. Since the sum of real
vector spaces is still a real vector space, we know that L? + L" is a real vector space. We prove that || - || is a well defined
norm on LP + L". Since for any f € LP 4+ L", max(||g||p, [|]|-) > 0 by Definition of max, we have || f|] > 0 by Definition
of max. Also by Definition 5.1.1, || f]| < co for any f € LP + L".

(i) We prove for any f € A, ||f|| if and only if f = 0. For any f € A with f = 0, we have || f|| = inf{max(||g||p, ||2|l,) :
0=g+h} = i%fomax(Hng,HhHT) = 0 by Definition 5.1.1(i). For any f € A with ||f|| = 0, by Definition
g: =

of inf, we have sequences g, € L, and h, € L, such that 0 = lim max(||gnl|p, ||hn]||r) which implies that 0 =
n—oo

lim ||gn|l, = nh_)n;o [lAn |- by Definition of max, and hence by properties of norms and properties of limits f =

n—oo
lim f= lim g, + lim h, =04+0=0.
n— 00 n— 00 n—00

(ii) We prove that for any fi, fa € A, ||f1 + fall < || f1]] + ||f2]]. We choose f1, f2 € A randomly. Then by Definition of
inf, we have sequences gg) € LP and hg) € L" such that f; = gg) + h%l) for each n € N and

1l = tim max(|lgVll, [5]].)

Similarly, we have sequences g7(,,2) € LP and hg) € L" such that and f; = gr(?) + hg) for each n € N and
1fell = lim max(lg@ . [12],)

Then we have for each n € N, we have by Definition of max and inequalities of norms

2 2 1 1 1 2 1 2

max([|g5” [, 115 1) + masx(lg [, 155 [1) = masx(lgn + g o, 19 + B2l)

which implies that after pushing both sides to oo, we have

120+ 1720 tim mas(lg) + g, (AL +5P) > 1y + ol
where the last inequality is due to Definition of inf where f; + fo = g,(}) + g7(l2) + hg) + hg) for each n € N and
hence max([|gy” + 957 ||, RS + B |,) € {max(gp, |Rll:): f=9g+ h} for each n € N.

(iii) We prove that for any a € R, f € A, af € A. We choose a € R and f € A randomly. We have by Definition of
norms in this question, Definition of inf and Definition of max,

laf[[f1 = |e| inf{max([|gl, [[2]l;) : f = g + h} = inf{max(|lagll,, [|ehl) : f =g+ h} < [laf].
where the last inequality is due to if f = g + h then af = ag + ah. Now we also have
lafll = int{max(lgl. [1Al,) : af = g+ b}
. g h
f hle): f==+—
int {max(gll, [Al) £ = £+ 23
inf{max([|lagl,, [|ahl,) : f =g+ h}

|l inf{max(|lglp, [Alln) : =g+ h}
= lel[ £l
where the first equality is due to Definition in the question, the third inequality is due {max(||g|lp, [|k]~) : f =

2 4+ 23 < {max(||ag|, ||ah|l,) : f = g+ h} and the last equality is due to Definition in the questions. So far we
have (A, ]| - ||) is a normed real space.

IN
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(iv) We prove the completeness. We choose a Cauchy sequence f,, € A randomly. We prove that f,, — f in A for some
f € A. By Definition of the set A, we can write

fn =Ggn+hy (1)

for some sequences g, € LY, h, € L". Now we have for each n,m € N by Definition of norms in the question

[ = Finll = llgn = gmllp

which says that f,, is Cauchy in A implies that g, is Cauchy in LP. By Theorem 6.1.6 and Definition 5.1.2, g, — ¢

in L for some g € LP. Similarly we can choose h € L" such that h, — h in L". We know that L? is embedded in

the normed vector space L. So g, — g in (A4,] -||) and hence lim ||g, — g|| = 0 by the fact that the topology on a
n—oo

normed space is induced by its norm and similarly we have lim |h, — k|| = 0. Hence we have
n— oo

(i) (i) (i2)
lim |[fn —(g+h)[|7="lim [[(gn+hn) = (g+h)|"="lim [|g,—g+hn,—h| < lim [g, —g[[+ lim [k, —hl =
n—o0 n— o0 04’280; 0 n—oo n—oo

where (i) is due to (1) and (iii) is due to triangle inequalities of norms, which immediately implies that
fo = g+hin (A, ]-]).

by the fact that the topology on a normed space is induced by its norm. Also g € LP and h € L". By Definition
of completeness of a topology space, we prove that the normed space (A, || - ||) is complete and hence by Definition
5.1.2, we proved that (A, | - ||) is a well-defined Banach space.

We denote ¢ : LY — LP 4+ L"; x — x be an inclusion map. Since 1 < p < ¢ < r < 00, By Proposition 6.1.3 , we know this
map is well-defined, since for each f € L4, f € LP + L". There is no doubt that i is linear. By the previous discussion,
we know LP + L" is a normed space and L7 is a normed space by the proof in page 175. Now by Proposition 5.2.2, it is
equivalent to prove that i is bounded. We choose f € A randomly. By Definition of characteristic functions, we have

I =1Ixe+ fxee
where we denote E:={z € X : 1 <|f(x)| < [|fllq}-

We prove fxg € LP.
P
p_ du —
HfXEHp /X'fXE 12 /E

We have
where the first inequality is due to Definition of LP, the third inequality is due to f € L? and the fact we are only
interested in o—finite measure space and the fifth inequality is due to u(E) < 1.

p
f@é/WMWZWMM@<WM<w
E

We prove fxge € L". We have, since r > g > 1

r <l fxeelly < 1 fllq < o0

where the second equality is due to properties of integration and the third is due to f € L9. The technical details involved

in the second inequality are
q q q q
du=[ | aus [ |r s | (w—/v
c c E X

| Fxeeld :/ ‘fXEC
b'e
We prove || fxellp, < |Ifllq and [|fxEellr < |/ fllq- From the previous question, we only need to prove that ||fxgl, <

||fXEc

q
f f f dp = || F113

[ fllg- But we have || fxg|h < |/ f]|5, which immediately implies that || fxzll, < [|fll
Now we have by Definition of (4, ] - ||)

1A < max ([l fxallp: [[F x5 lr) < [ fllg

where the first inequality is due to Definition of (A, || - ||), the second is due to properties of integration, and the last is
due to

Since such f € A was chosen randomly, By Definition 5.2,1 where such ¢ can be chosen as 1, we proved that i is
bounded and hence we finished the proof.

there is a serious mistake in the last part and we need to use Proposition 6.1.16
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Question 6.3: Let (X, M, u) be a measure space, and 1 < p, ¢ < oo such that % + % < 1. Prove that fg € L7%a
for any f € L? and g € LP. )

Proof. We denote p = pT'fq and § = ’%q. There is no doubt that co > p > 1 and % + % = ﬁ + flq = 1. We denote
ri= ﬁ for some 1 < 7 < co. We denote f := |f|” and § = |g|". Since f,g are measurable functions, f,§ are measurable

functions. Then applying Holder inequality to p, ¢ and f , g, we have
£l < 11f1ls1191l4

which is equivalent to Definition 6.1.1(a), we have
N
=(L) (]
X b'e

I
U

After plugging f = |f|” and § = |g|” into (2), we have
P4 and r = 2L into (2), we have

fa g

g )

LIl =LY (LY
q p+q
L™ < (LAY () :
=A =B

Now by Definition of LP, we have || f||, < oo which implies by Definition 6.1.1.(a) that

(LMY <=

which implies that A < oo since || f|lq = A% Similarly we have B < co. Then by (4) and Definition 6.1.1(a), we have

After plugging p = pT‘H], q=

~—

nmmxthg <o
X

p+q

which immediately implies that ||fg||qu < 00. Then by Definition 6.1.1(b), we have fg € Lvta.
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KQuestion 6.6: Let f € LP N L*>. Prove that N
a. f € L9 for all ¢ > p,
b. If || f|loo > 0, then for any || f]lco > € > 0, the set E. defined by
Ee={z:|f(@)] > | fllc — €}
has the properties that u(E.) > 0 and

(Iflloo = €©)IxE. < 1F17 < |fIPIFISTP ae.

¢ flloo = lim Il

,,/

Proof. a. We choose ¢ € RT with ¢ > p. When g = p, f € LP N L implies that f € LP = L4 and we are done. We
consider the case g > p. Since 0 < p < ¢, by Proposition 6.1.14, we have

1l < 1AL 1 lloe 7o e (5)

Since f € LP N L™ implies that f € L? and f € L, by Definition 6.1.1(b), we have
1fllp < oo and [ fllec < o0 a.e. (6)

Since (R,-) is a group, by (5) and (6), we have || f||, < oo a.e., which immediately implies that f € L? by Definition
6.1.1(b). Since such ¢ was chosen randomly, we finished the proof.

b. We choose € € (0, || f]l) randomly. We prove p(Ee) > 0 by contradiction. By Definition of measures, we have
w(E:) > 0. Then we have pu(E.) = 0. Since || f||co — € > 0 by Definition 6.1.10(a), we have

[flloo — €€ M(f) and M(f) # @

and hence by Definition of inf, we have ||f|lcc < ||f|lco — € Which implies that ¢ > 0, which obviously contradicts
with our choice of e. We denote

A={ze X (Ifllc —€)xe. () < [f(@) < [f@)PIfIL}
Then by Definition, we are required to prove that u(A°) = 0. By Definition 6.1.1(b), we have p(B¢) = 0, where
B={ze X [f@) <|f@)PIflL?} = {z € X |f(@)" " < |fILP}
Now for z € E., the inequalities becomes
(Iflleo =€) < [f(2)|* < |f ()P fIEP
Then it holds by Definition of E. if € B. Now for « € X \ E,, the inequalities becomes
0 < [f@)* < [f(@)PIFIL™

Then it holds by Definition of E. if z € B. So far we proved that B = (E.NB)U(E‘NB) C A. So A° C B which
implies that pu(A°¢) < u(B¢) = 0 which finish the proof quickly by positivity of measures.

qé/X‘f

c. We integrate the inequality in (b) to get

(171 =€)tz = (11w =) [xe = [ (151 =€) e < [ s

But such € > 0 can randomly small. We have
q
~ 1% [ |7
X

P

p
1F17 = |l /X‘f

P

) < [ ‘f
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which implies that

1 loos(E)S < IIflla < I1fllo 118

Now after pushing the first inequality into oo, we have

£l < Ymminf 1, ()

since lim inf M(E)% =1 and from the second inequality, we have since p < ¢, by Proposition 6.1.16
q—o0

1flla < 1F1s 112 < 1 Flloopn(X)F

and after pushing both sides into co, we have

limsup || fllg < I flloo ®)
n— oo

since lim sup M(X)% = 1. Now by Definition of lim, combing (7) and (8), we prove that || f]lec = lim || f]l4-
q—00

q—o0
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' Question 6.7: Let (X, M, u) be a measure space with pu(X) < co. Let 1 < p < oo and let f,, and f be h
measurable functions. Prove that

a. If f, — fin LP, then f,, — f in measure, and

b. If f,, — f in measure and there exists a g € LP such that |f,| < g for all n, then f,, — f in LP. )

Proof.  (a) We choose € > 0 randomly. We denote A := {x € X :|fulx)—f(x)] > 6}. Since f, — f in LP, by Definition

/.
But now we have

eu{eex i@ - sz eh=e [1a= [ eqs [
. So by (9), we have

6.1.1. and continuity of product functions,

p

fo(x) = fz)| dp — o0 (9)

p

fo(x) = f(2)| du

@ tim p({ € X 1fule) - f(@)] = ch) =0,

n—oo

which immediately implies that

Jm (e € X 1fule) = )] 2 f) =0,

Since such € > 0 was chosen randomly, by Definition 2.5.1, we proved that f,, — f in measure.

(b) By Definition 6.1.1(a) and the continuity of product functions, it is enough to prove that

J,

P
We denote hy,(x) = (fn(:r) — f(x)) for each n € N. Then by Definition 6.1.1(a), it is equivalent to prove that

P

fn('r) - f($> dpy — 0

hn — 01in L'. Now for each n € N,

p p

lhn(@)| = |fn(x) = f(2)] = |ful2) + (= f(2))

< (161 +1@1) " < (o) +1700)
And we denote §(z) := (g(m) ¥ f(x)|>p. Now by Definition 6.1.1(a), we have

ey \gm

Since f,, — f in measure, by Theorem 2.5.3, we can choose a subsequence f,, such that f,, — f pointwise a.e. We
denote

an= | ]g<x>+|f<x>|

dyi = g + fII2 < (glp T ||f||p> (10)

A= {x € X lim fo, () = f(a;)}.

Then by Definition we have u(A°) = 0 . By Definition 6.1.1(a), we have

||f|§—/x‘fp—/A‘f(x) pdu(x)—/A pdﬂ(w)_klgrolo/A

since u(X) < oo, which implies that || f||, < co .Now since g € L”,by Definition 6.1.1(a), we have ||g||, < oo
Then by (10), We have g € L'. We prove that h,, — 0 in measure. We choose € > 0 randomly. We have by Definition
2.5.1 where f, — f in measure

p

foi(@)| dp(zx) <00

lim f,, ()
k—o0

lim ,u({x € X :|hp(x)| > e}) = nler;ou({x eX:

falz) = f(2)

2= s e X - f@) 2 ) =0
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Since such € > 0 was chosen randomly, by Definition 2.5.1, we proved that h, — 0 in measure. Now since h,, — 0 in
measure, |h,| < § for each n € N and § € L', by Dominated Convergence Theorem for convergence in measure, we have
hp — 0in L', O

Method 2

Proof. Since f, — f in measure, by Theorem 2.5.3, we can choose a subsequence f,, such that f,, — f pointwise a.e..
Now by Definition of subsequence, we have |f,, | < g for each k € N. So by the Dominated Convergence for L', we have

J,

Then we have |f,,, — f| = 0 a.e.. So we can assume that |f,, — f| < 1 a.e.. This implies that

p
OS/, duS/
X X

Then after pushing both sides into oo, by (11) and Definition 6.1.1(a), we have

[ fre = fllp = 0

Now we want to prove this by contradiction and suppose that ||f, — f||, - 0, we could construct a subsequence of f,,
h; = fn, such that

ﬁ%—fPM%O

fnk _f

ﬂ%—fpw

[hi = fllp > € (11)

for some € > 0. We would still have |h;| < g and h; — f in measure. So we may construct subsequence h;, of h; such
that

[[hi, = fllp = 0. (12)

Now (11) and (12) gives us a contradiction. O
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' Question 6.8: Let 1 <p < oo, fp, f € LP, and f,, — f a.e. prove that f,, — f in L? if and only if || f,|/, = ||f]l,- h
(Hint: The generalization dominated convergence theorem.) y

Proof. We prove if f, — f in L?, then || f,||, — || f|l, in R. We have that

lim
n— oo

[ fnllp = 11f1lp

< lim ||~ fllp =0

n—

by triangle inequalities of norms, which implies that by Definition of (R, |- |), ||fallp, = I fll, in R.
We prove if || full, = || fllp, then f,, — f in LP. Since p > 1, we have inequalities

[fo = 1P < (Ifal + [f1)P < @max(|fu(2)], [f(2)]))P < 2°(|ful? + [£]7)-
Then after integrating them on X, we have
pdug 2p/ ( P)
X

J;
p p
n—oo [y X
=A

p

fn_f fn

—&—’g

which implies that
p

f’rL - f

I := lim
n— o0 X
—_———

Now since f,, f € LP implies that |f,|?,|f|P € L' and |f,|P — |f|P in L', by the generalization dominated convergence

(heorem, we have
/ ‘
X

I, <2PA42PA < o0

p
= [IFl5 < o0

since f € LP and Definition 6.1.1.(b). So

Then again by Dominated convergence theorem, we have by the continuity of norms and f, — f a.e.

P
I:/ lim d,u:/
XTLA)OO X

which says that by Definition 6.1.1(a), lim ||f, — f|[} = 0 which implies that ||f, — f[|, — 0. This proves f, — f in L?
n—oo
by Definition 6.1.1(b). O

p

In—1f nlgngo fu(x) — f(z)| du(x) =0
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Due: Fridays, 15 April 2021, by 11:59 p.m. CDT )

Question 6.9: Prove that if dim(LZ?) > 1, then L? norm is a norm induced by an inner product if and only if ]
p = 2.(Hint: The parallelogram law.) y

Proof. First we proved that if p = 2, then || - ||, is induced by an inner product. We define

() I x L7 =5 C(f.g) /f?du

There is no doubt that this is a well-defined map and we want to check the following items to confirm this is a well-defined
inner product according to Definition 5.3.1

i) For f,g,h € L? and a,b € C, by linearity of integrations, we have

(af+bg,h>:/(af—i—bg)hdu:a/fhdu+b/ghdu:a<f,h>—i—b(g,h).

ii) For any f,g € L7, {f,g) = / fgdp = / Fodu = / gFdu =g 1.

2 2
iii) For f € L?, (f,f)z/ffd,u:/‘f dp > 0. For any f € LP, (f,f):f‘f dp =0 if and only if f =0 a.e.

Furthermore due to Definition 6.1.1(a), since p = 2 we have for any f € L?

VIR = [ £Fin = \//‘de;F £l

which says that || - ||, is induced by a norm due to Definition 5.3.4.

Second we prove that if || -|| is induced by an inner product, then p = 2. We prove this by contradiction and hence suppose
p # 2. Then there are two cases. We consider the case p = co. Since the norm of LP is induced by an inner product,
by Definition 5.3.1, we know LP is an inner product space. We choose A, B € M such that AN B = &, u(A) # @ and
u(B) # @. Then we have by Definition 6.1.10

4+ 182 + 114 — 15]3%
= inf {a >0:pu{z e X :|1la(z)+1p(x)| > a}) :0} +inf{a >0:pu({z e X :)la(z) —1p(x)| > a}) = 0}
=124+12=2

and we also have by Definition 6.1.10

2(||1A||io " ||1B||§o)

= 2<inf{a >0:pu({x e X :|1a(x)| > a}) = O} + inf {oz >0:u({x e X:|1a(z)| >a}) = 0})
=2(1% +1%) = 4,
which gives us a contradiction with the parallelogram rule since LP is an inner product space.

We consider the case p < co. There is no doubt that LP is an inner product space. We choose A, B € M with ANB # &
such that 0 < p(A), u(B) < co. We denote

1

fri=——14>0and g, := ———15 >0.
A))? (n(B))?

Then by Definition 6.1.10, we have

2(|fp||%p + ||gp|%p) 2(L \fp\”+/x gpv’) —o(1 1) =4

we have
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1B P lA 1B P 2
| dp _— | dp =227
wB)r | Lhmmp wB)r |

and we have p # 2, which gives a contradiction with the parallelogram rule since LP is an inner product space.

1a
W+%Eﬁ|hwﬂ/w .
x| ()
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Question 6.10: Let 1 < p,q < oo, % + é =1, and k(x,t) € L4(R?,m?). Prove that for any h
f(t) € LP(R,m(t)), k(x,t)f(t) € L*(R,m(t)) for a.e. . and

_ /R k(z, ) f(£)dt

is a bounded linear operator from LP(R,m) to L4(R, m) with ||T|| < ||k, y
Proof. We choose f(t) € L¥(R,m) and k(x,t)f(t) € L*(R,m(t)) for a.e. x. randomly. Since LP denotes the quotient
space by Definition 6.1.1(b), if the statement involved in x is true , then it must be true a.e., and for the simlicity, we
dont use the word a.e to emphasize this, which is to say elements of LP denotes the equivalence class and precisely f
denote [f] for each f € LP.

First we want to prove that T is linear. For any o € C, f,¢g € LP(R,m(t)) and any « € R, we have by linearity of
integration

T(af + g)(@ /k (. 8)(af + g)(t )dt—a/Rk:(x,t)f(t)dt—l—/}Rk(m,t)g(t)dt:aT(f)(m)+T(g)(x).

Second we want to prove that T is well-defined. We choose f € LP(R, m(t)) randomly. We have

I:AHM) (t)t] du(a) M)
Q \)wu @)
SA(Amewawm 3)

[ (151 ) o) @

where (3) is by triangle inequalities and (4) is by Definition 6.1.1(a). By Definition 6.1.1(b) and (a), k(z,t) € LY(R? m?)
implies that by Theorem 2.6.13

oo>/
RxR

d(m x m)(z,t) =

oo>/
R

which immediately implies that by Definition 6.1.1(b), k(z,-) € L?(R,m). Furthermore, since f € LP(R,m) and 1 <
p,q < oo with  + 2 =1, by Holder’s inequality, we have

q

k(z,t) dm(t)dm(x) (5)

k(xz,t)

which implies that
q

dm(t)

k(z,t)

[k, )l < N[k, gl fllp (6)

Combing (4) and (6), we have
r< [ (111, ) dute) )
= ||f|\ZA||k($a')||Zdﬂ(x) (8)

dm(t)dm(x) 9)

~ 151 [ [ |rtan|
< 00 (10)

where (8) is by properties of integration, (9) is by Definition 6.1.1(a) and (10) is by (5) and Definition 6.1.1(b) with
f € LP(R,m). So by Definition 6.1.1(a), || T'(f)|lq = It < co. But such f € LP(R,m) is chosen randomly. We proved
that 7" is well-defined.

Third, we prove that 7" is bounded with ||T|| < ||k||,. By Definition 5.2.3 and Definition 6.1.1(b), since k € LY(R?, m?),
it is enough to prove that ||T| < ||k|,. We choose f(t) € LP(R,m(t)) with || f||, = 1 randomly. By Definition 5.2.3, we
are required to prove that ||T'(f)|lq < ||k|lq- But by Definition 6.1.1(a), (9) and our choice of f, we have

Ty =17 < I lpIEllg = 151

Comment: In this question, ;1 and m are exchangeable.
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CQuestion 6.11: Show that LP(R™ m™) is separable for all 1 < p < oo, and L*°(R™, m"™) is not separable. >

Proof. First we show LP(R™,m™) is separable for all 1 < p < co. We choose p € [1, 00) randomly.By Definition 4.1.3(m),
we need to find a countable subset S of LP(R™, m") such that S = LP(R",m™). We denote C.(R") be the continuous
functions R™ — R with compact support. Since 1 < p < oo, by Theorem 6.1.8, we know that C.(R?) = LP(R™, m"). We
denote P be the set of polynomials with real coefficients defined on R™ having compact supports. By Stone—Weierstrass
theorem, we know that P = C.(R™). Since the closure of a closed set is itself, now it is enough to find a subset A C P such
that A = P. We denote A be the set of polynomials with rational coefficients defined on R™. To prove it is countable, by
Definition of countable in the knowledge of the set theory, since the countable product of countable sets is still countable
and Q is countable, it is enough to find a bijection map from A to Q x Q x Q x - - -. By Definition of polynomials functions,
we have

A:{R"9f:x»—>a0+a1x+---+anm"ER:nENO,a0,~--anEthasacompactsupport} (11)

We define a: A — QxQx--- by f— (ag,a1,a2, -+ ,ay,,0,---). There is no doubt that « is well-defined map by (11).
It is obviously injective and it is surjective since Q x QQ x - -- actually denotes the set collecting a sequence in Q of finite
non zero terms. We prove that A is dense in P. We choose € > 0 and f € P randomly. By Definition of topology and the
fact that the topology on normed space is induced by its norm, we are required to find g € A such that ||g — f|, < e. We
denote n := deg(p) for some n € R. There is nothing to prove for n = 0 since Q C A and Q = R and all norms on finite
dimensional real vector space induce the same topology. For n > 1, we write f = fo + f1 + -+ + f. where we denote
fr = apa® for each k =0, --- ,n. Now since by triangle inequality of norms, we have

lg = fllp < Z lgi — fillp

k=0

where we denote g := go + - - - + g, and g := b2 for each 0 < k < n. It is enough to prove that for each 0 < k < n, we
can find g; = b;x® such that ||g; — fi|l, < =<5 by Definition 6.1.1(a), which is equivalent to

n+1
p . € p
'|Pd <
l fermr< (55,

where we denote K C R™ denote the compact support of f, due to pu(K) < oo by Definition of m which is implied by

1 1
1 1\? €
< —_— —_ —_—
w(K) M) n+1
where we denote M := sup ‘x|ip for some M € R by the fact continuous functions has extreme values on compact sets.

rzeK
This is true, by Definition of normed spaces, since Q is dense in the normed space (R, ] - |).

p

du(z) =

ai—bi

bzt — a;xt

]

aifbi

To avoid those dark analysis technical details, maybe we can argue A is dense in P in this way. We know that
[oe] o0
P = @R[wk] and A = @Q[mk]
k=1 k=1

by Definition of the product of topology, it is enough to prove that for each k = 0,1, - -, the subspace Q[z*] is dense in
the space R[z*]. Also it is easy to check that R[z*] := {az* : @ € R} = {ae®™ : a € R} is a 1-dimensional real vector
space where we denote e(®) := 2% and the vector addition is defined as ae®) — ge(¥) = (a— ,B)e(k). Since any well-defined
norms on a finite dimensional vector space induces the same topology, as long as we construct a norm || - || on R[z*] such
that

for any f € R[z*] any € > 0, there exists g € Q[z*] satisfy ||g — f|| < e(*).

But now we define a norm | - || : R[z*] — [0,00); ae®)  |a| where | - | denotes the absolute function and check it is
well-defined norm and prove it satisfy (*) by using the fact Q is dense in (R, |- |). We are done.

To make logic more neat, maybe we argue Q[z*] is dense in R[z*] for each 7 in this way. Since any norms defined
on a finite dimensional vector space induce the same topology, topology isomorphism per serves the topological properties
and Q is dense in the topology (R, |+|), it is enough to construct an isomorphism f from R to R[z*] such that f(Q) = Q[z*].
We consider f : a+ ax®. There is no doubt this is well-defined linear bijective map and f(Q) = Q[«*]. Now to use the
Corollary 5.2.17 to prove f is an isomorphism, we need to construct inner products on R[z*] and R respectively, so that
R[mk] and R are both complete with respect to norms induced by inner products and the operator norm of f is finite with
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respect to these norms induced by those inner products. Now we define an inner product (ax®, fz*) := af and use the
usual product on R. All remaining checking works are left for readers and the completeness of (R[z*], (-,-)) is essentially
due to the completeness of (R, | -|).

Second we show that L% (R™,m") is not separable. By Definition 4.1.3(m), it is equivalent to find an uncountable
set B such that the distance of any element of B is greater than 1. We denote

B:= {fs(l‘) = X[os)(#) 1 0= 5 < 1} - {f}

s€[0,1].

There is no doubt that B is uncountable. since its index is [0, 1] which is obviously uncountable. We choose s,t € [0, 1]
with s < t randomly and we consider

1o — filloe = inf{a > 0 u<{x € X :|fu(a) - fila)] > a}) —0}

Now it remains to prove that || fs — ft]lco > 1. We choose a > 0 such that ,u({a: € X :|fs(x)— fe(x)| > a}) = 0 randomly.

By Definition of inf, it is enough to prove that o > 1. We argue this by contradiction and suppose that 0 < o < 1. Then
we have

u({x €X: ‘X[O,s](x) = Xjo.) (%)

1})0 (12)

We denote A := {x e X: ‘X[O,s] (%) = X[0,4 (x)‘ = 1} Since the value of characteristic functions are only 0 or 1 and s < t,

the only possible value of xo4(2) = 0 and x4(x) = 1. So A = (s,t) and hence u(A) = u((s,t)) =t —s > 0 which
contradicts with (12). O
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" Question 6.12: Let (X, M, u) be a o—finite measure space and g € L (). Prove that the operator defined by h
T(f) = fg is a bounded linear operator on LP(u) for all 1 < p < oo, and ||T|| = ||g]|cc- )

Proof. We choose 1 < p < oo randomly. We want to prove that T € L(LP(y), LP(p)). We prove that T is linear. For
oS R, f17f2 € Lp(:u)v

T(af + fa) = (afl n fz)g — a(f1g) + fog = oT(f2) + T(f2)

We prove that T is well-defined. We choose f € LP(u) randomly. Now we have

7= | |a] o (13)
- /X 1797y (14)
= [1f7g"lx (15)
< 177117 oo (16)
= [ ||l ()
p
- /X 7| diallg?loo (18)
. (19)

where (13) and (15) is due to Definition 6.1.1(a), (16) is due to Theorem 6.1.12(a), (17) and (19) is due to Definition
6.1.1(a) and (20) is due to our choice of f. By Definition 6.1.10(a) and Definition of inf, we have

197 = int {a > 0: u{ € X @) > 0 p) =0 (20)
:inf{a>o:ﬂ({xexzg(x)|>aé})=o} (21)
— gl (22

Combing (19) and (22), we have that

ITHIG < gl Nl 15 < oo (23)

where the last inequality is due to Definition6.1.1(b) and Definition 6.1.10 with g € L>°(u) and f € LP(u) which implies
that ||T'(f)||, < co immediately. Then by Definition 6.1.1(b), we proved that T is well-defined since such f € LP(u) was
chosen randomly.

We prove that ||T'|| = ||g|lcc -We choose f € LP(u) with || f||, = 1 randomly. Then by (23), we have

ITHIE < llglls
which implies that due Definition 6.1.10 with g € L (u),
1Tl < llglloo

Then since such f was chosen randomly, by Definition 5.2.3, we proved that ||T]| < ||g|lcc- Now it remains to prove that
lgllco < ||T||. We choose 0 < € < ||g|loo randomly. Then ||g||cc — € < ||glco. Then by Definition 6.1.10 and Definition of

inf, we have that ||g|lec —€ ¢ Ja>0: pu(qx € X : |g(x)] > ay) = 0. But we also have ||g|lcc — € > 0 where ||g||oc > €.

Then by positivity of measures, we have

u({x e X+ lg(@)] > lglloe — e}> > 0. (24)

We denote E, = {x € X :g(z)] > |lgllc — e}. Since (X, M, u) is o—finite measure space, we can choose A D E, such

that u(A¢) < co. Also by the monotonicity of measures and (24), we have u(A.) > 0 . For making life easier, we keep

Page 6 of 8
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the notation E.. Now By Definition 6.1.1(b) and 0 < u(E.) < oo, we have

P
ITOce)IE = / x.9| s
X
P
:/ XE.g| du
E.
p P
> [ (ngnme) du
E.
P
_ (ngnme) e, |2
which implies that by Definition 5.2.3
IT(xz.)]
i) = ol 50

IXE.

p

But € > 0 could be randomly small. So ||T|| > ||¢]co-
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Question 6.13: Let (X, M, u) be a measure space, and 1 < p,q < oo with % + % = 1. Prove that for any h
bounded linear operator T' on LP (1), there is a bounded linear operator T on L9(u) with || 7| = ||T|| such that
/ T(f)gdp = / FT™(g)dp(xx)
X X
for any f € LP(u) and g € L9(p). )

Proof. We define the rule of the operator T* : L9(u) — L%(u) in the following process. We choose g € L? randomly. We
define a map ¢ : LP(u) — R; f — /T(f)gdu. This is a well-defined bounded linear operator, i.e. ¢ € (LP(u))*. We

check this in the following items

(i) (Well-defined) For f € LP(u), we have

6(/)] = ] / T(f)gdu’ </ ‘T(f)g’du — TPl < ITDllpllgly < o0

where the second is due to triangle inequalities, the third is due to Definition 6.1.1(i), the forth is due to Holder’s
inequality where T'(f) € LP(u) and the last is due to T(f) € LP and g € L%, which immediately implies that
¢(f) € R.

(ii) (Linearity) For any a € R, and any f1, fo € LP(u), by linearity of integration and linearity of T', we have

lafi + f2) = /X T(afs + f2)gdu = a /X T(fy)gdu + /X T(f)gdp = 0d (1) + o f2).

(iii) (Bounded) For f € LP(u), we have by Definition 5.2.3 and (i)

6O < ITDpllglle <IN Apllglly = (IIT||9q>||f|p~ (25)

Now since T € L(LP(p), LP(p)) and g € L(p), by Definition 6.1.1(2), we have ||T'||||g|lq < co. Now by Definition
5.2.1, in (25), we can choose ¢ := ||T'||||g||; which is independent of f.

Now since ¢ € (LP(u))*, 1 < p,q < oo with % + % = 1, by Theorem 6.2.4, we have a unique h € L?(u) such that ¢ = ¢y,.
Now we assign this h to g. We proved that T is well-defined. We prove that T* is linear. We choose o € R and
g1, 92 € L? randomly. By the linearity, we are required to prove that

hs :=T"(agy + g2) = o™ (g1) + T*(g2)
which is equivalent to by the uniqueness in Theorem 6.2.4,
(bhg = ¢(O¢h1+h2)

which is equivalent to by Definition of ¢, for any f € LP(u)

/ T(f)(ags + ga)dyi = a / T(f)grdpt + / T(f)gadp

and this is true by linearity of T. We prove that T™* is bounded. For any g € L? with ||g||, = 1, then by proposition 6.2.1
and Definition of T, we have

1T (9)llq = lIkllg = llonll = lloll < ITlllgllg = T
which implies that by Definition 5.2.3

1T < I1T1]- (26)

By Definition 5.2.3, we proved that T* is bounded. We prove (**). For any f € LP and g € L?, we have
[ s [ = nr) = (1) = [ T()gn (27)
X X X

Now we define ¢* : L9 — L7 by ¢*(g) = / fT*(g)dp. By the symmetric property in (26), replacing ¢ by ¢* in the
b's

previous proof, we have
1T < |7 (28)
Combing (26) and (28), we proved that ||T|| = |7 O
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Due: Fridays, 25 April 2022, by 11:59 p.m. CDT )

/ Question 6.17: )

a. Show that sin(nx) — 0 weakly in L?([0, 27],m), but not a.e. or in measure. (Hint: Exercise 5.28)

b. Show that ny 1y — Oa.e. and in measure, but not weakly in L?([0,1],m) for any 1 > p > oo.

/

Proof.  a. We denote H := L*([0,27],m). Since H is an infinite-dimensional Hilbert space, by Exercise 5.28(a),

Definition 6.1.1(a) and Definition 5.3.11, it is enough to prove that for n,k € N with n # k

/ sin(nz)sin(kx)dx = 0 and sin(nz)sin(nz)dz =1
[0727(‘] [0,27T]

Now we choose n, k € N with n # k randomly and we compute with the help of matlab (Let us leave this stupid
computation for computers)

/ sin(nzx)sin(kz)dr =0
[0,27]
and
/ sin(nz)sin(nz)dr =1
[0,27]

But such n, k was chosen randomly. So we proved that sin(nz) — 0 weakly in H. We disprove that sin(nz) — 0
a.e. by contradiction and hence we assume that sin(nz) — 0 .a.e. Then by Definition,

n(A) =0

where A = {x €[0,2x] : lim sin(nz) = 0} and we have

n—oo

A= {m €[0,27] : lim sin®(nx) = 0} (1)

n—oo

Since |sin?(n;z)| < 1, by DCT, we have by (1) and properties of integration

2T

m = lim sin?(nx)du(z) = lim sin?(nax)dp(z) :/ lim sin?(na)du(z) S/A lim sin?(nx)du(z) =

n—oo 0 n—oQ [0727‘_] [0727‘_] n—oo n—oo

which is obviously a contradiction. So by Theorem 2.5.3, we disprove that sin(nz) — 0 in measure.

/A e

where we denote A := {a? € [0,1] = lim nyx g 1(x) O}. We denote g := x[o,1j- Then by Riesz Representation
n— 00 'n ’

. We have

n(A) =

Theorem

<nX(o,%),9> - <”X(o,%)70> = /[ ]”X(o,%)X[o,l]dﬂ(l") = /( 1)”dﬂ(z) =1-»0
0,1 0,1

So by Definition 5.3.11, we proved that ny g 1y + 0 weakly in LP([0,1],m). We denote

A= {x €10,1]: }L%”X(o,%)(ff) = 0}.
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details needed to be done
We choose 1 > € > 0 randomly. We find

Jim pl{a € 0,1+ [,z (@)] 2 €)=l ul(0,1) =0

n—oo

So by Definition 2.5.1, we proved that ny 1y — 0 in measure.
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| Question 6.18: Let k(z,y) be Lebesgue measurable function on (0,00) x (0,00) such that k(Az, \y) = 1k(z,y) )
for all A > 0 and
oo
/ }k(z, 1)|dz < 0
0
Prove that
oo
()= | klzy) @)z
0
is a well-defined bounded linear operator on L*°(0, c0), and
7l < [ JikGe. 1)
0 /

Proof. We prove that it is well-defined. We choose f € L°°(0, 00) randomly. By Definition of maps, we are required to
prove that T'(f) € L*(0,00). First there is no doubt that T'(f) : (0,00) — R is a well defined measurable function since
the integration of measurable functions is still measurable and we want to check it is a well-defined map. We have for
f € L>®(0,00) and y € (0, 00)

T(f)(y)‘ <[ ‘k(x,y)f(x)

dr < / |k(z,1)|dz|| f]leo < 00 for a.e. y
0

where z := zy and transformation of variables are left for readers to check using k(Az, A\y) = %k:(x, y) for X > 0 since
I/ llec < oo a.e. which implies that T'(f)(y) € R. Then by Definition 6.1.10(a), we have

IT(F) e < / " k(e Dzl e < o0 2)

Now we prove the linearity of 7. For any o € R, any f1, fo € L°(0,00) and any y € (0,00), we have

T(afi + f2)(y) = /0 " k(o p)af + f2)()da = a /0 k(. 9) fa(y)da + /0 " k(e y) faly)de = (0T () + T(f)(9).

We prove the boundedness of T. We choose f € L*(0,00) with || f|lcc = 1. Then (2) implies that

IT(f)lloo < /Ooo k(z,1)|dz.

But such f was chosen randomly. By Exercise 5.3, we have

o
AT / k2, 1)|dz

oo
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' Question 6.19: (Hilbert’s inequality) Let 1 < p < co.Prove that the operator

_ [T,

(= [ =5

is a bounded linear operator on L?(0, c0), and

e 1
17| S/ - —dz
0o zr(z+1)

N

/

Proof. We define k : (0,00) x (0,00) — (0,00) by k(x,y) = —. There is no doubt that k is measurable since any

z+y”

continuous measurable function are measurable. Also we have for each A > 0, k(\y, Ax)

> 1 e 1
/ Mdz = / ——dz <
0 z? 0 (z241)z7

which is given by Matlab. Since 1 < p < oo, applying Theorem 6.3.4, we have
(5@ = [ TP ay

o THY
are well-defined bounded linear operator on LP(0, c0) and

< k(z,1 o 1
s [ [T
0 zv 0 (z+41)z%
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Yunting Gao Homework 12 — Math 5323

" Question 6.20: Let 1 < p < oo, ¢ be conjugate to p, and k(z), f(x), g(z) be positive Lebesgue measurable h
functions on (0, 00). Prove that
i &9 1
[ [ s ([ [ 225’ ([ e
ozt o »7F 0
=:1
(Hint: Apply the Holder inequality to the y integral, change variable u = xy, apply the Minkowski’s inequality for
integrals, and then change variable z = %) p
Proof. We have that
/ / k(zy) f(x)g(y)dwdy = / g(y)( / k(zy)f (w)dw) dy (3)
o Jo 0 0
~ [ stFway (4)
0
= / ‘g(y)F(y)‘dy (5)
0
= llgFlx (6)
< llgllqllEllp (7)
1
= ([ ateyaz) e, 0
where we denote F(y fo x)dz, (5) is due the positivity of k, f, g, (6) is to Definition 6.1.1(a), (7) is due to

Holder’s inequality and ( ) is due to Deﬁnltlon 6.1.1(a). Now to finish the proof, it remains to prove that ||F||, < I. But
actually we have

1wk = ([ |rw pdyf o)
_ </0°°‘/000 k(zy) f(z)de pdy>; (10)
_ (/ODO (/ODO k(my)f(x)dx)pdy) (11)
([ o)
g/oook(u)(/ooo f(yz)>pdy>;du (13)
/Omk(u)(%);dudz (14)
() () =

where (9) is due to Definition 6.1.1(a), (11) is due to positivity of F', (12) is due to we denote u = zy, (13) is due to
Minkowski’s inequality, (14) is due to we denote z = ¢ and (15) is due to % + % =1.
‘ O
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o (1 N
Question 6.21: Let k(x) be a Lebesgue measurable function on (0, c0) such that / @du < 00. Prove that
0 Uz

T(f)(x) = / i

is a well-defined bounded linear operator on L?(0,00), and ||T| < [ k(] gy (Hint: Show

u2

(S (s~ \k(zy) f(y)|dy)2dz)z < I EW] gudz|| f||2 by changing variable u = zy, applying the Minkowski’s
u2

inequality for integrals, and changing variable z = u/x.) y

Proof. By the proof of 6.21 with p = 2, we have for f € L?(0,00) and z € (0, 00), due to f € L*(0,c0)

<[ ‘k(x,y)f(y)‘dy < ([THa) ([ f(z)Zd:r)% ([ ) 151 < o0

This immediately implies that T'(f)(z) € R. There is no doubt T'(f) is a well-define measure function. We prove that
IT(f)|l2 < co. We have for f € L?*(0,00) due to the proof in the previous question with g(x) = 1, the given condition

and Definition 6.1.1.(b)
2 1 2 1
e ]
dx) ( / ( / k(:vy)f(y)dy> dx) < [ B au gl < o

But such f was chosen randomly. By Exercise 5.3, we have ||T|| < fooo Mdu . It remains to prove the linearity of T
u2

()

k= ([ ‘T(f)(:v)

For any a € R, f1, fa € L?(0,00) and z € (0, 00), we have

T(afy + fo)(x) = / " key)afi + f2) )y = a / " k(o) fa(y)dy + / " ken) fa(y)dy = (T () + T(f2)) (@).
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77 Homework 13 — Math 5323 h
Due: Fridays, 3 May 2022, by 11:59 p.m. CDT )

Question 6.22: (A generalized Holder inequality) Let 1 <p; < oo and 37, p%_ =1 < 1. Let {f;} be measurable |
functions. Prove that,

g = j |lpj
151 <TI0 (1)
j=1 lr =1

v

Proof. We want to prove this by induction on n € {2, 3, } For the base step n = 2, we are required to prove that

2 2
L5 <TI0,
j=1 v =1

which is equivalent to

1 f2llr < ([ f1llps [ f2]lp, - (2)

L™ < (LM (L)

where we denote q := po,p := p1 f := f1 and g := f5, which implies that after taking both side of the square % root, we

) (Ll = (LI (LY

Finally, by Definition 6.1.1(a), we proved (2). Now we want to finish the inductive step. We assume (1) holds for n > 2.
We are required to prove it holds for n + 1. But actually we have

We have from (4),

‘fl"'fnfn+1 <’f1"‘fn fn1 (3)
r Tn+41 Pn+1
< (TL05l, ) e (@
j=1 Pn+1
n+1
=TT 11ills, (5)
j=1
where (3) is due to the base step where we denote T,:H = p% +-+ p% and fi --- f, are measurable, and (4) is due to

the inductive hypothesis.
O
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" Question 6.23: Prove that if f and g are Lebesgue measurable over R™, then h(x,y) := f(x — y)g(y) is Lebesgue h
measurable from R?" to R. (Hint: f(x — y)g(y) is a composition of f(ug(v)) with the linear transformation

U= —Y,v="y.

Proof. We finish the proof in 3 steps.

Step 1: We define F : R?" — R defined by F(u,v) := f(u) and G : R*" — R defined by G(u,v) := g(v). We choose
a € R randomly. Then F~1((a, )) = f~!((a,00)) x R™ is measurable by Definition and Proposition 2.1.4(a) and
Definition 2.6.1 where f is measurable and R™ € Bgn. But such a € R was chosen randomly. We proved that F is
measurable. Similarly we can prove that G is measurable.

Step 2: We define a : R?® — R by a(u,v) := f(u)g(v). Then we have @« = FG and we have a is measurable due to
Proposition 2.1.5.

Step 3: We denote T'(z,y) := {IS _II"} Lﬂ for z,y € R™ and we consider T is a function from R™ x R™ — R"™ x R™ We
n
denote
I, -1,
Aim {0 . }

Then we have by Definition of a and Definition of h, for (x,y) € R x R? ~ R?"

(T (x,y)) = alz —y,y) = f(z —y)g(y) = h(z,y)

Since A is singular where det(A) = 1 # 0, by Theorem 2.7.5, we have that h = @ o T' is measurable.
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Question 6.24: Prove that if f is continuous and it is integrable over bounded subset of R” and g € C*(R") has h
compact support, then f * g € C*(R"). y

Proof. We denote A := supp(g) for some compact set A C R™ and we know A is bounded due to Heine-Borel Theorem.
We define f; := fxa. We denote B C R" for some bounded subset B such that f € L'(B). We denote C := AN B for
some C' C R™. Now we have
du = /
ANB

Joln= ],

where the first equality is due to Definition of C', and last is due to the extreme value theorem since f is continuous where
we denote M := supq(|f]|) for some M € R and we know u(AN B) < oo since A and B are both bounded. By Definition
2.3.1. we proved that f; € L'(C). By Definition 6.4.1 and Definition of support domains, we have

Ixa f

du< [ suwp(lfhdn = Mu(AnB) < o0
ANB ANB

fixg(z) = Rnh@ﬂﬂx—yﬁw
= RanA@Dg@%*yﬁ@
- / Fxa)ole - y)dy + / Fxa®)g(e - y)dy
A R\ A
=/f@M@—y%ﬁ/ f(y)g(x — y)dy
A R\ A

= [ f(y)g(z —y)dy
R n

= fxg(y),

which says that it is enough to prove that fixg € C¥(R"). Since f; € L' and g € C*(R"™), by Proposition 6.4.6, it is enough
to prove that 9%g is bounded for |a| < k. There is no doubt that 9%g is continuous for |a| < k by Definition of C*(R™).

Then by the extreme value theorem and Definition of compact supports, we have sup [(0%g)(x)| = sup [(0%g)(z)| < oo.
zERn zeA
So we are done. O
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" Question 6.25: Let 1 < p < co and ¢ be conjugate to p. Prove that for any f € LP(R) and g € LY(R), f g h
exists, f* g € L>(R), and

1 * glloo < [If1lpllgllg- )

Proof. We choose f € LP(R) and g € L?(R) randomly. By Proposition 6.4.4, we have that f * g(z) exists for every € R
and h := f * g is bounded and uniformly continuous. By Definition 6.1.10(a), to prove that |||l < 00, it is enough to
find 0 < a < oo such that u({x eR:|h(z)| > a}) = 0. We denote M := sup |h(z)| for some M € R by Definition of

z€R
boundedness. Then by Definition of sup, we have

A::{xeR:|h(x)|>M+1}:®

which immediately implies that pu(A) = 0 by Definition 1.3.1. We prove the more general case which is called Young’s
inequality for convolutions and the assertion is : Suppose 1 < p,q,7 < oo and f € LY (R) and g € LI(R). Prove that

I % gl < [Ifllpllgllg where & +1= 743

O
We denote a := £ and b := ¢ and we find that
‘ /f(y)g(:v - y)dy’ < fWglz =yl (6)
=(fW) 9@ =) ) fF W) "9z =)'y (7)
Since we have
1 1 1 1 1 1

r Y eie—n Tofr-9 pte r "

we apply Generalized Holder’s inequality to (7) to have

(M) <1 9@ =9 il e llgle =)' e = ( / If(m)lplg(w—y)lqdy)Tllfll;’;pllgllgsq

r

Finally, we compute that

1S+ gl

P < ( /] f(x)l”lg(:vy)lqdydx)llfl’ipplgliqq
_ <|g|%q / If(x)l”dx>||f||2?’g|22"

= Ao g Zall A" gl e
= [1£ 1z llglzs

Taking rth roots completes the computation.
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’ Question 6.26: Prove that if f € L' and g € LP for 1 < p < oo, then f * g(z) exists for a.e. @, f * g € LP and h

I *gllp < 111 llgllp
(Hint: Theorem 6.3.2.) )

Proof. We consider k(z,y) = f(x —y) in the Theorem 6.3.2. Since f € L', by Definition 6.1.1(a), we have

/|kxy|d,u /|fac— )| dp(z /|f )|dz < oo for a.e. y € R and for a.e. z € R.

Then plugging k(x,y) = f(z,y) in Theorem 6.3.2, since g € LP(R), we have f(z —y)g(y) € L. Then by Definition of
convolution and Definition 6.1.1(a), we have for any € R

/ f(ﬂc—y)g(y)dl/(y)‘ </

which immediately implies that f * g(x) exists for a.e. x. Also we have by Definition of convolution

/ = [| ] o= vty autr) = [ |r0)@)

which immediately implies that by Definition 6.1.1(b) f * g € LP(R). By Definition of convolution, we have
I+ al =) [ ot - nrants
pou(z)

/ 1902 = 9)F @) ey d(v) (9)

flz—y)gy)|dv(y) < oo

‘f *g(x)| =

P

(f*g)(x ) du(x) < oo

due to Theorem 6.3.3. where f(z —y)g(y) is v(y)-integrable function. Now from (9), we have

/ 1902 = 9)7 @) lpopey () (10)

-/ / 9 — ) ) Pdp(a >);du<y> (11)
(e oo
= [1swl( [ tatwrauta )du<> (13
= [1relam ) ( [ o ) (149

= I£llllgllo (15)
where (11) and (15) is due to Definition 6.1.1(a). Combing (9) and (15), we proved that
1+ gllp < I f111llgllp-
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