
Homework 1 — Math 5323
Due: Fridays, 28 Jan 2022, by 11:59 p.m. CDT

Question 4.1: Show that F = {(a, ∞) : a ∈ R}, with the convention that (∞, ∞) = ∅ is a topology on R which is
T0 but not T1. (We denote R = R ∪ {∞, −∞})

Proof. By Definition 4.1.1, to show that the collection F is a topology on R, we are required to show that

(i) ∅ ∈ F , R ∈ F . This is because by the convention (∞, ∞) = ∅ ∈ F as ∞ ∈ R, and R = (−∞, ∞) ∈ F as −∞ ∈ R.

(ii) F is closed under the (arbitrary) union. We choose a collection {Uα ∈ F : α ∈ I} of F . By Definition of F , we can
write

Uα = (aα, ∞)

for some aα ∈ R. We have that by Definition of intervals and Definition of F⋃
α∈I

Uα = (b, ∞) ∈ F

where we denote b := inf{aα : α ∈ I} ∈ R

(iii) F is closed under the finite intersection. We choose a finite elements U1, · · · , Un ∈ F for some n ∈ N. By Definition
of F , we can write

Ui = (ai, ∞)

for some α1, · · · , αn ∈ R. We have that by Definition of intervals and Definition of F

n⋂
i=1

Ui = (b, ∞) ∈ F

where we denote b := max{αi : i = 1, · · · , n} ∈ R ⊂ R.

We choose x, y ∈ R with x ̸= y. Without loss of generality, we can assume x < y. By the completeness of the real numbers,
we have z := x+y

2 ∈ R ⊂ R. Hence we have x /∈ (z, ∞), y ∈ (z, ∞) and (z, ∞) ∈ F . By Definition 4.1.4, we proved that the
topology F is T0. To disprove that F is T1, it is enough to give a counter-example. We consider 1, 2. We cannot find an
element (a, ∞) of R such that

1 ∈ (a, ∞) but 2 /∈ (a, ∞).

This is true since we have the implication

1 ∈ (a, ∞) implies that 2 ∈ (a, ∞).

by the properties of the real numbers. By Definition 4.1.4, we proved that F is not T1.
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Yunting Gao Homework 1 — Math 5323

Question 4.2: Let F be the collection of subsets of R2 containing ∅, R2, and all the complements of finite number
of lines and points. Prove that F is a topology on R2 which is T2 but not Hausdorff.

Proof. By the condition, we have for any A ⊂ R2

A ∈ F if and only if either A = ∅, A = R2, Ac =
n⋃

i=1
{ai : ai ∈ R2or ai = (xi, yi) with yi = mixi + ni}

for some n ∈ N and some mi, ni ∈ R.

(i) ∅,R2 ∈ F is true without doubt.

(ii) We choose {Ai}i∈I ⊂ F . If there is one Ai is R2, there is nothing to prove. We consider the case Ai ̸= R2 for all i ∈ I.
If Ai ̸= ∅ for all i ∈ I, there is nothing to prove since the arbitrary union of empty sets is still empty. Now we have
the statement: there exists p ∈ I such that

either Ac
p =

n⋃
i=1

{ai : ai ∈ R2} or Ac
p =

n⋃
i=1

{(xi, yi) ∈ R2 : yi = mixi + ni}

for some n ∈ N and some mi, ni ∈ R. Now by De Morgan’s law, we have

(
⋃
i∈I

Ai)c =
⋂
i∈I

Ac
i ⊂ Ac

p.

Since we have the subset of finite number of line and points is still a finite number of line and points, we have

(
⋃
i∈I

Ai)c is a finite number of lines and points, which immediately implies that
⋃
i∈I

Ai ∈ F .

(iii) We prove F is closed under a finite n intersection by induction on n. There is nothing to prove for the base step n = 1.

For the inductive step, by the induction hypothesis, we have B :=
n⋂

i=1
Ai ∈ F and by the condition, A := An+1 ∈ F .

We denote C := B ∩ A. Then C =
n+1⋂
i=1

Ai and by De Morgan’s law Cc = Bc ∪ Ac. If each of B and A is the empty set

or the full space, this case is trivial. Now we consider both Bc and Ac are a finite number of lines and points. Since
the finite union of finite number of lines and points is still the finite number of lines and points, we immediately have

that Cc is a finite number of lines and points hence by Definition of F ,
n+1⋂
i=1

Ai = C ∈ F .
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Question 4.3: Let X be a metric space with the metric ρ and F ⊂ X be closed. For any x ∈ X, define

ρ(x, F ) = inf{ρ(x, y) : y ∈ F}

(a) Prove that ρ(x, F ) = 0 if and only if x ∈ F .
(b) Prove that U = {x ∈ X : ρ(x, F ) < c} is an open set containing F for any c > 0.
(c) Prove that X is normal.

Proof. (a) We want to prove that ρ(x, F ) = 0 implies that x ∈ F . By Definition of inf, we can choose a sequence yi ∈ F
such that lim

i→∞
ρ(x, yi) = 0 which implies that

yi approach x in the metric space X.

By Definition of closeness, we immediately have that x ∈ X. We want to prove that x ∈ F implies that ρ(x, F ) = 0.
This is so obvious by definition of metric spaces, we have ρ(x, x) = 0 and ρ(z, y) ≥ 0 for any z, y ∈ X.

(b) We choose c > 0 randomly. By (a), we have F ⊂ U since for any x ∈ F , ρ(x, F ) = 0 and 0 < c. Now we prove that U
is open. By Definition of a topology, it is equivalent to prove that X \ U is closed. We choose a sequence xk ∈ X \ U
such that ρ(xk, x) → 0 for some x ∈ X. By Definition of closeness, it required to prove that x ∈ X \ U . Then by
Definition of U and Lemma 0.1, for each k ∈ N such that

c ≤ ρ(xk, F ) ≤ ρ(x, xk) + ρ(x, F ),

after pushing both sides to ∞, due to lim
k→∞

ρ(x, xk) = 0, we have

c ≤ ρ(x, F ).

and by Definition of U , we have x ∈ X \ U .

(c) By Definition (e)4.1.4, we firstly need to prove that it is T1. We choose x, y ∈ X with x ̸= y randomly. By Definition
of metric spaces, we have d := ρ(x, y) > 0. Now we consider W := {z ∈ X : ρ(x, z) < d

2 }. W is obviously open since
it is an open ball as W = B(x, d

2 ). Also it is obviously x ∈ W as ρ(x, x) = 0 by Definition of metric spaces. It is also
true y /∈ W by our Definition of d. Similarly we can also find open set V such that y ∈ V and x /∈ V . Since such x, y
was chosen randomly , by (b) of Definition 4.1.4, we proved that X is T1. We choose randomly two closed sets A and
B such that A ∩ B = ∅. We consider UA :=

{
x ∈ X : ρ(x, A) < ρ(x, B)

}
and UB :=

{
x ∈ X : ρ(x, A) > ρ(x, B)

}
.

There is no doubt that UA ∩ UB = ∅ and there is no doubt that A ⊂ UA and B ⊂ UB and trust that mathematicians
use this Definition to catch the geometrical meaning well. Now we want to prove that UA and UB are both open. We
prove that UA is open and similarly we can prove that UB is open. Now by Definition of a topology, it is equivalent to
prove that X \ UA is closed. We choose a sequence yk ∈ X \ UA such that ρ(yk, y) → 0 for some y ∈ X. By Definition
of closeness, we are required to prove that y ∈ X \ UA. Now we have

ρ(y, B) ≤ ρ(y, yk) + ρ(yk, B) ≤ ρ(y, yk) + ρ(yk, A) ≤ ρ(y, A) + ρ(yk, y) + ρ(yk, y)

where the first and the last is due to Lemma 0.1, the second is due Definition of UA, after pushing both sides into ∞
and using ρ(yk, y) → 0 as n → ∞, we have ρ(y, B) ≤ ρ(y, A) and by Definition of UA, we have y ∈ X \ UA.

Lemma 0.1. Let X be a metric space with x, y ∈ X and B ⊂ X be a closed set. Prove

ρ(x, B) ≤ ρ(x, y) + ρ(y, B).

Proof. By Definition of inf, we can choose zk ∈ B such that ρ(y, B) = lim
k→∞

ρ(y, zk). Then by Definition of inf with zk ∈ B

and triangle inequalities, we have for each

ρ(x, B) ≤ ρ(x, zk) ≤ ρ(x, y) + ρ(y, zk),

after pushing both sides into ∞, we have

ρ(x, B) ≤ ρ(x, y) + lim
k→∞

ρ(y, zk) = ρ(x, y) + ρ(y, B)
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Question 4.4: Prove that in a Hausdorff space X, every singleton set {x} is closed.

Proof. We are not interested in the empty space and the space contains the only point or two points. We choose x ∈ X
randomly. By Definition of closeness, it is equivalent to prove that X \ {x} is open. For each a ∈ X \ {x}, by Definition of
the set operation, we know that a ̸= x and hence by Definition of Hausdorff space, we have a pair of disjoint open sets Ua

and Va such that

a ∈ Ua and x ∈ Va.

We denote W :=
⋃

a∈X\{x} Ua. Then W is open by Definition of topological space and each Ua is open and it is obviously
that X \ {x} ⊂ W . Now for each a ∈ X \ {x}, x ∈ Va and Ua ∩ Va = ∅ implies that x /∈ Ua, which says that Ua ⊂ X \ {x}
and hence we have W ⊂ X \ {x}. So far we proved that X \ {x} = W is open.
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Question 4.5: Let

F = {U ∪ (V ∩ Q) : U, V open in Euclidean topology R}

Prove that F is a topology on R which is Hausdorff but not regular.

Proof. (i) By Definition of F and Definition of topology spaces, we have

∅ = ∅ ∪ (∅ ∩ Q) ∈ F and R = R ∪ (∅ ∩ Q) ∈ F .

(ii) We choose a collection {Ai}i∈I ⊂ F randomly. By Definition of F , for each i ∈ I, we can write in the following form

Ai = Ui ∪ (Vi ∩ Q)

for some open sets Ui, Vi. Then by De Morgan’s law and Definition of topology spaces⋃
i∈I Ai =

⋃
i∈I Ui ∪ (Vi ∩ Q) = (

⋃
i∈I Ui) ∪ ((

⋃
i∈I Vi) ∩ Q) ∈ F

(iii) We choose a finite number A1, · · · , An ∈ F randomly. By Definition of F , for each 1 ≤ i ≤ n, we can write in the
following form

Ai = Ui ∪ (Vi ∩ Q)

for some open sets Ui, Vi. Then by De Morgan’s law and Definition of topology spaces

n⋂
i=1

Ai =
n⋂

i=1
Ui ∪ (Vi ∩ Q) = (

n⋂
i=1

Ui) ∪ ((
n⋂

i=1
Vi) ∩ Q) ∈ F .

Now we prove (R, F) is Hausdorff. We choose x1, x2 ∈ R with x1 ̸= x2 randomly. We consider

B(x1, r) = B(x1, r) ∪ (B(x1, r) ∩ Q) ∈ F and B(x2, r) = B(x2, r) ∪ (B(x2, r) ∩ Q) ∈ F

due to Definition of F and B(x1, r), B(x2, r) open in R where we denote r := 1
4 |x1 − x2| > 0 by Definition of norms. There

is no doubt that x1 ∈ B(x1, r) and x2 ∈ B(x2, r). If z ∈ B(x1, r) ∩ B(x2, r), then by the triangle inequality, we have

|x1 − x2| ≤ |x1 − z| + |x2 − z| < 2r = 1
2 |x1 − x2|

which gives us a perfect contradiction. So we proved that B(x1, r) ∩ B(x2, r) = ∅ and due to (c)Definition4.1.4, we proved
that F is Hausdorff. We disprove F is regular by counterexample. We consider A := Qc. Now Q = ∅ ∩ (R ∩ Q) ∈ F and
we proved that F is a topology. So A is closed. We consider 1 ∈ Q. We choose B1, B2 ∈ F randomly with B1 ∩ B2 = ∅.
Then by Definition of F , we can write B1 = U1 ∪ (V1 ∩ Q) and B2 = U2 ∪ (V2 ∩ Q) for some open sets U1, U2, V1 and V2. If
1 /∈ B1, then we are done. So we consider the case 1 ∈ B1. (we need to argue it in more explicit way)
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Homework 2 — Math 5323
Due: Fridays, 4 Feb 2022, by 11:59 p.m. CDT

Question 4.8: Let X be a topological space, A ⊂ X be closed, and g ∈ C(A) with g = 0 on ∂A. Prove that

G(x) = g(x) for x ∈ A and G(x) = 0 otherwise,

is continuous on X.

Proof. We choose K ⊂ R closed randomly. By Definition 4.1.5 and G−1(X \ K) = X \ G−1(K), it is equivalent to prove
that G−1(K) closed in X. We prove this in 2 cases. We consider the first case, i.e. 0 ∈ K. Then by Definition of G, we
have G−1(K) = g−1(K) ∪ (int(A))c. This is true since for any x ∈ G−1(K), if x ∈ A, then x ∈ g−1(K), if x /∈ A, then
either x ∈ Ac or x ∈ ∂A and (intA)c = (Ac ∪ ∂A) and since for any x ∈ Ac ∪ ∂A ∪ g−1(K), if x ∈ Ac, then G(x) = 0 and
hence x ∈ G−1(K) since 0 ∈ K, if x ∈ ∂A, then x ∈ G−1(K) since 0 ∈ K and definition of g and if x ∈ g−1(K), then
g(x) ∈ K and x ∈ A implies that x ∈ G−1(K). Now since K is closed and g ∈ C(A), by Definition 4.1.5, we have g−1(K)
is closed in A. By Definition of relative topologies, we know g−1(K) = A ∩ E for some E closed in X. Then by Definition
of topologies, we know G−1(K) is closed. We consider the second case, i.e. 0 /∈ K. Since 0 /∈ K implies that G−1(K) ⊂ A,
G−1(K) = g−1(K) and we proved that g−1(K) is closed in X. So we are done.
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Question 4.9: Let X be a topological space, Y be a Hausdorff space, and f, g ∈ C(X, Y ). Prove that

(a) {x ∈ X : f(x) = g(x)} is closed, and

(b) If f = g on a dense subset of X, then f = g on X.

Proof. (a) We denote A := {x ∈ X : f(x) = g(x)}. We choose a sequence xk ∈ A with xk → x for some x ∈ X. Now
by Definition of closeness, it is equivalent to prove that x ∈ A. By Definition of A, it is equivalent to prove that
f(x) = g(x). Since xk ∈ A, by Definition of A, we have f(xk) = g(xk) which implies that f(xk) − g(xk) = 0. Since
C(X, Y ) is an algebra implying that f − g ∈ C(X, Y ), we have

f(x) − g(x) = (f − g)(x) = lim
k→∞

(f(xk) − g(xk)) = 0

which implies that f(x) = g(x) immediately.

(b) We denote A be such a dense subset of X such that f = g on A. We choose x ∈ X randomly. By Definition of dense
subsets, we can choose a sequence xk ∈ A such that lim

k→∞
xk = x. Now by the condition f, g ∈ C(X, Y ) we have

f(x) − g(x) = lim
k→∞

f(xk) − lim
k→∞

g(xk) = lim
k→∞

(f(xk) − g(xk)) = 0

where the last equality is due to f = g on A, which implies that f(x) = g(x). But such x ∈ X was chosen randomly.
So we proved that f = g on X.

Comment: Where do we need the Hausdorff condition posed on the target space?
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Question 4.10: Let (R, Fc) and (R, Fe) be the cofinite and Euclidean topological spaces on R, respectively. Prove
that every continuous function f : (R, Fc) → (R, Fe) is a constant function.

Proof. We choose a continuous function f : (R, Fc) → (R, Fe). We argue it by contradiction and suppose that f is not
constant, then we assume f has at least 2 values p and q with p ̸= q. Since R is Hausdorff, we can choose two disjoint open
sets U and V such that p ∈ U , q ∈ V and U ∩V = ∅. Since f is continuity, by Definition 4.1.5, we have f−1(U) and f−1(V )
open and f−1(U) ∩ f−1(V ) = ∅ by Definition of preimages. Then we have

R \ f−1(U) ∪ R \ f−1(V ) = R \ (f−1(U) ∩ f−1(V )) = R. (1)

Now by Definition of confinite topologies and the union of finite sets is still finite, R \ f−1(U) ∪R \ f−1(V ) is finite and this
contradicts with that R is infinite due to (1).
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Question 4.11: Let X be a Hausdorff space. Prove that the following statements are equivalent.

(i) X is normal

(ii) For any disjoint closed sets A, B, there exists a f ∈ C(X, [0, 1]) such that f = 0 on A and f = 1 on B.

(iii) Any f ∈ C(A, [a, b]) with A closed can be extended to a function F ∈ C(X, [a, b]) such that F
∣∣
A

= f .

Proof. We finish this proof by the following process

(ii) (iii)

(i)

We prove (i) ⇒ (ii) by Urysohn’s Lemma. We choose closed sets A, B ⊂ X with A ∩ B = ∅ randomly. Since X is normal,
by Theorem 4.1.10, we have f ∈ C(X, [0, 1]) such that f = 0 on A and f = 1 on B.

We prove (iii) ⇒ (i). We choose A, B closed in X with A ∩ B = ∅. We define f1 : A → [0, 1] on f1(x) = 0 and define
f2 : B → [0, 1] on f2(x) = 1. Since any constant function is continuous, by the given condition, we have F1 ∈ C(X, [0, 1])
and F2 ∈ C(X, [0, 1]) such that F1

∣∣
A

= f1 and F2
∣∣
B

= f2. We define F := F1 +F2 and there is no doubt that F is continuous
since the sum of continuous functions is still continuous. Now V := F −1([0, 1

4 )) is open in X and A ⊂ F −1([0, 1
4 )) since F is

continuous. Similarly U := F −1(( 3
4 , 1]) is open in X and B ⊂ F −1(( 3

4 , 1]). There is no doubt that V ∩U = ∅. Then by Defini-
tion 4.1.4(e), we proved that X is normal since such A, B is chosen randomly and the Hausdorff condition is stronger than T1.

We prove (ii) ⇒ (iii). (details needed to be done)
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Question 4.12: Prove that a topological space X is Hausdorff if and only if the limit of any convergent net is unique.

Proof. First we prove ⇒ direction. We choose a net A → X; α 7→ xα with xα → x as α → ∞ for some x ∈ X. We argue
this by contradiction and suppose x, y ∈ X with x ̸= y such that xα → x and yα → y. Since X is Hausdorff, by Definition
4.1.4, we have disjoint open sets U, V such that x ∈ U and y ∈ V . Since xα → x, by Definition of →, there exists β ∈ A
such that for any α ∈ A

β ⪯ α ⇒ xα ∈ U. (2)

Similarly we can find γ ∈ A such that for any α ∈ A

γ ⪯ α ⇒ xα ∈ V. (3)

Then by Definition 4.2.1 and Definition 4.2.2, we have δ ∈ A such that β ⪯ δ and γ ⪯ δ. Then by (1) and (2), we have

xδ ∈ U ∩ V

which immediately implies that U ∩ V ̸= ∅. This contradicts with our choice of U and V .
Second we prove ⇐ direction. We argue this by contradiction and by Definition 4.1.4, we can choose points x, y ∈ X with
x ̸= y such that for all open sets U, V with x ∈ U and y ∈ V , U ∩ V ̸= ∅. We define the directed set

A = {(U, V ) : U, V are open and x ∈ U, y ∈ V }

with the partial order

(U1, V1) ⪯ (U2, V2) ⇔ U1 ⊇ U2 and V1 ⊇ V2

The checking that this is a well-defined directed set is left for readers. The only interesting part is (iii) in Definition 4.2.1.
By axiom of choice, we can choose a net (x(U,V ))(U,V )∈A in X such that for each (U, V ) ∈ A, x(U,V ) ∈ U ∩ V . Now by the
condition, it is enough to prove that x(U,V ) → x and x(U,V ) → y. Now for any open set U0 of X with x ∈ U0, we have by
Definition 4.2.1

(U0, X) ⪯ (U, V ) ⇒ x(U,V ) ∈ U ∩ V ⊆ U ⊆ U0,

which implies that x(U,V ) → x by Definition of →. Similarly we can prove that x(U,V ) → y and hence we achieve a
contradiction.
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Homework 3 — Math 5323
Due: Fridays, 11 Feb 2022, by 11:59 p.m. CDT

Question 4.14: Prove that every sequentially compact space is countably compact.

Proof. We denote X be a sequentially compact space. We denote {Ai}i∈N be a countable cover of X. We argue this by
contradiction. Then by Definition 4.3.14, for each n ∈ X, A1 ∪ · · · ∪ An ⊊ X. Then we have a sequence xn ∈ X such that

xn /∈ Am for all m ≤ n. (1)

Then by Definition 4.3.14, we have a convergent sequence xnp
with a limit x ∈ X. By Definition of covers, we have some

l ∈ N such that x ∈ Al. Since xnp → x as p → ∞, we can choose l ∈ N such that xnl
∈ Al. By Definition of subsequences,

we have l ≤ nl. So by (1), we have xnl
/∈ Al. So far we got a contradiction and hence we finished the proof.

1
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Question 4.15: Let X be a topological space and E ⊂ X. Prove that a set K ⊂ E is relatively compact in E if and
only if it is compact in X.

Proof. We want to prove that K is relatively compact in E implies that K is compact in X. We choose an open cover
{Ui}i∈I of K. Then by Definition 4.3.1 we have

K ⊂
⋃
i∈I

Ui

Then we have by K ⊂ E and De morgan’s law

K = K ∩ E ⊂ E ∩
⋃
i∈I

Ui =
⋃
i∈I

(E ∩ Ui)

Then by Definition 4.1.2, 4.3.1 and 4.3.2, there exists finite number i1, · · · , in such that

K ⊂
n⋃

l=1
(E ∩ Uil

) ⊂
n⋃

l=1
Uil

Then by Definition 4.3.2, we proved that K is compact in X.
We want to prove that K is compact in X implies that K is relatively compact in E. We choose an open cover {Ai}i∈I of
K in E. Then By Definition 4.3.1 we have

K ⊂
⋃
i∈I

Ai

and by Definition 4.1.2, we have for each i

Ai = Ui ∩ E

for some Ui open in X. Then we have by De morgan’s law

K ⊂
⋃
i∈I

(Ui ∩ E) = E ∩
⋃
i∈I

Ui ⊂
⋃
i∈I

Ui.

Then by Definition 4.3.2, we have finite number i1, · · · , in such that

K ⊂
n⋃

l=1
Uil

Then we have by K ⊂ E and De morgan’s law

K = K ∩ E ⊂ (
n⋃

l=1
Uil

) ∩ E =
n⋃

l=1
(Uil

∩ E) =
n⋃

l=1
Ail

Then by Definition 4.3.2, we proved that K is relatively compact in E since Ail
open in E.
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Question 4.17: Let X be a locally compact Hausdorff space and K ⊂ X be compact, and U ⊃ K be a precompact
open set.

(a) Prove that every f ∈ C(K) can be extended to a function g ∈ C(U) such that g = 0 on U \ U .

(b) Prove that every f ∈ C(K) can be extended to a function F ∈ C(X) such that F = 0 on U c.

Proof. (a) We choose f ∈ C(K) randomly. Since X is a locally compact Hausdorff space and K compact, U open with
K ⊂ U , by Theorem 4.4.4, we have h ∈ C(X, [0, 1]) ⊂ C(X) such that h = 1 on K and h = 0 on X \ A for some
compact set A with A ⊂ U . Since X is a locally compact Hausdorff space with K compact, there exists F ∈ C(K)
with F

∣∣
K

= f on K. There is no doubt hF ∈ C(X) since C(X) is an algebra. We denote g := hF
∣∣
U

. There is no
doubt g ∈ C(U) since the restriction of continuous maps is still continuous. Now it remains to prove that

g = f on K and g = 0 on U \ U

Now for x ∈ K, g(x) = h(x)F (x) = 1 · f(x) by our choice of h and F . Now it remains to prove g = hF
∣∣
U

= 0 on
U \ U . Since h = 0 on X \ A, it is enough to prove U \ U ⊂ X \ A by Definition of restriction of functions. But this is
so obviously since A ⊂ U implies X \ U ⊂ X \ A and U open implies that U \ U = ∂U ⊂ X \ U

(b) We choose f ∈ C(K) randomly. By (a), we have g ∈ C(U) such that g = 0 on ∂U . Now we define

G(x) = g(x) for x ∈ U and G(x) = 0 otherwise.

Then by Question 4.8 with U closed, we have G ∈ C(X). Now it is enough to prove that G = 0 on X \ U . Since U is
open, by Definition 4.1.1, we have

X = U ⊔ ∂U ⊔ X \ U .

Then X \ U = ∂U ⊔ X \ U . For x ∈ X \ U , if x ∈ ∂U , G(x) = g(x) = 0 since ∂U = ∂U and if x ∈ X \ U , G(x) = 0 by
Definition of G. So we proved that G is the desired extension.
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Question 4.18: (One-point compactification.) Let (X, F) be a non-compact topological space. Pick any element
not in X and denote it by ∞. Define

X∗ = X ∪ {∞}, F∗ = F ∪ {X \ K ∪ {∞} : K ⊂ X is compact in (X, F) and X \ K ∈ F}

Prove that

(a) F∗ is a topology on X∗ such that (X, F) is the relative topological space of (X∗, F∗) and

(b) (X∗, F∗) is a compact space.

Proof. (a) First we prove that F∗ is a topology on X∗.

(i) ∅ ∈ F∗ by Definition 4.1.1 and Definition of F∗. X∗ = X \ ∅ ∪ {∞} ∈ F∗ by Definition of F∗ and Definition
4.1.1 with ∅ compact in (X, F) and X \ ∅ ∈ F .

(ii) We choose Ai ∈ F∗ with i ∈ I randomly. We denote A :=
⋃
i∈I

Ai. We prove A ∈ F∗ in two separate cases. In

case one, we consider there exists j ∈ I such that ∞ ∈ Aj . Then by Definition of F∗, Aj = X \ Kj ∪ {∞} for
some Kj ⊂ X compact. Then we find

A = (A \ {∞}) ⊔ {∞} = X \ K ⊔ {∞}

where we denote X \ K := A \ {∞} for some K ⊂ X. Now by Definition of F∗, it remains to show that K is
compact. But from Definition of A and with little set operations, we find that K ⊂ Kj . Now since the subset of
a compact set is still compact, we are done in this case. In case two, we consider for any i ∈ I, ∞ /∈ Ai. Then by
Definition of F∗, we know that Ai ∈ F for any i ∈ I. Since F is a topology, by definition of topologies, there is
no doubt A ∈ F and hence A ∈ F∗.

(iii) We choose A1, · · · , An ∈ F∗ randomly. We denote A :=
n⋂

i=1
Ai. We prove A ∈ F∗ in separate cases. In case

one, we consider that for all 1 ≤ i ≤ n, ∞ ∈ Ai. Then by Definition of F∗, we have that for each 1 ≤ i ≤ n,
Ai = X \ Ki ⊔ {∞} for some Ki ⊂ X compact. Then after little set operations, we have

A = X \ (
n⋃

i=1
Ki) ⊔ {∞}.

Now by Definition of F∗, it remains to prove that
⋃n

i=1 Ki is compact. And this is true since the finite union of
compacts sets is still compact. So we are done with the case one. Then by Definition of F∗, we have Aj ∈ F . In
case two, we consider that there exists some 1 ≤ j ≤ n such that ∞ /∈ Aj . We denote I := {1 ≤ i ≤ n : ∞ /∈ Ai}
and J := {1 ≤ i ≤ n : ∞ ∈ Ai}. Then for i ∈ J , we write Ai = X \ Ki ⊔ {∞} for some Ki ⊂ X compact. Then
we have

A = (
⋂
i∈I

Ai) ∩ (
⋂
i∈J

X \ Ki).

sorry I dont know how to argue it furthermore A ∈ F without condition that X \ Ki ∈ F

Now we want to prove that (X, F) is the relatively topology space of (X∗, F∗). There is no doubt that X ⊂ X∗. We
choose U ∈ F randomly. Now by Definition 4.1.2, it is enough to prove that U = X ∩ V for some V ∈ F∗. But we
have

U = U ∩ X

since U ⊂ X and U ∈ F∗ by Definition of F∗ with U ∈ F .

(b) We choose Ai ∈ F∗ be an open cover of X∗. Then by Definition 4.3.1, we have

X∗ =
⋃
i∈I

Ai.

Since ∞ ∈ X∗, we have ∞ ∈ Ap for some p ∈ I. Then by Definition of F∗, we have

Ap = X \ K ∪ {∞}

for some K compact in (X, F). We denote J := {i ∈ I : ∞ ∈ Ai}. Then we have

K ⊂ X∗ ⊂
⋃
i∈J

Ai \ {∞} ∪
⋃

i∈I\J

Ai
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By Definition of F∗ and Definition 4.3.1, we know that {Ai \ {∞} : i ∈ J} ∪ {Ai : i ∈ I \ J} is an open cover of K.
Then by Definition 4.3.2, we have

K ⊂
n⋃

l=1
Ail

\ {∞} ∪
p⋃

l=1
Ail

.

for some i1, · · · , in ∈ J and some i1, · · · , ip ∈ I \ J . Then we have

X∗ = X \ K ∪ {∞} ∪ K = Ap ∪
n⋃

i=1
Ail

\ {∞} ∪
p⋃

l=1
Ail

.

By Definition 4.3.1, we found an finite subcover of X∗ and hence by Definition 4.3.2, we proved the result.
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Question 4.19: Keeping notations in Question 4.18, prove that the space X∗ is Hausdorff if and only if X is locally
compact and Hausdorff.

Proof. First we want to prove that X∗ is Hausdorff implies that X is locally compact and Hausdorff.

We prove that X is Hausdorff. We choose x, y ∈ X with x ̸= y. By Question 4.18, we have x, y ∈ X∗ with x ̸= y. Since
X∗ is Hausdorff, by Definition 4.1.4, we have U, V ∈ F∗ with x ∈ U and y ∈ V and U ∩ V = ∅. by Question 4.19, we have
U, V ∈ F where x ̸= ∞ and y ̸= ∞. Then By Definition 4.1.4,

We prove that X is locally compact. We choose x ∈ X randomly. By Question 4.18, we know that x ̸= ∞. Also we have
x, ∞ ∈ X∗. Since X∗ is Hausdorff, by Definition 4.1.4, we have U, V ∈ F∗ with x ∈ U , ∞ ∈ V and U ∩ V = ∅. Now since
∞ ∈ V , by Definition of F∗, we have V = X \ K ∪ {∞} for some K compact in X and since ∞ ∈ V with U ∩ V = ∅, by
Definition of F∗, we have U ∈ F . Now by Definition 4.4.1, it is enough to prove that

U ⊂ K.

which is equivalent to X \ K ⊂ X \ U and this is proved quickly by U ∩ V = ∅ implying V ⊂ X \ U and X \ K ⊂ V .

Second we want to prove that X is locally compact and Hausdorff implies that X∗ is Hausdorff. We choose x, y ∈ X∗ with
x ̸= y. If x, y ∈ X, then since X is Hausdorff, by Definition 4.1.4, we have x ∈ U , y ∈ V and U ∩ V = ∅ for some U, V ∈ F .
Then by Definition of F∗, we have U, V ∈ F∗. Then by Definition 4.1.4, we proved that X∗ is Hausdorff. If one of y, x is ∞,
with loss of generality, we assume x ∈ X and y = ∞. Since X is locally compact, by Definition 4.4.1, we have K compact
in X and U ∈ F such that x ∈ U ⊂ K. Since X is locally compact Hausdorff, with K compact and X open, we have a
precompact set V such that

U ⊂ K ⊂ V ,

where we denote V to be the closure of V in (X, F), and hence X \ V ∈ F , which implies that U ∩ X \ V = ∅ and hence
U ∩ (X \ V ∪ {∞}) = ∅. Since V is precompact, by Definition 4.3.2 we know V is compact and hence by Definition of F∗,
U, X \ V ∪ {∞} ∈ F∗. By Definition 4.1.4, we immediately proved that X∗ is Hausdorff.
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Due: Fridays, 18 Feb 2022, by 11:59 p.m. CDT

Question 4.21: Prove that in Euclidean topology, the one-point compactification of R is homeomorphic to the unit
circle S1 in R2

Proof. Using the idea of stereographic projection and moving up the unit circle, we consider the following picture

x axis

y axis

We denote S1 := {(x, y) ∈ R2 : x2 + (y − 1)2 = 1}. With the knowledge of plane geometry, we consider the map
f : S1 → R∗ defined by (x, y) 7→ 2x

2−y for (x, y) ̸= (0, 2) and (x, y) 7→ ∞. There is no doubt that this is well-define
since (x, y) ̸= (0, 2) implies that y ̸= 2. There is nothing needed to prove that f is injective since we can solve equations
x2

1 + (y1 − 1)2 = 1, x2
2 + (y2 − 1)2 = 1 and 2x1

2−y1
= 2x2

2−y2
by parameterization (x, y) by (cos ϕ, 1 + sin ϕ) . Also the blue

line indicates its subjectivity perfectly. So far we proved that f is bijective. There is nothing to doubt that S1 is closed
and bounded since the boundary is always is closed as S1 = ∂{(x, y) ∈ R2 : x2 + (y − 1)2 ≤ 1} = ∂B((0, 1), 1) and
S1 ⊂ {(x, y) ∈ R2 : x2 +(y −1)2 < 2} = B((0, 1), 2). Then by Heine–Borel theorem, we have S1 is compact since we are only
interested in Euclidean topology. Since R is locally compact Hausdorff as x ∈ B(x, 1) ⊂ B(x, 1), by Alexandroff Theorem,
we know that R∗ is Hausdorff. Now by Proposition 4.3.12, it is enough to prove that f is continuous, i.e. the preimage
of open sets is still open. For U open in R∗, by Definition 4.21, we have either U ⊂ R open in R or U = R \ K ∪ {∞}
for some K compact in R. In the first case f−1(U) = g−1(U) where g := f

∣∣
S1\{(0,2)} and it is open since it is made by

elementary functions and elementary functions are always continuous. In the second case by elementary set operations, we
have f−1(U) = S1 \ f−1(K) ∪ {(0, 2)}. Then we have by De morgan’s law S1 \ f−1(U) = f−1(K) ∩ S1 \ {(0, 2)} = f−1(K).
Now by Definition 4.1.1, it is enough to prove that

C := f−1(K) closed in S1.

. We choose xk ∈ C with xk → x for some x ∈ S1. Now by property of closeness, it is enough to prove that

x ∈ C .i.e. f(x) ∈ K

By our choice of xk and the continuity of f , we have f(xk) ∈ K and f(xk) → f(x) for some f(x) ∈ R∗. Since K is compact
in R, by sequentially compactness, we have a convergent subsequence f(xkp

) with f(xkp
) → y for some y ∈ R. By the

uniqueness of the limit in the Hausdorff space R∗, we must have y = f(x) ∈ R. Now K is closed in R. We must have
f(x) ∈ K.

1
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Question 4.22: Let U be an open subset of a compact Hausdorff space X and U∗ be the one-point compactification
of U . Prove that the function f : X → U∗ defined by

f(x) = x for x ∈ U and f(x) = ∞ for x ∈ X \ U

is continuous.

Proof. We denote (U∗, F∗) be the one-point compactification of U . By Definition 4.4.8 and Definition 4.1.2, we have

U∗ = U ⊔ {∞} and F∗ = F ⊔ {U \ K ∪ {∞} : K ⊂ U is compact and U \ K ∈ F}.

where we denote F := {V ⊂ U : V open in X}. We choose V ∈ F∗ randomly. By Definition of continuous maps, it is
enough to prove that f−1(V ) is open in X. If V ∈ F∗, then by Definition of F∗, we have

either V ∈ F or V = U \ K ∪ {∞}

for some K ⊂ U compact in U and X \ K ∈ F . In the first case, by Definition of F , we have V ⊂ U and V open in X.Then
by Definition of f , f−1(V ) = V open in X. In the second case, we write

V = U \ K ∪ {∞}

By Definition 4.1,1, it is enough to prove that X \ f−1(V ) is closed in X. Since K is compact in X and X is Hausdorff, by
Proposition 4.3.7, we have K is closed in X. So now it is enough to prove that

X \ f−1(V ) = K

which is equivalent to show that

K ∩ f−1(V ) = ∅ and f−1(V ) ∪ K = X

Now by Definition of f and K ⊂ U , if x ∈ K ∩ f−1(V ), then x ∈ K and x = f(x) ∈ U \ K ∪ {∞} implying f(x) ∈ U \ K,
which gives us a perfect contradiction. Now it remains to prove that X ⊂ f−1(V ) ∪ K, which is equivalent to prove the
statement for x ∈ X

x ∈ f−1(V ) or x ∈ K

which is equivalent to prove the statement for x ∈ X \ K

f(x) ∈ V

by Definition of V , which is equivalent to prove the statement for x ∈ X \ K,

f(x) ∈ U \ K or f(x) = ∞

Given x ∈ X \ K, if x ∈ U , then by Definition of f , x = f(x) ∈ U ∩ X \ K = U \ K, if x ∈ X \ U , then by Definition of f ,
f(x) = ∞.
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Question 4.23: (The Stone-Weierstrass Theorem for noncompact spaces.) Let X be a noncompact locally compact
Hausdorff space, and A be a subalgebra of C0(X,R) that separates points. Prove that either A = C0(X,R) or
A = {f ∈ C0(X,R) : f(x0) = 0} for some x0 ∈ X. (Hint: If there is an x0 such that f(x0) = 0 for all f ∈ A), then
consider the one-point compactification of X \ {x0} with ∞ = x0. Otherwise consider the one-point compactification
of X.)

Proof. We prove the statement

either A = C0(X,R) or A = {f ∈ C0(X,R) : f(x0) = 0}.

We prove this statement by considering it in two separate cases. In the first case, we consider f(x0) = 0 for all f ∈ A for
some x0 ∈ X. We consider the one-point compactification of X \ {x0} with ∞ := x0. By Definition 4.4.8, we have that Y ∗

is compact where Y := X \{x0}. Before we use the Stone-Weierstrass Theorem for compact Hausdorff spaces, i.e. Corollary
4.5.7, we need to check that A is a subalgebra of C(X). There is no doubt that A ⊂ C(Y ∗). Also there is no doubt that A
is a subalgebra since C0(X,R) ⊂ C(Y ∗). As a set, X is identical to Y ∗, there is doubt that A separates points Y ∗ by the
given condition. Now by Corollary 4.5.7, we have

either cl(A) = C(Y ∗) or there is an y0 ∈ Y ∗ such that cl(A) = {f ∈ C(Y ∗) : f(y0) = 0}

Then immediately we have

either A = C0(Y ∗) or A = {f ∈ C0(Y ∗) : f(y0) = 0} for some y0 ∈ X.

where A denotes the closure in the subspace since C0(Y ∗,R) and {f ∈ C0(Y ∗,R) : f(y0) = 0} denote the subspace of C(Y ∗)
and {f ∈ C(Y ∗,R) : f(y0) = 0} respectively. Now since as a set, X is identical to Y ∗, we have

either A = C0(X,R) or A = {f ∈ C0(X,R) : f(y0) = 0)}

Now we consider the second case. We denote X∗ be the one-compactification of X. Since f ∈ C0(X,R) be extended to a
function in C(X∗,R∗) in the following way,

ḟ : X∗ → R∗ defined by ḟ(x) = f(x) on X and ḟ(∞) = 0.

We can embed A into C(X∗) as a subset. There is no doubt that A is still an sub algebra of C(X∗) by the given condition.
Now we need to check A separates points of X∗. We choose x, y ∈ X∗ with x ̸= y randomly. If x, y ∈ X, by the condition
that A separates points, we can find that ḟ ∈ A such that ḟ(x) ̸= ḟ(y). If x = ∞, we can choose ḟ ∈ A such that ḟ(y) ̸= 0
since we are in the second case. Then By Corollary 4.5.7, we have

either A = C(X∗) or there is an y0 ∈ X∗ such that A = {f ∈ C(X∗) : f(y0) = 0}

Obviously there are bijections between the set C(X∗) and C0(X,R) and the set {f ∈ C(X∗) : f(y0) = 0} and {f ∈
C0(X,R) : f(y0) = 0} and hence there are the identical topological spaces. So we proved that statement

either A = C0(X,R) or A = {f ∈ C0(X,R) : f(y0) = 0} for some y0 ∈ X∗.
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Question 4.24: Let X and Y be compact Hausdorff spaces. and assume that X × Y is compact Prove that

A =
{ n∑

i=1
gi(x)hi(y) : gi ∈ C(X), hi ∈ C(Y ), n ∈ N

}
is dense in C(X × Y ) with the uniform topology.

Proof. We want to use Corollary 4.5.7 to prove the result. The X × Y is compact is given by the condition. There is almost
nothing to prove that X × Y is Hausdorff and this is given by the product topology. We also have the constant one function
in A and this is because

1(x)1(y) ∈ A

where (X ∋ x 7→ 1 ∈ R) ∈ C(X) and (Y ∋ y 7→ 1 ∈ R) ∈ C(Y ). For any (x1, y1), (x2, y2) ∈ X × Y with (x1, y1) ̸= (x2, y2),
we have x1 ̸= x2 or x2 ̸= y2 and without loss of generality, we assume that x1 ̸= x2. Since P (X) separates C(X), we have
p1, p2 ∈ P (X) such that p1(x1) ̸= p2(x2). And hence p1(x1)1(y1) ̸= p2(x2)1(y2) where 1 denotes the constant function in
C(Y ). To achieve the result

A = C(X)

,by Theorem 4.5.6, it only remains to show that A is a subalgebra. First we want to prove that A is a subalgebra. First, A
is a vector subspace and there is no doubt it is closed under addition and scalar production. We need to check that A is
closed under production. We choose a, b ∈ A randomly. By Definition of A, we have

a(x, y) =
n∑

i=1
gi(x)hi(y)

for some gi ∈ C(X) and some hi ∈ C(Y ) and n ∈ N, also we have

b(x, y) =
m∑

i=1
g′

i(x)h′
i(y)

for some g′
i ∈ C(X) and some h′

j ∈ C(Y ) and m ∈ N. Then we have for (x, y) ∈ X × Y

a(x, y)b(x, y) =
n∑

i=1
gi(x)hi(y)

m∑
j=1

g′
j(x)h′

j(y) =
n∑

i=1

m∑
j=1

gi(x)g′
j(x)hi(y)h′

j(y) =

g1(x)g′
1(y)h1(x)h′

1(y) + · · · + gn(x)g′
m(x)hm(y)h′

m(y)

and then there is no doubt that ab ∈ A since both C(X) and C(Y ) are an algebra.
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Question 4.25: Let g ∈ C([a, b]) be strictly increasing, a < b in R. Prove that for any f ∈ C([a, b]) and for any
ϵ > 0, there are a0, a1, · · · , an ∈ R such that

max
x∈[a,b]

|f(x) − (a0 + a1g(x) + a2g2(x) + · · · + angn(x))| < ϵ

Proof. We denote
B := {1, g, g2, · · · }

and denote
A = span(B).

We prove that A is a subalgebra of C([0, 1],R). From Definition of span, there is no doubt that A is a subspace of C([a, b])
over R. Now it remains to prove that A is closed under multiplication. We choose a, b ∈ A randomly. By Definition of span,
we can write

a := a0 + a1g1 + a2g2 + a3g2 + · · · + angn and b := b0 + b1g1 + b2g2 + b3g3 + · · · + bmgm

for some n, m ∈ N, a0, · · · , an ∈ R and some b0, · · · , bm ∈ R. Then we have

ab = a0b0 + · · · + anbmgn+m ∈ span(B)(= A)

since (R, ·) is a multiplicative group. But a, b ∈ A was chosen randomly. We proved that A is a subalgebra of C([a, b]) since
it is itself an algebra over R. Also the constant function ([0, 1] ∋ x 7→ 1 ∈ R) = 1 · 1 ∈ A. For any x, y ∈ [a, b] with x ̸= y, by
the monotonicity of g, g(x) ̸= g(y). Also g ∈ B ⊂ A. We proved that A separates points of [a, b]. Furthermore, since [a, b]
is compact Hausdorff space, by Stone-Weierstrass theorem, we have

A = C([a, b],R).

We choose f ∈ C([a, b]) and ϵ > 0 randomly. By Definition of dense and the norm space, we have

B(f, ϵ) = {h ∈ C([a, b]) : ∥h − f∥ < ϵ} ∩ A ̸= ∅

which says that we can choose h ∈ A such that ∥h − f∥ < ϵ. Then by Definition of span, we can write

h = a0 + a1g + · · · + angn

for some n ∈ N and some a0, · · · , an ∈ R. Furthermore, by definition of sup norm and applying the extreme value theorem
to h − f on [0, 1] we have

ϵ > ∥h − f∥ = max
x∈[a,b]

|h(x) − f(x)| = max
x∈[a,b]

|f(x) − (a0 + a1g(x) + · · · + angn(x))|

which says that we finish the proof since such f ∈ C([a, b]) and ϵ > 0 were both chosen randomly.
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Due: Fridays, 25 Feb 2022, by 11:59 p.m. CDT

Question 5.1: Let X be a normed space over R. Prove that the vector addition, α : X × X 7→ X; (x, y) 7→ x + y,
the multiplication by a scalar, β : R × X → X; (c, x) 7→ cx, and the norm, n : X → R; x 7→ ∥x∥, are all continuous.

Proof. We choose (a, b) ∈ X × Y randomly. We choose (xi, yi) → (a, b) in the product space X × X. We are required
to prove that α(xi, yi) → α(a, b) in the space X, which is equivalent to prove that ∥α(xi, yi) − α(a, b)∥ → 0 since the
topology is induced by the norm. Actually we have by triangle inequalities

∥α(xi, yi) − α(a, b)∥ = ∥xi + yi − a − b∥ ≤ ∥xi − a∥ + ∥yi − b∥ (1)

Since (xi, yi) → (a, b), by Definition of product spaces, we have xi → a and yi → b in X which implies that ∥xi−a∥ → 0
and ∥yi − b∥ → 0 due to the fact the topology on X is induced by the norm. Finally after pushing both sides of (1) into
∞, we proved α is continuous since (a, b) ∈ X × Y was chosen randomly.

We choose (c, x) ∈ R × X randomly. We choose (ci, xi) → (c, x) in the product space R × X. We are required to prove
that ∥β(ci, xi)−β(c, x)∥ → 0 in the space X, which is equivalent to prove that ∥β(ci, xi)−β(c, x)∥ → 0 since the topology
is induced by the norm. Actually we have by triangle inequalities

∥β(ci, xi) − β(c, x)∥ = ∥cixi − cx∥ = ∥cixi − cxi + cxi − cx∥ ≤ ∥cixi − cxi∥ + ∥cxi − cx∥ = |ci − c|∥xi∥ + |c|∥xi − x∥
≤ |ci − c| max

i∈N
∥xi∥ + |c|∥xi − x∥

(2)

where maxi∈N ∥xi∥ ∈ R since the convergence sequence is bounded. Since (ci, xi) → (c, x), by Definition of product
spaces, we have ci → c in R and xi → x in X which implies that |ci − c| → 0 and ∥xi − x∥ → 0 by Definition of normed
spaces. Finally after pushing both sides of (2) into ∞, we proved that β is continuous since (c, x) ∈ R × X was chosen
randomly.

We choose x ∈ X randomly. We choose xi → x in the space X. Now we have

lim
i→∞

∣∣∣n(xi) − n(x)
∣∣∣ = lim

i→∞

∣∣∣∥xi∥ − ∥x∥
∣∣∣ ≤ lim

i→∞
∥xi − x∥ = ∥ lim

i→∞
xi − x∥ = ∥x − x∥ = ∥0∥ = 0

where the equality is due to ∥ · ∥ is continuous, the second is by our choice of xi and the last is due to properties of norm
and the first inequality is due to triangles inequalities, which implies that n(xi) → n(x) in R by the fact (R, | · |) is a
normed space.

1
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Question 5.2: Let X be a normed space. Prove that the closure of a subspace Y is a subspace of X.

Proof. By Definition of closure, we have Y = {y ∈ X : y = lim
i→∞

yi, yi ∈ Y for each i ∈ N}. Now by Definition of linear
subspaces, it is closed to check it is closed under the addition and the scalar product. We choose a, b ∈ Y randomly.
Then we can write a = lim

i→∞
ai and b = lim

i→∞
bi for ai, bi ∈ Y . By the product space, we have (ai, bi) → (a, b) and hence

by Question 5.1, we have a + b = lim
i→∞

(ai + bi). Since Y is a subspace of X, ai, bi ∈ Y implies that ai + bi ∈ Y . So by
Definition of Y , we have a + b ∈ Y . We choose a ∈ Y and c ∈ R randomly. Then we can write a = lim

i→∞
ai for ai ∈ Y .

Then by Definition of product spaces, we have (c, ai) → (c, a) and hence by Question 5.1, we have ca = lim
i→∞

cai. Since
Y is a subspace of X over R, c ∈ R and ai ∈ Y implies that cai ∈ Y . So by Definition of Y , we have ca ∈ Y .
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Question 5.4: Let X be a n−dimensional vector space over R and {e1, · · · , en} be a basis for X. For any
x = a1e1 + · · · + anen ∈ X, defined

∥x∥∞ = max
i

|ai|

Prove the following statements.

(a.) ∥ · ∥∞ is a norm on X.

(b.) The map ϕ : (Rn, ∥ · ∥) → (X, ∥ · ∥∞) defined by

ϕ((a1, · · · , an)) = a1e1 + · · · + anen

is continuous, where ∥ · ∥ on Rn is the Euclidean norm.

(c.) The set K = {x ∈ X : ∥x∥∞ = 1} is compact in (X, ∥ · ∥∞). (Hint:ϕ−1(K) is compact in Rn.)

(d.) All norms on a finite dimensional vector space over R are equivalent.

Proof. (a) By Definition 5.1.1, we are going to check that

(i) There is no doubt that ∥ · ∥∞ : X → [0, ∞) is a well-defined map.
(ii) ∥x∥∞ = maxi |ai| = 0 iff ai = 0 for each i iff x = 0 by Definition of basis and Definition of max.
(iii) Now for any x, y = b1ei + · · ·+ bnen ∈ X, which implies that x+y = (a1 + b1, · · · , an + bn), we have by triangle

inequalities and Definition of max
∥x + y∥∞ = max

i
|ai + bi| ≤ max

i
|ai| + max

i
|bi| = ∥x∥∞ + ∥y∥∞

(iv) For c ∈ R, we have cx = (ca1, · · · , can) by Definition of linear spaces and Definition of basis. So ∥cx∥∞ =
max

i
|cai| = |c| max

i
|ai| = |c|∥x∥∞

(b) ϕ is a linear map since ϕ((a1, · · · , an) + (b1, · · · , bn)) = a1e1 + · · · + anen = ϕ((a1 + b1, · · · , an + bn)) and
cϕ((a1, · · · , an)) = (ca1)e1 + · · · + (can)en = ϕ((ca1, · · · , can)) for any (a1, · · · , an), (b1, · · · , bn) ∈ Rn and c ∈ R.
Now by Proposition 5.2.2, it is enough to prove that ϕ is continuous at (0, · · · , 0) ∈ Rn. We choose (a(i)

1 , · · · , a
(i)
n ) →

(0, · · · , 0) in Rn. Then we have

∥ϕ((a(i)
1 , · · · , a(i)

n )) − ϕ((0, · · · , 0))∥∞ = ∥a1e
(i)
1 + · · · + ane(i)

n ∥∞ = max
k

|a(i)
k | ≤

√
(a(i)

1 )2 + · · · + (a(i)
n )2 =

∥(a(i)
1 , · · · , a(i)

n ) − (0, · · · , 0)∥

and we immediately proved the result after pushing both sides to ∞.

(c) Since ϕ is continuous, by the fact that continuous maps send compact sets to compact sets, it is enough to prove
that

K = ϕ(ϕ−1(K))

There is almost nothing to prove that K ⊂ ϕ(ϕ−1(K)) and almost nothing to prove that K ⊂ ϕ(ϕ−1(K)) either.

(d) We denote n := the dimensional of X for some n ∈ N. We choose a set {e1, · · · , en} to be a basis for X and we
are only interested in the finite dimensional real vector spaces, but there is almost no extra work for the complex
case. We denote (X, ∥ · ∥1) and (X, ∥ · ∥2) be norms on X. By the transitive property of equivalent norms, it is
enough to prove that (X, ∥ · ∥1) and (X, ∥ · ∥∞) are equivalent. For simplicity, we denote ∥ · ∥ := ∥ · ∥1. We denote
C := ∥e1∥ + · · · + ∥en∥ for some C ∈ (0, ∞). For any x = x1e1 + · · · + xnen ∈ X, by the triangle inequality of norms
and properties of norms, we have

∥x∥ = ∥x1e1 + · · · + xnen∥ ≤ |x1|∥e1∥ + · · · + |xn|∥en∥ ≤ max
1≤j≤n

|xj |∥e1∥ + · · · + max
1≤j≤n

|xj |∥en∥ = C∥x∥∞.

We denote the identity map c : (X, ∥ · ∥∞) → (X, ∥ · ∥); x 7→ x and there is almost nothing to prove that c is linear.
Then c is continuous by Proposition 5.2.2 and Definition 5.2.1. Since continuous maps send compact sets to compact
sets, by (c.), we know that c(K) := {x ∈ X : ∥x∥∞ = 1} is compact in (X, ∥ · ∥). Now since ∥ · ∥ : K → [0, ∞)
is continuous by the extreme value theorem, we can denote ∥a∥ := min

x∈K
∥x∥ for some a ∈ K. Now for any x ∈ X,∥∥ x

∥x∥∞

∥∥
∞ = ∥x∥∞

∥x∥∞
= 1 implies that x

∥x∥∞
∈ c(K) and hence ∥ x

∥x∥∞
∥ = ∥x∥

∥x∥∞
≥ ∥a∥ implying that ∥x∥ ≥ ∥a∥∥x∥∞.

So far we proved that for any x ∈ X,
∥a∥∥x∥∞ ≤ ∥x∥ ≤ C∥x∥∞.
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So by Definition 5.1.3, we finished the proof.
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Question 5.5: Let X, Y be a normed spaces and X be finite dimensional. Prove that any linear operator
T : X → Y is bounded. (Hint:Show that T is continuous at 0. See exercise 5.4.)

Proof. We choose T : X → Y be a linear operator randomly. Since X, Y are both normed spaces, by Proposition 5.2.2, it is
enough to prove that T is continuous at 0. Since X is a finite dimensional space, by Definition of finite dimensional space,
we can choose a set of linear independent vectors x1, · · · , xn ∈ X such that X = span{x1, · · · , xn} where n := dim(X)
for some n ∈ N. We randomly choose a sequence yj ∈ X such that yj → 0. Then for each j ∈ N, we can write

yj = α
(j)
1 x1 + · · · + α(j)

n xn

for some α
(j)
1 , · · · , α

(j)
n ∈ C. Then by properties of limit, we have

0 = lim
j→∞

yj = lim
j→∞

(α(j)
1 x1 + · · · + α(j)

n xn) = lim
j→∞

(α(j)
1 x1) + · · · + lim

j→∞
(α(j)

n xn) = ( lim
j→∞

α
(j)
1 )x1 + · · · + ( lim

j→∞
α(j)

n )xn

(3)

The last equality is true since for each 1 ≤ i ≤ n, we have by properties of norm and definition of the vector addition for
any j ∈ N

∥α
(j)
i xi − ( lim

j→∞
α

(j)
i )xi∥X = |α(j)

i − lim
j→∞

α
(j)
i |∥xi∥X

which immediately implies that after pushing j into ∞,

α
(j)
i xi → ( lim

j→∞
α

(j)
i )xi in X.

From (3), by definition of a basis, we have that for each 1 ≤ i ≤ n,

0 = lim
j→∞

α
(j)
i .

Furthermore, by Definition of linear operators and properties of limit, we have

lim
j→∞

T (yj) = lim
j→∞

T (α(j)
1 x1 + · · · + α(j)

n xn) = ( lim
j→∞

α
(j)
1 T (x1)) + · · · + ( lim

j→∞
α(j)

n T (xn))

= ( lim
j→∞

α
(j)
1 )T (x1) + · · · + ( lim

j→∞
α(j)

n )T (xn) = 0 · T (x1) + · · · + 0 · T (xn) = 0

where the third equality is due to Lemma 0.1

Lemma 0.1. Let (X, ∥ · ∥) be a norm space over C and x ∈ X and αi ∈ C be a convergent sequence with the limit α ∈ C.
Prove that

αix → αx in X

Proof. Left for readers.
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Question 5.6: Prove that any finite dimensional real normed vector space is a Banach space. (Hint: Exercise
5.4.)

Proof. Firstly, we know that every real n-dimensional vector space is isomorphic to (Rn,R). So it is enough to prove that
the normed space (Rn, ∥ · ∥) is a Banach space. By Question 5.4 (d), we know that the topology on a finite dimensional
space is actually independent of equipped norms, so once we prove it is complete w.r.t a well-defined norm, it is complete
w.r.t any well-defined norms. That is to say we can study the topology of a finite dimensional space by equipping it with
a norm. By (a) of Question 5.4, it is enough to prove that (Rn, ∥ · ∥∞) is a Banach space. By Definition 5.1.2, it remains
to prove the completeness. We randomly choose a Cauchy sequence {ak}∞

k=1 in (Rn, ∥ · ∥∞). For each k ∈ N, we denote
ak = (a(1)

k , · · · , a
(n)
k ) for some a

(1)
k , · · · , a

(n)
k ∈ R due to Definition of the product of sets. Now by Question 5.4(a), we

have for each 1 ≤ j ≤ n, for any m, l ∈ N, we have

|a(j)
m − a

(j)
l | ≤ max

1≤p≤n
|a(p)

m − a
(p)
l | = ∥am − al∥∞

where the last inequality is due to am − al = (a(1)
m , · · · , a

(n)
m ) − (a(1)

l , · · · , a
(n)
l ) = (a(1)

m − a
(1)
l , · · · , a

(n)
m − a

(n)
l ), which says

that for each 1 ≤ j ≤ n, the real sequence {a
(j)
k }∞

k=1 is a Cauchy sequence in the normed space (R, | · |). Then by its
completeness, we have a(j) ∈ R such that a

(j)
k → a(j) in R for each 1 ≤ j ≤ n. We denote a = (a(1), · · · , a(n)). There is

no doubt that a ∈ Rn. For less confusion, we denote ∥ · ∥ := ∥ · ∥∞. Now it remains to prove that lim
k→∞

∥ak − a∥ = 0. For
each k ∈ N, we have

∥ak − a∥ = max{|a(p)
k − a(p)| : 1 ≤ p ≤ n} = |a(p0)

k − a(p0)|

where we denote p0 := the index which value is the maximum of the set {|a(p)
k − a(p)| : 1 ≤ p ≤ n} and the second equal-

ity is due to the definition of max and the set is finite, which immediately implies that after pushing k into ∞,

∥ak − a∥ → 0

since 1 ≤ p0 ≤ n.

Remark 0.2. The argument can be rehearsed for a finite-dimensional complex normed space.
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Question 5.7: Let X be a Banach space.

(a) Prove that for any R ∈ L(X, X) with ∥R∥ < 1,
∑∞

i=0 Ri converges in L(X, X) and I − R is invertible with
(I − R)−1 =

∑∞
i=0 Ri.

(b) Prove that the set of all invertible operators in L(X, X) is open by showing that if T is invertible and

∥S − T∥ < 1
∥T −1∥ ,

then S is invertible. (Hint: ST −1 = I − (I − ST −1) and the given condition implies that ∥I − ST −1∥ < 1.)

Proof. (a) We choose R ∈ L(X, X) with ∥R∥ < 1 randomly. By Definition, we are required to prove that {
∑n

i=0 Ri}∞
n=1

is converges in L(X, X). Since X is Banach space, by Definition 5.1.2, we know that X is complete. Then by
Proposition 5.2.5., we know that L(X, X) is complete. Now by Definition of completeness, it is enough to prove

that {
n∑

i=0
Ri}∞

n=1 is Cauchy. We choose ϵ > 0 randomly. We are required to prove that there exists N ∈ N such

that

Am,n :=
∥∥∥ n∑

i=1
Ri −

m∑
i=1

Ri
∥∥∥ < ϵ (1)

for any n ≥ m ≥ N . But actually we have by triangle inequalities,

Am,n =
∥∥∥ n∑

i=m+1
Ri

∥∥∥ ≤
n∑

i=m+1
∥Ri∥ ≤︸︷︷︸

∗

n∑
i=m+1

∥R∥i =
∣∣∣ n∑

i=m+1
∥R∥i

∣∣∣ =
∣∣∣ n∑

i=1
∥R∥i −

m∑
i=1

∥R∥i
∣∣∣ =: am,n. (2)

and we have that there exists N ∈ N

am,n < ϵ (3)

for any n ≥ m ≥ N by Definition of completeness since
∞∑

i=1
∥R∥i where ∥R∥ < 1 is a geometric series and R is

complete. So combing (2) and (3), we proved (2) immediately. To complete the whole proof, it only remains to
prove (∗). We can prove it by induction on i and the inductive step can be finished quickly by Remark 5.1 where
Ri := R ◦ · · · ◦ R︸ ︷︷ ︸

i terms

. By Definition of groups, we are required to prove that

(I − R) ◦ A = I (4)
A ◦ (I − R) = I (5)

where we denote A :=
∞∑

i=0
Ri for some A ∈ L(X, X). But actually we have by distributive law of composition of

maps and A ∈ L(X, X)

(I − R) ◦ A = (I − R) ◦ (I + R + R2 + R3 + · · · ) = (I + R + R2 + R3 + · · · ) − (R + R2 + R3 + · · · ) = A − (A − I) = I

which says that we proved (4) and similarly we can prove (5).

(b) We denote B := {T ∈ L(X, X) : T is invertible } and we choose T ∈ B randomly. Since open balls form a basis for
the topology L(X, Y ), by Definition of basis, we are required to find R > 0 such that for any S ∈ L(X, Y ) with
∥S − T∥ < R, S is invertible. By Remark 5.2 and Definition L(X, X), we have 0 < ∥T ◦ T −1∥ ≤ ∥T∥∥T −1∥ which
implies that ∥T −1∥ > 0. Now we prove that 1

∥T −1∥ is a desired R. We choose S ∈ L(X, X) with ∥S − T∥ < 1
∥T −1∥

randomly. By Remark 5.2, we have ∥I − ST −1∥ = ∥T −1(S − T )∥ ≤ ∥T −1∥∥S − T∥ < 1 and hence by (a),
A := (I − (I − ST −1))−1 = (ST −1)−1 exists in L(X, X). By Definition of invertible maps, we have

A ◦ (S ◦ T −1) = I and (S ◦ T −1) ◦ A = I

1



Yunting Gao Homework 6 — Math 5323

which implies that

(T −1 ◦ A) ◦ S = T −1 ◦ (A ◦ S ◦ T −1) ◦ T = I and S ◦ (T −1 ◦ A) = I

where we conjugate the first equation by T and here we note that the group (L(X, Y ), ◦) is not commutative, which
implies that S−1 = T −1 ◦ A exists in L(X, X). Since such S was chosen randomly, we proved that B is open in
L(X, X).
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Question 5.8: Let X be a normed vector space and M be a proper closed subspace of X. Prove the following
statements

a. ∥x + M∥ = inf{∥x + y∥ : y ∈ M}
is a norm on X/M .

b. For any ϵ > 0, there exists an x ∈ X such that ∥x∥ = 1 and ∥x + M∥ ≥ 1 − ϵ.

c. The projection π : X → X/M defined by π(x) = x + M has norm 1.

d. X/M is complete if X is complete.

Proof. (a) We confirm that

(i) There is no doubt that the map X/M → [0, ∞); x + M 7→ inf{∥x + y∥ : y ∈ M} is well defined since by
Definition of inf, it cannot achieve ∞.

(ii) Now for any x ∈ M , we have −x ∈ M by Definition of subspaces, and hence ∥x + M∥ = 0 by Definition of
inf and Definition 5.1.1 (a) since (X, ∥ · ∥) is a normed space. Also if ∥x + M∥ = 0, then by Definition of inf
and Definition of normed spaces, we have as sequence −yk ∈ M such that −yk → x in X. By Definition of
closeness, we have x ∈ M which immediately implies that x + M = 0 ∈ X/M by Definition of quotient spaces.

(iii) We choose x + M, y + M ∈ X/M randomly. By Definition of triangle, we are required to prove that

∥[x] + [y]∥ ≤ ∥[x]∥ + ∥[y]∥.

By Definition of inf, we can choose a sequence ak ∈ M such that ∥[x]∥ = lim
k→∞

∥x + ak∥ and similarly we can
choose a sequence bk ∈ M such that ∥[y]∥ = lim

k→∞
∥y + bk∥. Then we have

∥[x]∥ + ∥[y]∥ = lim
k→∞

∥x + ak∥ + lim
k→∞

∥y + bk∥ ≥ lim
k→∞

∥(x + y) + (ak + bk)∥ ≥ ∥[x + y]∥

where the first inequality is due to triangle inequalities and the second inequality is due to Definition stated
in the question where ak, bk ∈ M implies that ak + bk ∈ M by Definition of subspaces

(iv) We choose c ∈ R and [x] ∈ X/M randomly. We are required to prove that

|c|∥[x]∥ = ∥[cx]∥ (6)

(6) holds obviously for c = 0. We consider the other case. For any z ∈ M , by Definition of inf, we have, since
z
c ∈ M by Definition of subspaces,

∥cx + z∥ = |c|∥x + z
c ∥ ≥ |c|[x].

This immediately implies that

∥[cx]∥ = inf{∥cx + z∥ : z ∈ M} ≥ |c|∥[x]∥. (7)

For any z ∈ M , by Definition of inf, since cz ∈ M by Definition of subspaces, we have

inf{∥cx + z∥ : z ∈ M} ≤ |c|∥x + z∥ = ∥cx + cz∥ (8)

which immediately implies that

1
|c|

inf{∥cx + z∥ : z ∈ M} ≤ ∥x + z∥. (9)

This immediately implies that

1
|c|

∥[cx]∥ ≤ ∥[x]∥ (10)

which implies that

∥[cx]∥ ≤ |c|∥[x]∥ (11)

Combing (11) and (7), we proved (6) immediately.
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(b) We choose ϵ > 0 randomly. If ϵ ≥ 1, there is nothing to prove since the norm is non negative function and for any
z ∈ X \ {0} we have ∥ z

∥z∥ ∥ = ∥z∥
∥z∥ = 1 by properties of norms. So we can consider the case 0 ≤ ϵ < 1. We are not

interested in the trivial case X/M = {0}. Now we choose z1 ∈ X \ M . Then ∥z1+M∥
1−ϵ ≥ ∥z1 + M∥ in this case and

by Definition of inf, we can choose y ∈ M such that

∥z1 + M∥
1 − ϵ

≥ ∥z1 + y∥ ≥ ∥z1 + M∥ (12)

Now we denote z := z1+y
∥z1+y∥ where z1 /∈ M implies that z1 + y ̸= 0 and consequently ∥z1 + y∥ ≠ 0. Then we have

∥z + M∥ = ∥[z]∥ = ∥[ z1+y
∥z1+y∥ ]∥ = 1

∥z1+y∥ ∥[z1 + y]∥ = 1
∥z1+y∥ ∥[z1]∥ ≥ 1 − ϵ

where the second equality is by Definition of z1, the third is due to Definition of norms, the forth is due to y ∈ M
and the last inequality is due to (12).

(c) There is no doubt that the canonical map π is linear from X to X/M and by Definition of L(X, X/M), we are
required to prove

sup{∥z + M∥ : z ∈ X and ∥z∥ = 1} = 1 (13)

By (c), we have that for any ϵ > 0, there exists z ∈ M such that

sup{∥z + M∥ : z ∈ X and ∥z∥ = 1} ≥ ∥z + M∥ ≥ 1 − ϵ

by Definition of sup. This immediately implies that

sup{∥z + M∥ : z ∈ X and ∥z∥ = 1} ≥ ∥z + M∥ ≥ 1 (14)

For any z ∈ X with ∥z∥ = 1, we have

∥z + M∥ ≤ ∥z + 0∥ = ∥z∥ = 1

by Definition of norms with 0 ∈ M . By Definition of sup, this implies that

sup{∥z + M∥ : z ∈ X and ∥z∥ = 1} ≤ 1 (15)

Combing (14) and (15), we proved (13).

(d) We randomly choose an absolutely convergent series
∑∞

n=1 an +M in X/M . Now by Theorem 5.1.5, it is equivalent
to prove that

∑∞
n=1 an + M converges. By Definition, we have

∞∑
n=1

∥an + M∥ < ∞. (16)

Now for each n ∈ N, by Definition of quotient norms, we have bn ∈ M such that

∥an − bn∥ ≤ ∥an + M∥ + 1
2n

. (17)

Combing (16) and (17), we have

∞∑
n=1

∥an − bn∥ ≤
∞∑

n=1
∥an + M∥ +

∞∑
n=1

1
2n

< ∞

which says that the series
∑∞

n=1(an − bn) is absolutely converges. Since X is a Banach space, by Theorem 5.1.5,
we have the series

∑∞
n=1(an − bn) converges in X. We denote x :=

∑∞
n=1(an − bn) for some x ∈ X. Now it remains

to prove that
∑n

k=1 ak + M → x + M in X/M . But actually we have for each k ∈ N

∥
n∑

k=1
(ak + M) − (x + M)∥ = ∥

n∑
k=1

(ak + M) − (x + M) −
n∑

k=1
(bk + M)∥ (18)

= ∥(
n∑

k=1
(ak + bk) − x) + M∥ (19)

≤ ∥
n∑

k=1
(ak − bk) − x∥ (20)
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where (18) is due to bk ∈ M for each k, (19) is due to Definition of addition for quotient spaces and (19) is due to
Definition of norms for quotient spaces, which immediately implies that after pushing n into ∞,

lim
n→∞

∥
n∑

k=1
(ak + M) − (x + M)∥ ≤ lim

n→∞
∥

n∑
k=1

(ak − bk) − x∥ = 0

which says that
n∑

k=1
ak + M → x + M in X/M.

Lemma 0.1. Let X, Y be normed spaces. Let L(X, Y ) denoted the normed space collecting bounded linear maps from X
to Y . Let x ∈ X and T ∈ L(X, Y ). Prove that ∥L∥∥x∥ ≥ ∥L(x)∥

Proof. For ∥x∥ = 0, we have nothing to prove. We consider the case ∥x∥ > 0. We have

∥L∥ ≥ ∥L( x
∥x∥ )∥ = 1

∥x∥ ∥L(x)∥

where the first is by Definition of operator norms since ∥ x
∥x∥ ∥ = 1 and the second is by Definition of norms, which implies

that

∥L∥∥x∥ ≥ ∥L(x)∥
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Question 5.9: Let X and Y be normed spaces and T ∈ L(X, Y ). Prove that

N(T ) := {x ∈ X : T (x) = 0}

is a closed subspace of X.

Proof. By Definition of inverse images, we have N(T ) = T −1({0})=ker(T ). From basic algebra knowledge, there is no
doubt that N(T ) is a subspace of X. Now it remains to prove that N(T ) is closed in X. By Proposition 5.2.2, we know
that T is continuous. By Remark 4.1, it is enough to prove that {0} is closed in Y . There is no doubt that {0} is compact.
By Proposition 4.3.7, it is enough to prove that Y is Hausdorff. We choose x, y ∈ Y with x ̸= y randomly. By Definition
of basis, we know that B(x, r

2 ) and B(y, r
2 ) open in Y where r := ∥x − y∥ > 0. Obviously B(x, r) ∩ B(y, r) ̸= ∅. Since

such x, y was chosen randomly, by Definition 4.1.4(c), we proved Y is Hausdorff and hence we finished the proof.
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Question 5.11: Prove that a linear functional f on a normed space X is bounded if and only if f−1({0}) is
closed. (Hint: If |f(xn)| → ∞ for a sequence of unit vectors {xn}, then yn = xn

f(xn) → 0, but f(yn) ↛ 0.)

Proof. We denote f : X → R be a linear functional. First we want to prove that if f is bounded, then f−1({0}) is closed.
By Proposition 5.2.2, we know T is continuous. By Remark 4.1, it is enough to prove that {0} is closed in R. Since R is
Hausdorff and {0} is compact, by Proposition 4.3.7, we immediately proved that {0} is closed in R and hence we finished
the implication.
Second we want to prove that if f−1({0}) is closed, then f is bounded. Equivalently we prove its contraposition, i.e., if
f is unbounded, then f−1({0}) is not closed. By Definition 5.2.3, we know that sup

∥x∥=1
|f(x)| = ∞. By Definition of sup,

we can choose a sequence xk ∈ X with ∥xk∥ = 1 such that |f(xk)| → ∞. We choose e ∈ X such that f(e) = 1. We
can always do it, since we are not interested in a trivial map and we can choose a ∈ X such that f(a) ̸= 0 and consider

a
f(a) ∈ X. Now we consider the sequence yk := e − xk

f(xk) in X. We have f(yk) = f
(

e − xk

f(xk)

)
= f(e) − f(xk)

f(xk) = 0 by
linearity of f . So we have yk ∈ f−1({0}) for each k. We have by Definition of norms and our choice of xk for each k ∈ N

∥yk − e∥ =

∥∥∥∥∥ xk

f(xk)

∥∥∥∥∥ = 1
|f(xk)| ∥xk∥ = 1

|f(xk)| (21)

which implies that by our choice of xk, after pushing both sides of (16) into ∞, we proved that yk → 0 in X due to the
topology on X is induced by norms. But we have f(yk) = f( xk

f(xk) ) = f(xk)
f(xk) = 1 by linearity of f . So we find a sequence

yk ∈ f−1({0}) such that yk → e with e /∈ f−1({0}). By Definition of closeness using sequences, we proved that f−1({0})
is not closed.

Lemma 0.2. Let X be a normed space and f : X → R be a linear map. Assume that f−1({0}) is closed. Prove that f
is bounded.

Proof. Idea: the composition of continuous maps is continuous and the natural projection of quotient spaces is continuous.
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Question 5.12: Let X be a normed vector space.

(a) Prove that if M is a closed subspace and x /∈ M ,then M + Cx is closed in X. (Hint: Theorem 5.2.10a).)

(b) Prove that every finite-dimensional subspace of X is closed.

Proof. (a) We note that M + Cx = {z + cx : z ∈ M, c ∈ C}. We randomly choose a sequence zk + ckx ∈ M + Cx such
that zk + ckx → a in X. By Definition of closeness, it is enough to show that a ∈ M + Cx. Since X is a normed
space with M a closed subspace, By Theorem 5.2.10(a), we can choose f ∈ X∗ such that f(x) ̸= 0, f

∣∣∣
M

= 0 and
∥f∥ = 1. Then we have for each k ∈ N by Linearity of f , f(zk) = 0 and Lemma 0.1∣∣∣ckf(x) − f(a)

∣∣∣ =
∣∣∣f(ckx − a) + f(zk)

∣∣∣ =
∣∣∣f(zk + ckx − a)

∣∣∣ ≤ ∥f∥∥zk + ckx − a∥ = ∥zk + ckx − a∥

which immediately implies ckf(x) → f(a) in R after pushing both sides into ∞ by our choice of zk + ckx, which
implies that ck → f(a)

f(x) by properties of limits with f(x) ̸= 0. Now since a = a − f(a)
f(x) x + f(a)

f(x) x, to finish the proof
it remains to show a − f(a)

f(x) x ∈ M . Since M is closed and zk ∈ M , it is enough to show that zk → a − f(a)
f(x) x in X.

Now we have by triangle inequalities and properties of norms, for each k ∈ N∥∥∥∥∥zk − (a − f(a)
f(x)x)

∥∥∥∥∥ =

∥∥∥∥∥zk + ckx − a + f(a)
f(x)x − ckx

∥∥∥∥∥ ≤ ∥zk + ckx − a∥ +

∣∣∣∣∣ck − f(a)
f(x)

∣∣∣∣∣∥x∥

which immediately implies that zk → a− f(a)
f(x) x after pushing both sides into ∞ by zk +ckx → a in X and ck → f(a)

f(x)
in R, and ∥x∥ < ∞. So we finished the proof.

(b) We denote M ⊂ X be a finite-dimensional subspace randomly. We denote n := dim(M) for some n ∈ N by
Definition of subspaces to be finite-dimensional since M is finite-dimensional. We want to prove that M is closed
by induction on n. For the base step n = 1, by Definition of basis, we can write M = span{x} = Cx (over C)
for some x ∈ M \ {0}. Then we have M = {0} + Cx. There is no doubt that the trivial subspace is closed in the
normed space X. Also x ̸= 0. Then by (a), M is closed. For the inductive step, we assume the statement:

every finite dimensional subspace of X is closed

is true when this subspace is of dimension n and we are required to prove that this statement holds when this
subspace is of dimension n + 1. By Definition of basis and the knowledge of linear algebra, we can write M =
Cx1 ⊕ · · · ⊕ Cxn+1 = N + Cxn+1 for some basis {x1, x2, · · · , xn+1} where we denote N := Cx1 ⊕ · · · ⊕ Cxn. Since
M is of dimension n + 1, xn+1 ∈ N and by the knowledge of linear algebra, N is finite-dimensional subspace of X
of dimension n. Then by the inductive hypothesis, we know that N is closed. Furthermore since xn+1 /∈ N , by (a),
we have M = N +Cxn+1 is closed. So we proved this statement holds for n + 1 and hence we finished the inductive
step and we proved the result by the induction method.
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Due: Fridays, 11 Mar 2022, by 11:59 p.m. CDT

Question 5.13: Let X be an infinite -dimensional normed vector space.

a. Prove that there is a sequence of unit vectors {xj} such that ∥xj − xk∥ ≥ 1
2 fo j ̸= k. (See Exercise 5.8 b.)

b. Prove that X is not locally compact by showing that Bϵ = {x ∈ X : ∥x∥ ≤ ϵ} is not compact for any
ϵ > 0.(Hint: Consider {ϵxj} for the {xj} in a.)

Proof. a. First after normalizing, we can choose a unit vector x1 ∈ X. There is no doubt that span{x1} is a proper
closed subspace of X by Question 5.12 b.) since X is an infinite-dimensional normed space. Applying Exercise 5.8
b) with span{x1} and ϵ = 1

2 , we can choose a unit vector x2 such that ∥x2 + span{x1}∥ ≥ 1
2 . Then by Definition of

norms and Definition of span, we have ∥x2 − x1∥ ≥ ∥x2 + span{x1}∥ ≥ 1
2 . Inductively we can choose n such unit

vectors xn ∈ X. There is no doubt that span{x1, · · · , xn} is a proper closed subspace of X by Question 5.12 b.)
since X is an infinite-dimensional normed space. Applying 5.8 b) with span{x1, · · · , xn} and ϵ = 1

2 , we can choose
a unit vector xn+1 ∈ X such that ∥xn+1 + span{x1, · · · , xn}∥ ≥ 1

2 . For each i ∈ {1, · · · , n}, by Definition of inf and
Definition of span, we have ∥xn+1 − xi∥ ≥ ∥xn+1 + span{x1, · · · , xn}∥ ≥ 1

2 . By our construction of such sequence
xn ∈ M of unit vectors , there is no doubt that for any j ̸= k ∥xj − xk∥ ≥ 1

2 . We use constructive proof to finish
this part.

b. We choose ϵ > 0 randomly. By Definition 4.4.1 and Definition of basis, and the topology on X is induced by a
norm, it is enough to prove that Bϵ := {x ∈ X : ∥x∥ ≤ ϵ}(= B(0, ϵ)) is not compact. Since any normed space is
a metric space and in a metric space, a space is compact if and only if it is sequentially compact, it is equivalent
to find a sequence yj ∈ Bϵ without a convergent sequence. Now by (a), we can choose a sequence xj ∈ X of unit
vectors such that ∥xj − xk∥ ≥ 1

2 for j ̸= k. For each j ∈ N, we denote yj := ϵxj . Now it is enough to prove that
such sequence yj ∈ X is the one in Bϵ which is lack of a convergent sequence. There is no doubt that yj ∈ Bϵ

by our choice of xj since ∥yj∥ = ∥ϵxj∥ = |ϵ|∥xj∥ = |ϵ|. Now if it has a convergent sequence yjk
then it must be a

Cauchy sequence, then we can find N ∈ N such that by Properties of norms with ϵ > 0

∥yjN
− yjN+1∥ = ∥ϵxjN

− ϵxjN+1∥ = |ϵ|∥xjN
− xjN+1∥ = ϵ∥xjN

− xjN+1∥ < ϵ
2

which implies that

∥xjN
− xjN+1∥ < 1

2

which obviously contradicts our choice of xj since jN ̸= jN+1. So such sequence yj ∈ Bϵ has no convergent
sequences.

1
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Question 5.14: Let M be an finite-dimensional subspace of a normed space X. Prove that there is a closed
subspace N such that X = M

⊕
N ,i.e., X = M + N and M ∩ N = {0}. (Hint: Theorem 5.2.10 (a) )

Proof. We denote n := dim(M) for some n ∈ N since M is of finite-dimensional. We denote {e1, · · · , en} ⊂ M be a basis
for M . For each j = 1, · · · , n, we denote Aj = span({e1, · · · , en} \ {ej}). For each j, there is no doubt that Aj is a closed
subspace of X by Question 5.12(b). Then for each j, By Theorem 5.2.10 with Aj and ej /∈ Aj , we have fj ∈ X∗ with

fj

∣∣
Aj

= 0 and fj(ej) ̸= 0. We denote N :=
n⋂

j=1
ker(fj). Now we prove that X = M + N and M ∩ N = {0}. We choose

x ∈ M ∩ N . Since x ∈ M , we can write x = α1e1 + · · · + αnen by Definition of basis. Now x ∈ N implies that for each j,
0 = fj(x) = fj(α1e1 + · · · + αnen) = α1fj(e1) + · · · + αnfj(en) = αjfj(ej) which implies that αj = 0 by our choice of fj .
So x = 0. We proved that M ∩ N = {0}. There is no doubt that M + N ⊂ X. It remains to prove that M + N ⊃ X.
We choose z ∈ X randomly. For each j = 1, · · · , n, we denote αj := fj(z)

fj(ej) . Now since

z = (z − α1e1 − · · · − αnen) + (α1e1 + · · · + αnen)

, to prove that z ∈ M + N , it is equivalent to prove that z − α1e1 − · · · − αnen ∈ N . For each j, by linearity of fj and
our choice of fj and Definition of αj

fj(z − α1e1 − · · · − αnen) = fj(z) − α1fj(e1) − · · · − αnfj(en) = fj(z) − αjfj(ej) = 0,

which implies that z − α1e1 − · · · − αnen ∈ ker(fj). This immediately implies that z − α1e1 − · · · − αnen ∈ N . by
Definition N . Since z ∈ X was chosen randomly, we finished the whole proof.
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Question 5.16: Let ∥ · ∥1 and ∥ · ∥2 be norms on a vector space X, and both (X, ∥ · ∥1) and (X, ∥ · ∥2) are Banach
spaces. Assume there is a c > 0 such that ∥ · ∥1 ≤ c∥ · ∥2. Prove the norms are equivalent. (Hint: Corollary 5.2.17.)

Proof. By Definition 5.1.3, we are required to find c1, c2 > 0 such that

c1∥x∥1 ≤ ∥x∥2 ≤ c2∥x∥1 for any x ∈ X

Now ∥ · ∥1 ≤ c∥ · ∥2 implies that 1
c ∥ · ∥1 ≤ ∥ · ∥2 where c > 0.So we find c1 := 1

c . Now it remains to find such c2 > 0. We
consider the identity map T : (X, ∥ · ∥2) → (X, ∥ · ∥1); x 7→ x. There is no doubt that T is a bijective linear map. Since
∥T (·)∥1 = ∥ · ∥1 ≤ c∥ · ∥2, by Definition 5.2.1, T ∈ L(X, X). Since (X, ∥ · ∥2) and (X, ∥ · ∥1) are both Banach spaces, by
Corollary 5.2.17, we know T is an isomorphism. By Definition T −1 : (X, ∥ · ∥1) → (X, ∥ · ∥2) is bounded. By Definition
5.2.1, we can choose c2 > 0 such that

∥ · ∥2 = ∥T −1(·)∥2 ≤ c2∥ · ∥1

where in Definition of inverse functions, T −1(x) = x for any x ∈ X. We found such c2 > 0 and hence we finished the
proof.
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Question 5.17: Let X and Y be Banach spaces, T ∈ L(X, Y ), N(T ) = {x ∈ X : T (x) = 0}, and M = range(T ).
Prove that X/N(T ) and M are isomorphic if and only if M is closed. (See Exercises 5.8 and 5.9.)

Proof. First we prove that if X/N(T ) and M are isomorphic, then M is closed. We choose a sequence yk ∈ M such that
yk → y in Y . By Definition of closeness, we are required to prove that y ∈ M . By Definition of the range of a maps, we
can write yk = T (xk) for some xk ∈ X for each k. Now by Definition of closeness, it remains to prove that y ∈ M . Since
X/N(T ) and M are isomorphic, by Definition 5.2.6 , we know that S−1 : M → X/N(T ); y 7→ x + N(T ) where T (x) = y
is a bounded linear. Then by Definition 5.2.1, we have some c > 0 such that for any k, l ∈ N,

∥(xk + N(T )) − (xl + N(T ))∥ ≤ c∥yk − yl∥ (1)

Since yk converges in Y , yk is Cauchy in Y . Then by (1), xk + N(T ) is Cauchy in X/N(T ). Since X is Banach space
and N(T ) is a closed subspace of X by Question 5.9., X/N(T ) is Banach by Question 5.8(d). So by Definition 5.12.,
xk + N(T ) → x + N(T ) for some x ∈ X. Since S : X/N(T ) → M ; x + N(T ) 7→ T (x) is a bounded linear map, by
Definition 5.2.1, we have some d > 0 such that for each k ∈ N,

∥T (x) − yk∥ = ∥T (x) − T (xk)∥ ≤ d∥(x + N(T )) − (xk + N(T ))∥.

Then by xk + N(T ) → x + N(T ) in X/N(T ), we have yk → T (x) in Y after pushing both sides into ∞. We know that
normed space must be Hausdorff and the limit must be unique in Hausdorff. So yk → y and yk → T (x) implies that
y = T (x), which implies that y ∈ M = range(T ) immediately by Definition of the range of a map.

Second we want to prove that if M is closed , then X/N(T ) and M are isomorphic. By Definition 5.2.6, it is enough to
prove that

S : X/N(T ) → M ; x + N(T ) 7→ T (x)

is a well-defined bijective map, S ∈ L(X/N(T ), M) and S−1 ∈ L(M, X/N(T )). S is well-defined map since for any
x1, x2 ∈ N , x1 + N(T ) = x2 + N(T ) implies that T (x1) − T (x2) = T (x1 − x2) = 0 by Definition of L(X, Y ) and Definition
of N(T ) since T ∈ L(X, Y ). S is linear since for x, y ∈ X and α ∈ C, by Definition of quotient spaces, Definition of
L(X, Y ) and Definition of S, we have

S(α(x + N(T )) + (y + N(T ))) = S((αx + y) + N(T )) = T (αx + y) = αT (x) + T (y) = αS(x + N(T )) + S(y + N(T )).

Now we want to prove that

S−1 : M → X/N(T ); y 7→ x + N(T )

where y = T (x) for some x ∈ X, is well defined. Such x ∈ X exists by Definition of M . Now if T (x1) = T (x2), then
since T ∈ L(X, Y ), 0 = T (x1 − x2) = T (x1) − T (x2) implying that x1 + N(T ) = x2 + N(T ). There is almost nothing to
prove that S ◦ S−1 = Id : M → M and S−1 ◦ S = Id : X/N(T ) → X/N(T ). The proof of the linearity of S−1 is left for
readers as an exercise. Since M is a closed subspace of Y and Y is a Banach space, by the fact that closed subspaces of
a Banach space is a Banach space, we know that M is a Banach space. Since X is a Banach space, by Exercise 5.8 and
5.9, we have X/N(T ) is a Banach space. Now by Corollary 5.2.17, to finish the whole proof, it is remains to prove that
S−1 is bounded. By Proposition 5.2.2, it is enough to prove that S−1 is continuous. We choose U + N(T ) be open in
X/N(T ) randomly with U open in X. By Definition of continuity, it remains to prove that S−1

∗ (U + N(T )) open in M .
Since X and Y be Banach space and T ∈ L(X, M) surjective, by open mapping Theorem, we know T is open. Since U
open in X, by Definition 5.2.14, we know that T (U) open in M . So now it remains to prove that

(A :=)S−1
∗ (U + N(T )) = T (U)

For y ∈ A, by Definition of preimages and S−1, we know that x ∈ U for some x ∈ X where T (x) = y, then y ∈ T (U) by
Definition of images. For y ∈ T (U), by Definition of images, we know y = T (x) for some x ∈ U , then S−1(y) = x + N(T )
by Definition of S−1, which implies that y ∈ S−1

∗ (U + N(T )) by Definition of preimages.
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Question 5.18: Let X be a Banach space and S ⊂ X such that sup
x∈S

|f(x)| < ∞ for all f ∈ X∗. Prove that

sup
x∈S

∥x∥ < ∞.

Proof. We choose x ∈ S randomly. Now we define x : X∗ → R by x(f) = f(x). Now we want to apply Theorem 5.2.23
called Uniform Boundedness Principle to it. We denote A := {x : X∗ → R : x ∈ S}. Now we want to check that
x ∈ L(X∗,R) for each x ∈ S. The checking that x is linear is left for readers. We only check that x is bounded, which is

sup
f∈X∗

|x(f)| < ∞

For each f ∈ X∗, we have |x(f)| = |f(x)| ≤ sup
a∈S

|f(a)| < ∞ since x ∈ S. This implies that sup
f∈X∗

|x(f)| ≤ sup
a∈S

|f(a)|. So

we proved that A ⊂ L(X∗,R). Furthermore for each f ∈ X∗, we have

sup
x∈A

|x(f)| ≤ sup
f∈X∗

|x(f)| < ∞

Since X is a Banach space and R is a normed space, by Theorem 5.2.23, we have since {x : x ∈ S} = {x : x ∈ A} by our
Definition of A

sup
x∈S

∥x∥ = sup
x∈A

∥x∥ < ∞

Now to finish the proof, it remains to show that for each x ∈ S. ∥x∥ = ∥x∥. By Theorem 5.2.10(d), Lemma 0.1 and
Definition 5.2.6, we know that ∥x∥ = ∥T (x)∥ ≤ ∥T∥∥x∥ = 1 · ∥x∥ where we denote T : x 7→ x. Also by Definition of
operator norms, we have ∥x∥ = sup

f∈X∗ and ∥f∥=1
|x(f)| ≥ |x(g)| = ∥x∥ where we denote g : x 7→ ∥x∥ and such g ∈ X∗ exists

given by Theorem 5.2.10(b).
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Question 5.19: Let X and Y be Banach spaces and T : X → Y be a linear operator . Prove that if f ◦ T ∈ X∗

for every f ∈ Y ∗ , then T is bounded.

Proof. Since X, Y are both a Banach space and T is a linear operator, by Theorem 5.2.22, it remains to prove that T is
closed. By Definition 5.2.21, we are required to prove that

Γ(T ) = {(x, y) ∈ X × Y : y = T (x)}

is closed in X × Y . We choose a sequence (xk, yk) ∈ Γ(T ) with (xk, yk) → (x, y) in X × Y . By Definition of closeness, we
are required to prove that (x, y) ∈ Γ(T ), i.e. y = T (x). By the product topology, we have xk → x in X and yk → y in
Y . We choose f ∈ Y ∗ randomly. By the given condition, we have f ◦ T ∈ X∗ which says that f ◦ T is continuous. So we
have

f(T (xk)) = f ◦ T (xk) → f ◦ T (x) = f(T (x)) (1)

By the continuity of f , we have by Definition of Γ(T )

f(T (xk)) = f(yk) → f(y) (2)

Since R is Hausdorff, by the uniqueness of limits, (1) and (2) implies that f(y) = f(T (x)). But Such f ∈∗ was chosen
randomly, by Lemma 0.1 we must have y = f(x). So far we finished the proof.

Lemma 0.1. Let X be a real vector space and x, y ∈ X. Prove that if f(x) = f(y) for any f ∈ Y ∗, then x = y.

Proof. We argue this by contradiction and suppose that x ̸= y. Then by Theorem 5.2.10(c), there is g ∈ X∗ such that
g(x) ̸= g(y), which gives us a contradiction.

1
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Question 5.20: Let X and Y be Banach spaces and {Tn} ⊂ L(X, Y ) such that lim
n→∞

Tn(x) exists for every x ∈ X.
Define T (x) = lim

n→∞
Tn(x). Prove that T is a bounded linear operator from X to Y .

Proof. We denote A = {Tn : n = 1, · · · , }. Then we have A ⊂ L(X, Y ) by the given condition. Now for each x ∈ X,
since converge sequences must be bounded, lim

n→∞
Tn(x) exists implies that sup

n∈N
||Tn(x)∥ < ∞. So we have for each

x ∈ X, sup
Tn∈A

∥Tn(x)∥ < ∞. Then, since X be a Banach space and Y be a normed space, by Theorem 5.2.23, we have

sup
Tn∈A

∥Tn∥ < ∞. We choose x ∈ X with ∥x∥ = 1 randomly. For each n ∈ N, by Definition of sup, we have

∥Tn(x)∥ ≤ sup
Tl∈A

∥Tl(x)∥(=: M),

for some M ∈ R, which immediately implies that after pushing both sides into ∞, we have by Definition of T and the
continuity of norms

∥T (x)∥ = ∥ lim
n→∞

Tn(x)∥ = lim
n→∞

∥Tn(x)∥ ≤ M

But such x ∈ X was chosen randomly. So we proved that T is bounded by Exercise 5.3.
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Question 5.21: Let H be an inner product space, Prove that S⊥ = S
⊥ for any S ⊂ H.

Proof. We choose S ⊂ H randomly. There is no doubt that S
⊥ ⊂ S⊥ by Definition 5.3.7 since S ⊂ S. Now it remains

to prove that S⊥ ⊂ S
⊥. But we have by Remark 5.4 and S ⊂ S

S⊥ =
⋂
y∈S

f−1
y ({0}) ⊂

⋂
y∈S

f−1
y ({0}) = S

⊥

So we finished the proof.
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Question 5.22: Let M be a subspace of a Hilbert space H. Prove that

M⊥⊥ = M

Proof. Since H is a Hilbert space, by Definition 5.3.4, we have H is an inner product space. By Question 5.21, we have
M⊥ = M

⊥ and hence M⊥⊥ = M
⊥⊥. Now it remains to prove that M = M

⊥⊥. Since M is a subspace, then M is a
closed subspace. So by Lemma 0.2„ we finish the proof immediately.

Lemma 0.2. Let M be a closed subspace of a Hilbert space H. Prove that

M = M⊥⊥

Proof. We choose a ∈ M randomly. We choose b ∈ M⊥ randomly. By Definition 5.3.7, we have

⟨a, b⟩ = 0.

But such b ∈ M⊥ was chosen randomly. So by Definition 5.3,7 we proved that a ∈ M⊥⊥. But such a ∈ M was chosen
randomly. So we proved that M ⊂ M⊥⊥. We choose a ∈ M⊥⊥ randomly. Since M is a closed subspace of a Hilbert
space H , by Theorem 5.3.9, we can write a = b1 + b2 for some b1 ∈ M and b2 ∈ M⊥. Then by Definition 5.3.7 and
Definition 5.3.1.

⟨b2, b2⟩ = ⟨a − b1, b2⟩ = ⟨a, b2⟩ − ⟨b1, b2⟩ = 0 − 0 = 0

which implies that b2 = 0 by Definition 5.3.1(iii). So we have a = b1 ∈ M . But such a ∈ M⊥⊥ was chosen randomly. So
we proved that M⊥⊥ ⊂ M and hence we finished proof.
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Question 5.23: Let H be a Hilbert space and T ∈ L(H, H). Prove the following statements.

a. There is a unique T ∗ ∈ L(H, H), called the adjoint of T , such that ⟨T (x), y⟩ = ⟨x, T ∗(y)⟩ for all x, y ∈ H,
T ∗∗ = T , and ∥T ∗∥ = ∥T∥ .(Hint: Theorem 5.3.10)

b. range(T )⊥ = null(T ∗) and null(T )⊥ = range(T ∗).

Proof. a. We are only interested in the real normed space. We first prove the existence. We choose y ∈ H randomly.
We define the map ly : H → R by x 7→ ⟨T (x), y⟩. We check its linearity. For α ∈ R, x1, x2 ∈ H, by the linearity of T
and Definition of inner product spaces, ly(αx1 +x2) = ⟨T (αz1 +z2), y⟩ = α⟨T (z1), y⟩+ ⟨T (z2), y⟩ = αly(z1)+ ly(z2).
We check its boundedness. For any x ∈ H with ∥x∥ = 1, we have by Schwartz inequalities and Definition of operator
norms, |ly(x)| = |⟨T (x), y⟩| ≤ ∥T (x)∥∥y∥ ≤ ∥T∥∥x∥∥y∥ = ∥T∥∥y∥. Now by the Riesz-Frecher theorem, there is a
unique z ∈ H with ly(x) = ⟨x, z⟩ for all x ∈ H, with ∥ly∥ = ∥z∥. We define T ∗(y) = z by the above relations. The
uniqueness of z ensures the this map is well-defined a linear operator. We only check that ∥T ∗∥ < ∞. For y ∈ H
with ∥y∥ = 1, we have

∥z∥ = ∥ly∥ = sup
x∈H and ∥x∥=1

|⟨T (x), y⟩| ≤ sup
x∈H and ∥x∥=1

∥T (x)∥∥y∥ ≤ sup
x∈H and ∥x∥=1

∥T∥∥x∥ = ∥T∥ < ∞

where the first is due to Riesz-Frechet theorem, the second is due to Definition of operator norms, the third is by
Schwartz inequalities, the forth is by Definition of operator norms, and the last is due to T ∈ L(H, H). So we proved
that T ∗ ∈ L(H, H). Now we want to prove the uniqueness. We choose T1 ∈ L(H, H) satisfying this condition. We
choose y ∈ H randomly. Then

⟨T (x), y⟩ = ⟨x, T1(y)⟩for all x ∈ H (3)

Also we have

⟨T (x), y⟩ = ⟨x, T ∗(y)⟩ for all x ∈ H (4)

Combing (3) and (4), we have

0 = ⟨x, T1(y) − T ∗(y)⟩ for all x ∈ H,

which gives that

0 = ⟨T1(y) − T ∗(y), T1(y) − T ∗(y)⟩

which immediately implies that T1(y) = T ∗(y) by Definition 5.3.1(iii). But such y ∈ H was chosen randomly. We
finished the proof of the uniqueness of the adjoint. We choose y ∈ H randomly. Then by Definition 0.2.1 and
Definition 5.3.1(ii), we have

⟨T ∗(x), y⟩ = ⟨x, T ∗∗(y)⟩ for any x ∈ H (5)

and

⟨x, T (y)⟩ = ⟨T ∗(x), y⟩ for any x ∈ H. (6)

Combing (5) and (6), we have

⟨x, T (y) − T ∗∗(y)⟩ for any x ∈ H,

which implies that after plugging x = T (y) − T ∗∗(y), we have

0 = ⟨T (y) − T ∗∗(y), T (y) − T ∗∗(y)⟩

which implies that by Definition 5.3.1(iii), T (y) = T ∗∗(y). But such y ∈ H was chosen. We proved that T = T ∗∗.
By the inequality in the box and definition of operator norms, we proved that ∥T ∗∥ ≤ ∥T∥. Then similarly, we have
∥T ∗∗∥ ≤ ∥T ∗∥. Then furthermore by T = T ∗∗, we have ∥T ∗∥ ≤ ∥T∥ = ∥T ∗∗∥ ≤ ∥T ∗∥, which implies immediately
that ∥T∥ = ∥T ∗∥.

b. First we prove that range(T )⊥ = null(T ∗). For any x ∈ range(T )⊥,

⟨T ∗(x), T ∗(x)⟩ = ⟨T (T ∗(x)), x⟩ = 0
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where the first inequality is due to Definition 0.2.1 and the second is due to Definition 5.3.6 and Definition of images
of maps. This implies that we proved that range(T )⊥ ⊂ null(T ∗). For any x ∈ null(T ∗)

⟨z, x⟩ = ⟨T (y), x⟩ = ⟨y, T ∗(x)⟩ = ⟨y, 0⟩ = 0

holds for any z ∈ range(T ) we denote z = T (y) for some y ∈ H, where the first equality is due to Definition of
range of maps, the second is due to Definition 0.2.1, the third is due to Definition of null of maps and the last is
due to the sequence of Definition 5.3.1(i). This implies that null(T ∗) ⊂ range(T ⊥) by Definition 5.3.7.
We prove that null(T )⊥ = range(T ∗). Actually we have

null(T )⊥ = null(T ∗∗)⊥ = range(T ∗)⊥⊥ = range(T ∗)

where the first is due to (a), the second is due to the previous result and the third is due to Question 5.22 since
range(T ∗) is a closed subspace of the Hilbert space H by the knowledge of basic linear algebra.

Definition 0.2.1. Let H be a Hilbert space and T ∈ L(H, H). There is a unique T ∗ ∈ L(H, H), called the adjoint of T ,
such that

⟨T (x), y⟩ = ⟨x, T ∗(y)⟩

holds for any x, y ∈ H.
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Due: Fridays, 1 April 2022, by 11:59 p.m. CDT

Question 5.24: Let K be a closed convex set in a Hilbert space H. Prove that

a. Any sequence in K whose norms approach to inf
x∈K

∥x∥ is a Cauchy sequence, and

b. K has a unique element of minimal norm.

(Hint: The parallelogram law.)

Proof. a. We randomly choose a sequence xn ∈ K such that ∥xn∥ → inf
x∈K

∥x∥ in R. We choose ϵ > 0 randomly.

By Definition of limits, we have inf
x∈K

∥x∥ ∈ R. We denote d := inf
x∈K

∥x∥ for some d ∈ R. But actually we have

∥∥xm − xn

∥∥2 = 2
∥∥xn

∥∥2 + 2
∥∥xm

∥∥2 − 4
∥∥∥∥xn + xm

2

∥∥∥∥2
≤ 2

∥∥xn

∥∥2 + 2
∥∥xm

∥∥2 − 4d2 (1)

where the first is due to Theorem 5.3.6. and the second is due to Definition of convex sets which gives that
xn, xm ∈ K implies that xn+xm

2 ∈ K and Definition of inf. By Definition of limits, this gives a N1 ∈ N such that

∥xn∥2 <
ϵ + 4d2

4 (2)

holds for any n ∈ N with n ≥ N1. Similarly, we have a N2 ∈ N such that

∥xm∥2 <
ϵ + 4d2

4 (3)

holds for any m ∈ N with m ≥ N2. Then Taking N := max{N1, N2}, combing (1), (2) and (3), we have∥∥xm − xn

∥∥2
< 2 ϵ+4d2

4 + 2 ϵ+4d2

4 − 4d2 = ϵ

holds for any m, n ∈ N with m, n ≥ N . But such ϵ > 0 was chosen randomly. By Definition of Cauchy sequences,
we finished the proof.

b. First we prove the uniqueness. We choose x, y ∈ H such that ∥y∥ = ∥x∥ = inf
z∈K

∥z∥. We denote d := inf
z∈K

∥z∥. Then
(1) gives that

∥x − y∥2 ≤ 2∥x∥2 + 2∥y∥2 − 4d2 = 2d2 − 2d2 − 4d2 = 0,

which immediately implies that x = y by Definition of norms. We prove the existence.

1
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Question 5.25: Let (X, M, µ) be a measure space and {En} be a partition of X. Let fnk ∈ L2(µ) with n, k ∈ N
be a collection of measurable functions. Prove that if {fnkχEn

: k ∈ N} is an orthonormal basis for L2(En, µ),
n = 1, 2, · · · , then {fnk : n, k ∈ N} is an orthonormal basis for L2(µ).

Proof. We denote B := {fnk : n, k ∈ N}. We prove that B collects unit vectors. We choose fnk ∈ B randomly. Then

∥fnk∥2 = ⟨fnk, fnk⟩ (4)

=
∫

X

fnkfnkdµ (5)

=
∫⋃∞

p=1
Ep

fnkfnkdµ (6)

=
∞∑

p=1

∫
Ep

fnkfnkdµ (7)

=
∫

En

fnkχnfnkχnkdµ (8)

= ⟨fnkχn, fnkχn⟩En
(9)

= 1 (10)

where (4) is by Definition 5.3.1, (5) is by Example 5.4(e), (6) is by Definition of a partition, (7) is by properties of
integration, (8) is by the given condition, (9) is by Example 5.4(e) and (10) is by Definition 5.3.11 and Definition 5.3.14,
which implies that ∥fnk∥ = 1 immediately.
We prove that elements of B are orthogonal with each other. We choose fnk, fpl ∈ B such that (n, k) ̸= (p, l) randomly.
Then

I := ⟨fnk, fpl⟩ =
∫

X

fnkfpldµ (11)

=
∞∑

m=1

∫
Em

fnkfpldµ (12)

=
∞∑

m=1

∫
Em

fnkχEm
fplχEm

dµ (13)

Now if n ̸= p, (13) says I = 0. We consider n = p then k ̸= l since (n, k) ̸= (p, l). Then (13) says

I =
∫

En

fnkχEn
fnlχEn

dµ = ⟨fnkχEn
, fnlχEn

⟩En
= 0

where the last equality is due to Definition 5.3.11 and Definition 5.3.14 with k ̸= l. Finally we prove the completeness
and hence by Definition 5.3.14, Definition 5.3.11 and Theorem 5.3.13, we finish the proof. We choose g ∈ L2(µ) such that
⟨g, fnk⟩ = 0 for any n, k ∈ N randomly. We fix n ∈ N randomly. Then we have

0 = ⟨g, fnk⟩ = ⟨gχEn
, fnkχEn

⟩En

holds for any k, which says that

gχEn
= 0

by Theorem 5.3.13 and Definition 5.3.14. But such n ∈ N was chosen randomly. So we have gχEn = 0 for each n ∈ N.
Then by Definition of characteristic functions and Definition of partitions

g = gχX = gχ⋃∞
n=1

En
= g(

∞∑
n=1

χEn
) =

∞∑
n=1

gχEn
= ∞ · 0 = 0

By Theorem 5.3.13(a), we proved the completeness.
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Question 5.26: Let {fm} and {gn} be orthonormal bases for L2(µ) and L2(ν) over σ−finite measure space
(X, M, µ) and (Y, N , ν), respectively. Prove that {hmn = fm(x)gn(y)} is an orthonormal basis for L2(µ × ν)

Proof. We denote B := {h(m,n) : m, n ∈ N}, where we define h(m,n) : X × Y → R; (x, y) 7→ fm(x)gn(y) for each m, n ∈ N.
We prove that B ⊂ L2(µ × ν) is orthonormal. We choose hmn, hkl ∈ B with (m, n) ̸= (k, l). Then we have

⟨hmn, hkl⟩ =
∫

X×Y

hmn(x, y)hkl(x, y)d(µ × ν) (14)

=
∫

X×Y

fm(x)gn(y)fk(x)gl(y)d(µ × ν) (15)

=
∫

X×Y

(
fm(x)fk(x)

)(
gn(y)gl(y)

)
d(µ × ν) (16)

=
( ∫

X

fm(x)fk(x)dµ

)( ∫
Y

gn(y)gl(y)dν

)
(17)

= ⟨fm, fn⟩⟨gn, gk⟩ (18)
= 0 (19)

where (4) is due to Definition of L2(µ × ν), (5) is due to Definition of hmn, (7) is by Fubini Theorem, (8) is due to
Definition of L2(µ) and L2(ν) and (9) is by our choice of hmn and hkl and Definition 5.3.11 and Definition 5.3.14 where
{fm} and {gn} are orthonormal bases for L2(µ) and L2(ν) respectively. We choose hmn ∈ B randomly. Then we have

⟨hmn, hmn⟩ =
∫

X×Y

hmn(x, y)hmn(x, y)d(µ × ν) (20)

=
∫

X×Y

fm(x)gn(y)fm(x)gn(y)d(µ × ν) (21)

=
∫

X×Y

f2
m(x)g2

n(y)d(µ × ν) (22)

=
( ∫

X

f2
m(x)dµ

)( ∫
Y

g2
n(y)dν

)
(23)

= ⟨fm, fm⟩⟨gn, gn⟩ (24)
= 1 · 1 (25)
= 1 (26)

where (10) is due to Definition of L2(µ × ν), (11) is due to Definition of hmn, (13) is by Fubini Theorem, (14) is by
Definition of L2(µ) and L2(ν), (15) is by Definition 5.3.11 and Definition 5.3.14 where {fm} and {gn} are orthonormal
bases for L2(µ) and L2(ν) respectively. We prove that B is a basis for L2(µ × ν). We randomly choose ϕ ∈ L2(µ × ν)
such that ⟨ϕ, hmn⟩ = 0 for any m, n ∈ N. Then for any m, n ∈ N, we have

0 = ⟨ϕ, hmn⟩ =
∫

X×Y

ϕ(x, y)hmn(x, y)d(µ × ν) (27)

=
∫

Y

∫
X

ϕ(x, y)hmn(x, y)dµ(x)dν(y) (28)

=
∫

Y

∫
X

ϕy(x)fm(x)gn(y)dµ(x)dν(y) (29)

=
∫

Y

gn(y)
( ∫

X

ϕy(x)fm(x)dµ(x)
)

dν(y) (30)

=
∫

Y

gn(y)⟨ϕy, fm⟩dν(y) (31)

=
∫

Y

gn(y) · 0dν(y) (32)

= 0 (33)

where we denote ϕy(x) := ϕ(x, y) for each y ∈ Y where (17) is due to Definition of L2(µ×ν), (18) is by Fubini’s Theorem,
(21) is by Definition of L2(µ) and (22) is By Fubini Theorem which implies that ϕy ∈ L2(µ) for each y ∈ Y and Definition
5.3.14. Finally by Definition 5.3.14, we proved that B is an orthonormal basis for L2(µ × ν).
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Question 5.27: Prove the following statements

a. The set of all polynomials is dense in L2([0, 1], m).(Hint: Theorems 6.1.8 and 4.5.6)

b. L2([0, 1], m) is separable. (Hint: Proposition 5.3.16)

c. L2(R, m) is separable.(See Exercise 5.25)

d. L2(Rn, m) is separable. (See Exercise 5.26)

Proof. a. We denote P :=
{

p : [0, 1] → R
∣∣∣∣p(x) = a0 +a1x+ · · ·+anxn where an, · · · , a0 ∈ R with an ̸= 0 and n ∈ N

}
.

We denote Cc([0, 1],R) =
{

f : [0, 1] → R continuous
∣∣∣∣∃ a compact K ⊂ [0, 1] such that f(x) = 0 ∀x ∈ [0, 1] \ K

}
.

By Theorem 6.1.8 with n = 1 and p = 2, we have

Cc([0, 1],R) = L2([0, 1], m) (34)

We want to use Theorem 4.5.6 to prove that

P = C([0, 1],R) = Cc([0, 1],R) (35)

There is no doubt that P ⊂ C([0, 1],R) since polynomials are always continuous. There is no doubt that [0, 1] is
a compact Hausdorff space since a subspace of a Hausdorff space is always Hausdorff and any closed and bounded
subset of R is compact due to Heine–Borel theorem. We prove that P is a subalgebra. The checking that P is a
subspace of C([0, 1],R) over R is left for readers. There is no doubt that the multiplication of polynomials is still a
polynomial. There is no doubt that P separates points in [0, 1] and quadratic functions can finish this work. Also
the constant function is in P since ([0, 1] ∋ z 7→ p(z) := 1 ∈ R) is a polynomial. Now by Theorem 4.5,6 we prove
(25). Combing (24) and (25), by Definition of dense and Definition 4.1.1, we proved that P is dense in L2([0, 1], m).

b. Since L2([0, 1], m) is a Hilbert space, by Proposition 5.3.16, it is equivalent to prove that L2([0, 1], m) has a countable
orthonormal basis. We finish this question by a constructive proof. We denote B1 = {1, x, x2, · · · }. We apply the
Gram-Schmidt orthogonalization to B1 to get its orthonormal set. We do it in the following inductive way. We set

u1 := 1 e1 := u1
∥u1∥ = 1

1 = 1

u2 := v2 − proju1(v2) = v2 − ⟨u1,v2⟩
⟨u1,u1⟩

u1 = x −
∫

[0,1]
xdµ(x) = x − 1

2 e2 := 1
12 (x − 1

2 )

u3 := v3 − proju1(v3) − proju2(v3) = v3 − ⟨u1,v3⟩
⟨u1,u1⟩u1 − ⟨u2,v3⟩

⟨u2,u2⟩u2 = x2 − x + 1
6 e3 := x4 − 2x3 + 4

3 x2 − 1
3 x + 1

36

By this process, there is no doubt that ⟨ei, ej⟩ = 1 for i ̸= j and ⟨ei, ei⟩ = 1 for all i. We have that

un = vn −
n−1∑
l=1

⟨ul,vn⟩
⟨ul,ul⟩

ul (36)

and we have

en = un√
⟨un,un⟩

(37)

We denote B2 := {e1, · · · , }. We choose g ∈ C([0, 1],R) randomly. By Definition 5.3.14 and Theorem 5.3.13(b), it
remains to prove that

∥g∥2 =
∞∑

n=1

∣∣⟨g, em⟩
∣∣2 (38)

By (a), we can choose a sequence pl ∈ P such that

lim
l→∞

pl = g

So now it is enough to prove that for each l ∈ N,

∥pl∥2 =
∞∑

n=1

∣∣⟨pl, en⟩
∣∣2 (39)

since by the continuity of norms and the serious converges where we can exchange limits freely
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∥g∥2 = ∥ lim
l→∞

pl∥2 = lim
l→∞

∥pl∥2 = lim
l→∞

∞∑
n=1

∣∣⟨pl, en⟩
∣∣2 =

∞∑
n=1

∣∣⟨ lim
l→∞

pl, en⟩
∣∣2 =

∞∑
n=1

∣∣⟨p, en⟩
∣∣2

For making life easier, we denote p := pl. Now it is enough to prove the assertion:

(A :=)∥p∥2 =
∞∑

n=1

∣∣⟨p, en⟩
∣∣2(=: B)

where en is given by (26), (27) and vn = xn for each n ∈ N. we denote

p(x) = a0 + a1x1 + a2x2 + · · · + anxn

for some n ∈ N with n ̸= 0, and a0, · · · , an ∈ R with an ̸= 0. Now we want to prove this by induction on degree(p).
For the base step which degree(p) = 0, we have by Definition 5.3.1

A = ⟨a0, a0⟩ = a2
0⟨1, 1⟩ = a2

0

and we also have

B =
∞∑

n=1

∣∣⟨a0, en⟩
∣∣2 =

∞∑
n=1

∣∣a0⟨1, en⟩
∣∣2 = a2

0

∞∑
n=1

∣∣⟨1, en⟩
∣∣2 = a2

0

∞∑
n=1

∣∣∣∣⟨1,
un√

⟨un,un⟩
⟩
∣∣∣∣2

This is left as an exercise left for readers. From the previous discussion, we know that it is now enough to prove
that B spans P By Gram-Schmidt process and the knowledge of linear algebra, we know that if B1 spans P,
then B spans P. Now it is enough to prove that B1 spans P by Definition 0.0.1. We choose p ∈ P such that
⟨p, xl⟩ = 0 for each l ∈ N. By Theorem 5.3.13 and Definition 5.3.14, it remains to prove that p = 0. We denote
p(x) = a0 + a1x + · · · + anxn for some a0, · · · , an ∈ R with an ̸= 0 where n := degree(p). Now by our choice of p,
we have

⟨p, 1⟩ = 0, · · · , ⟨p, xn⟩ = 0

Then by Definition 5.3.1, we have

0 = a0⟨p, 1⟩ = ⟨p, a0⟩, · · · , an⟨p, xn⟩ = ⟨p, anxn⟩ = 0

Adding them together, by Definition 5.3.1, we have

0 = ⟨p, a0⟩ + · · · + ⟨p, anxn⟩ = ⟨p, a0 + · · · + anxn⟩ = ⟨p, p⟩

which immediately implies that by Definition 5.3.1. p = 0.

c. Since L2(R, m) is a Hilbert space, by Proposition 5.3.16, it is equivalent to prove that L2(R, m) has a countable
orthonormal basis. We fix n ∈ Z randomly. By (b), we know that L2([n, n+1], m) is separable. Then by Proposition
5.3.16, L2([n, n + 1], m) has countable orthornormal and we denote it by {pnl

∣∣
[n,n+1] : l ∈ N}. Now by Question

5.25, if we prove that {[n, n + 1] : n ∈ Z} is a partition of R, then {pnl : l ∈ N n ∈ Z} is an orthonormal basis
for L2(R, m) and obviously it is countable. There is a little confused here that {[n, n + 1] : n ∈ Z} is a partition
of R since [1, 2] ∩ [2, 3] ̸= ∅. ALso in the previous proof, the compactness of [n, n + 1] is critical in the use of
Stone-Weierstrass Theorem.

d. Since A := L2(Rn, m) is a Hilbert space, by Proposition 5.3.16, it is equivalent to prove that A has a countable
orthonormal basis. Now by Question 5.26 and the inductive method, it is enough to prove that L2(R, m) has a
countable orthonormal basis. Then by Proposition 5.3.16, it is equivalent to prove that L2(R, m) is separable, which
is given by (c). We denote an orthonormal basis for L2(R(i), m) by

Bi =
{

f
(i)
l : l ∈ N

}
for each i = 1, · · · , n Now we define from Rn to R

gil(x(1), · · · , x(n)) =
n∏

i=1
f

(i)
l

(
x(i))
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for each i = 1, · · · , n and l ∈ N Then B :=
{

gil : i = 1, · · · , n, l ∈ N
}

is an orthonormal basis for L2(Rn, m).

Definition 0.0.1. Let H be an inner product space and Let B ⊂ H be a subset. B is said to span H if it satisfies one of
the following equivalent conditions

a. For any v ∈ H, if ⟨v, a⟩ = 0 for any a ∈ B, then v = 0.

b. For any v ∈ H,
∑
a∈B

|⟨v, a⟩|2 = ∥v∥2

c. For any v ∈ H, v =
∑
a∈B

⟨v, a⟩a
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Question 5.28: Let H be an infinite-dimensional Hilbert space. Prove the following statements.

a. Every orthonormal sequence in H converges weakly to 0.

b. For any x ∈ H with ∥x∥ < 1, there is a sequence {un : n ∈ N} of unit vectors such that un → x weakly.

Proof. a. We choose an orthonormal sequence xn ∈ H randomly. We choose f ∈ H∗ randomly. Now by Definition
5.2.25 and Definition of normed spaces, it is enough to prove that∣∣∣∣f(xn) − f(0)

∣∣∣∣ → 0 (40)

Since H is Hilbert space, by Theorem 5.3.10, we can choose y ∈ H such that

f(x) = ⟨x, y⟩ for any x ∈ H. (41)

Now we have
∞∑

n=1

∣∣∣∣f(xn) − f(0)
∣∣∣∣2

=
∞∑

n=1

∣∣∣∣⟨xn, y⟩ − ⟨0, y⟩
∣∣∣∣2

(42)

=
∞∑

n=1

∣∣∣∣⟨xn, y⟩
∣∣∣∣2

(43)

=
∞∑

n=1

∣∣∣∣⟨y, xn⟩
∣∣∣∣2

(44)

≤ ∥y∥2 (45)
< ∞ (46)

where (32) is due to (31), (33) and (34) are due to Definition 5.3.1., (35) is due to Theorem 5.3.12 where {xn : n ∈ N}
is an orthonormal set, and (36) is due to H is an Hilbert space, which implies that by the knowledge of babe real
analysis

lim
n→∞

∣∣∣∣f(xn) − f(0)
∣∣∣∣2

= 0.

This proves (30) by the continuity of product functions.

b. We choose x ∈ H with ∥x∥ < 1 randomly. We denote E := {x}⊥. There is no doubt that E is a closed subspace
of H. Since H is a Hilbert space, by Theorem 0.1 and Definition 5.3.4, we know E is a Hilbert space. Then by
Proposition 5.3.15, we know that E has an orthonormal basis. There is no doubt by the knowledge of linear algebra
and Definition 5.3.7 that

H = span{x} ⊕ E

which implies that dim(H) − 1 = dim(E) by Definition of dimension and immediately says that E is of infinite-
dimensional since H is of infinite-dimensional. Now we denote B := {zn ∈ H : n ∈ N} be infinite countable
orthonormal basis for E. Now for each n ∈ N, we denote un = x + anzn for some an ∈ C and we are trying to find
an ∈ R+ such that ⟨un, un⟩ = 1. But by Definition 5.3.1 and Definition 5.3.11

1 = ⟨un, un⟩ = ∥x∥2 + |an|2

which says that we can choose an =
√

1 − ∥x∥2 where ∥x∥ < 1. Now we have a sequence {un = x +
√

1 − ∥x∥2zn :
n ∈ N} of unit vectors. Finally we want to prove that un → x weakly and hence finish the proof. We choose f ∈ H∗

randomly. By Definition 5.2.24, we are require to prove that

f(un) → f(x)

But we have by linearity of f and (a) where {un} ⊂ H is orthonormal

lim
n→∞

f(un) = lim
n→∞

f(x +
√

1 − ∥x∥2zn) = f(x) +
√

1 − ∥x∥2 lim
n→∞

f(zn) = f(z) +
√

1 − ∥x∥2 · 0 = 0

which says that we finished the proof.

Theorem 0.1. A closed subspace of a complete space is still complete.
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Due: Fridays, 8 April 2022, by 11:59 p.m. CDT

Question 6.2: Let (X, M, µ) be a σ−finite measure space. Let 1 ≤ p < q < r ≤ ∞. Prove that Lp + Lr is a
Banach space with norm

∥f∥ = inf{max(∥g∥p, ∥h∥r) : f = g + h g ∈ LP h ∈ Lr}

and the inclusion map Lq → Lp + Lr is continuous. (See Proposition 6.1.13.)

Proof. In this question we are only interested in the real normed vector space and σ−finite measure space (X, M, µ)
which implies that µ(E) < ∞ for any bounded set E ⊂ X with µ(X) < 1. We prove that A := Lp + Lr is a vector space
over R. By The proof in the page 175, we know that LP and Lr are both vector space over R. Since the sum of real
vector spaces is still a real vector space, we know that Lp + Lr is a real vector space. We prove that ∥ · ∥ is a well defined
norm on Lp + Lr. Since for any f ∈ Lp + Lr, max(∥g∥p, ∥h∥r) ≥ 0 by Definition of max, we have ∥f∥ ≥ 0 by Definition
of max. Also by Definition 5.1.1, ∥f∥ < ∞ for any f ∈ Lp + Lr.

(i) We prove for any f ∈ A, ∥f∥ if and only if f = 0. For any f ∈ A with f = 0, we have ∥f∥ = inf{max(∥g∥p, ∥h∥r) :
0 = g + h} = inf

g=h=0
max(∥g∥p, ∥h∥r) = 0 by Definition 5.1.1(i). For any f ∈ A with ∥f∥ = 0, by Definition

of inf, we have sequences gn ∈ Lp and hn ∈ Lr such that 0 = lim
n→∞

max(∥gn∥p, ∥hn∥r) which implies that 0 =
lim

n→∞
∥gn∥p = lim

n→∞
∥hn∥r by Definition of max, and hence by properties of norms and properties of limits f =

lim
n→∞

f = lim
n→∞

gn + lim
n→∞

hn = 0 + 0 = 0.

(ii) We prove that for any f1, f2 ∈ A, ∥f1 + f2∥ ≤ ∥f1∥ + ∥f2∥. We choose f1, f2 ∈ A randomly. Then by Definition of
inf, we have sequences g

(1)
n ∈ Lp and h

(1)
n ∈ Lr such that f1 = g

(1)
n + h

(1)
n for each n ∈ N and

∥f1∥ = lim
n→∞

max(∥g(1)
n ∥p, ∥h(1)

n ∥r)

Similarly, we have sequences g
(2)
n ∈ Lp and h

(2)
n ∈ Lr such that and f2 = g

(2)
n + h

(2)
n for each n ∈ N and

∥f2∥ = lim
n→∞

max(∥g(2)
n ∥p, ∥h(2)

n ∥r)

Then we have for each n ∈ N, we have by Definition of max and inequalities of norms

max(∥g
(2)
n ∥p, ∥h

(2)
n ∥r) + max(∥g

(1)
n ∥p, ∥h

(1)
n ∥r) ≥ max(∥g

(1)
n + g

(2)
n ∥p, ∥h

(1)
n + h

(2)
n ∥r)

which implies that after pushing both sides to ∞, we have

∥f1∥ + ∥f2∥ ≥ lim
n→∞

max(∥g(1)
n + g(2)

n ∥p, ∥h(1)
n + h(2)

n ∥r) ≥ ∥f1 + f2∥

where the last inequality is due to Definition of inf where f1 + f2 = g
(1)
n + g

(2)
n + h

(1)
n + h

(2)
n for each n ∈ N and

hence max(∥g
(1)
n + g

(2)
n ∥p, ∥h

(1)
n + h

(2)
n ∥r) ∈

{
max(∥g∥p, ∥h∥r) : f = g + h

}
for each n ∈ N.

(iii) We prove that for any α ∈ R, f ∈ A, αf ∈ A. We choose α ∈ R and f ∈ A randomly. We have by Definition of
norms in this question, Definition of inf and Definition of max,

|α|∥f∥ = |α| inf{max(∥g∥p, ∥h∥r) : f = g + h} = inf{max(∥αg∥p, ∥αh∥r) : f = g + h} ≤ ∥αf∥.

where the last inequality is due to if f = g + h then αf = αg + αh. Now we also have

∥αf∥ = inf{max(∥g∥p, ∥h∥r) : αf = g + h}

= inf{max(∥g∥p, ∥h∥r) : f = g

α
+ h

α
}

≤ inf{max(∥αg∥p, ∥αh∥r) : f = g + h}
= |α| inf{max(∥g∥p, ∥h∥h) : f = g + h}
= |α|∥f∥

where the first equality is due to Definition in the question, the third inequality is due {max(∥g∥p, ∥h∥r) : f =
g
α + h

α } ⊂ {max(∥αg∥, ∥αh∥r) : f = g + h} and the last equality is due to Definition in the questions. So far we
have (A, ∥ · ∥) is a normed real space.

1
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(iv) We prove the completeness. We choose a Cauchy sequence fn ∈ A randomly. We prove that fn → f in A for some
f ∈ A. By Definition of the set A, we can write

fn = gn + hn (1)

for some sequences gn ∈ LP , hn ∈ Lr. Now we have for each n, m ∈ N by Definition of norms in the question

∥fn − fm∥ ≥ ∥gn − gm∥p

which says that fn is Cauchy in A implies that gn is Cauchy in Lp. By Theorem 6.1.6 and Definition 5.1.2, gn → g
in LP for some g ∈ Lp. Similarly we can choose h ∈ Lr such that hn → h in Lr. We know that Lp is embedded in
the normed vector space L. So gn → g in (A, ∥ · ∥) and hence lim

n→∞
∥gn − g∥ = 0 by the fact that the topology on a

normed space is induced by its norm and similarly we have lim
n→∞

∥hn − h∥ = 0. Hence we have

lim
n→∞

∥fn − (g + h)∥
(i)︷︸︸︷= lim

n→∞
∥(gn + hn) − (g + h)∥

(ii)︷︸︸︷= lim
n→∞

∥gn − g + hn − h∥
(iii)︷︸︸︷
≤ lim

n→∞
∥gn − g∥ + lim

n→∞
∥hn − h∥ =

0 + 0 = 0

where (i) is due to (1) and (iii) is due to triangle inequalities of norms, which immediately implies that

fn → g + h in (A, ∥ · ∥).

by the fact that the topology on a normed space is induced by its norm. Also g ∈ Lp and h ∈ Lr. By Definition
of completeness of a topology space, we prove that the normed space (A, ∥ · ∥) is complete and hence by Definition
5.1.2, we proved that (A, ∥ · ∥) is a well-defined Banach space.

We denote i : Lq → Lp + Lr; x 7→ x be an inclusion map. Since 1 < p < q < r < ∞, By Proposition 6.1.3 , we know this
map is well-defined, since for each f ∈ Lq, f ∈ Lp + Lr. There is no doubt that i is linear. By the previous discussion,
we know Lp + Lr is a normed space and Lq is a normed space by the proof in page 175. Now by Proposition 5.2.2, it is
equivalent to prove that i is bounded. We choose f ∈ A randomly. By Definition of characteristic functions, we have

f = fχE + fχEc

where we denote E := {x ∈ X : 1 ≤ |f(x)| < ∥f∥q}.
We prove fχE ∈ Lp.
We have ∥∥fχE

∥∥p

p
=

∫
X

∣∣∣∣fχE

∣∣∣∣p

dµ =
∫

E

∣∣∣∣f ∣∣∣∣p

dµ ≤
∫

E

∥f∥p
qdµ = ∥f∥p

qµ(E) < ∥f∥p
q < ∞

where the first inequality is due to Definition of Lp, the third inequality is due to f ∈ Lq and the fact we are only
interested in σ−finite measure space and the fifth inequality is due to µ(E) < 1.

We prove fχEc ∈ Lr. We have, since r > q > 1

∥fχEc∥r ≤ ∥fχEc∥q ≤ ∥f∥q < ∞

where the second equality is due to properties of integration and the third is due to f ∈ Lq. The technical details involved
in the second inequality are

∥fχEc∥q
q =

∫
X

∣∣∣∣fχEc

∣∣∣∣q

dµ =
∫

Ec

∣∣∣∣f ∣∣∣∣q

dµ ≤
∫

Ec

∣∣∣∣f ∣∣∣∣q

dµ +
∫

E

∣∣∣∣f ∣∣∣∣q

dµ =
∫

X

∣∣∣∣f ∣∣∣∣q

dµ = ∥f∥q
q

We prove ∥fχE∥p ≤ ∥f∥q and ∥fχEc∥r ≤ ∥f∥q. From the previous question, we only need to prove that ∥fχE∥p ≤
∥f∥q. But we have ∥fχE∥p

p < ∥f∥p
q , which immediately implies that ∥fχE∥p ≤ ∥f∥q

Now we have by Definition of (A, ∥ · ∥)

∥f∥ ≤ max(∥fχE∥p, ∥fχEc∥r) ≤ ∥f∥q

where the first inequality is due to Definition of (A, ∥ · ∥), the second is due to properties of integration, and the last is
due to

Since such f ∈ A was chosen randomly, By Definition 5.2,1 where such c can be chosen as 1, we proved that i is
bounded and hence we finished the proof.

there is a serious mistake in the last part and we need to use Proposition 6.1.16
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Question 6.3: Let (X, M, µ) be a measure space, and 1 < p, q < ∞ such that 1
p + 1

q ≤ 1. Prove that fg ∈ L
pq

p+q

for any f ∈ Lq and g ∈ Lp.

Proof. We denote p̂ = p+q
p and q̂ = p+q

q . There is no doubt that ∞ > p̂ > 1 and 1
p̂ + 1

q̂ = p
p+q + q

p+q = 1. We denote
r := pq

p+q for some 1 < r < ∞. We denote f̂ := |f |r and ĝ = |g|r. Since f, g are measurable functions, f̂ , ĝ are measurable
functions. Then applying Holder inequality to p̂, q̂ and f̂ , ĝ, we have

∥f̂ ĝ∥1 ≤ ∥f̂∥p̂∥ĝ∥q̂

which is equivalent to Definition 6.1.1(a), we have∫
X

∣∣∣∣f̂ ĝ

∣∣∣∣ ≤
( ∫

X

∣∣∣∣f̂ ∣∣∣∣p̂) 1
p̂
( ∫

X

∣∣∣∣ĝ∣∣∣∣q̂) 1
q̂

. (2)

After plugging f̂ = |f |r and ĝ = |g|r into (2), we have∫
X

∣∣∣∣fg

∣∣∣∣r

≤
( ∫

X

∣∣∣∣f ∣∣∣∣rp̂) 1
p̂
( ∫

X

∣∣∣∣g∣∣∣∣rq̂) 1
q̂

(3)

After plugging p̂ = p+q
p , q̂ = p+q

q and r = pq
p+q into (2), we have

∫
X

∣∣∣∣fg

∣∣∣∣
pq

p+q

≤
( ∫

X

∣∣∣∣f ∣∣∣∣q) 1
p̂

︸ ︷︷ ︸
:=A

( ∫
X

∣∣∣∣g∣∣∣∣p) 1
q̂

︸ ︷︷ ︸
:=B

(4)

Now by Definition of Lp, we have ∥f∥q < ∞ which implies by Definition 6.1.1.(a) that( ∫
X

∣∣∣∣f ∣∣∣∣q) 1
q

< ∞

which implies that A < ∞ since ∥f∥q = A
p̂
q . Similarly we have B < ∞. Then by (4) and Definition 6.1.1(a), we have

∥fg∥
pq

p+q
pq

p+q
=

∫
X

∣∣∣∣fg

∣∣∣∣
pq

p+q

< ∞

which immediately implies that ∥fg∥ pq
p+q

< ∞. Then by Definition 6.1.1(b), we have fg ∈ L
pq

p+q .
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Question 6.6: Let f ∈ Lp ∩ L∞. Prove that

a. f ∈ Lq for all q ≥ p,

b. If ∥f∥∞ > 0, then for any ∥f∥∞ > ϵ > 0, the set Eϵ defined by

Eϵ = {x : |f(x)| > ∥f∥∞ − ϵ}

has the properties that µ(Eϵ) > 0 and

(∥f∥∞ − ϵ)qχEϵ ≤ |f |q ≤ |f |p∥f∥q−p
∞ a.e.

c. ∥f∥∞ = lim
q→∞

∥f∥q

Proof. a. We choose q ∈ R+ with q ≥ p. When g = p, f ∈ Lp ∩ L∞ implies that f ∈ Lp = Lq and we are done. We
consider the case g > p. Since 0 < p < q, by Proposition 6.1.14, we have

∥f∥q ≤ ∥f∥
p
q
p ∥f∥1− p

q
∞ a. e. (5)

Since f ∈ Lp ∩ L∞ implies that f ∈ Lp and f ∈ L∞, by Definition 6.1.1(b), we have

∥f∥p < ∞ and ∥f∥∞ < ∞ a.e. (6)

Since (R, ·) is a group, by (5) and (6), we have ∥f∥q < ∞ a.e., which immediately implies that f ∈ Lq by Definition
6.1.1(b). Since such q was chosen randomly, we finished the proof.

b. We choose ϵ ∈ (0, ∥f∥∞) randomly. We prove µ(Eϵ) > 0 by contradiction. By Definition of measures, we have
µ(Eϵ) ≥ 0. Then we have µ(Eϵ) = 0. Since ∥f∥∞ − ϵ > 0 by Definition 6.1.10(a), we have

∥f∥∞ − ϵ ∈ M(f) and M(f) ̸= ∅

and hence by Definition of inf, we have ∥f∥∞ ≤ ∥f∥∞ − ϵ which implies that ϵ ≥ 0, which obviously contradicts
with our choice of ϵ. We denote

A :=
{

x ∈ X : (∥f∥∞ − ϵ)qχEϵ
(x) ≤ |f(x)|q ≤ |f(x)|p∥f∥q−p

∞
}

Then by Definition, we are required to prove that µ(Ac) = 0. By Definition 6.1.1(b), we have µ(Bc) = 0, where

B =
{

x ∈ X : |f(x)|q ≤ |f(x)|p∥f∥q−p
∞

}
=

{
x ∈ X : |f(x)|q−p ≤ ∥f∥q−p

∞
}

Now for x ∈ Eϵ, the inequalities becomes

(∥f∥∞ − ϵ)q ≤ |f(x)|q ≤ |f(x)|p∥f∥q−p
∞

Then it holds by Definition of Eϵ if x ∈ B. Now for x ∈ X \ Eϵ, the inequalities becomes

0 ≤ |f(x)|q ≤ |f(x)|p∥f∥q−p
∞ .

Then it holds by Definition of Eϵ if x ∈ B. So far we proved that B = (Eϵ ∩ B) ∪ (Ec
ϵ ∩ B) ⊂ A. So Ac ⊂ Bc which

implies that µ(Ac) ≤ µ(Bc) = 0 which finish the proof quickly by positivity of measures.

c. We integrate the inequality in (b) to get(
∥f∥∞ − ϵ

)q

µ(Eϵ) =
(

∥f∥∞ − ϵ

)q ∫
X

χEϵ
=

∫
X

(
∥f∥∞ − ϵ

)q

χEϵ
≤

∫
X

∣∣∣∣f ∣∣∣∣q

≤
∫

X

∣∣∣∣f ∣∣∣∣p

∥f∥q−p
∞ = ∥f∥q−p

∞

∫
X

∣∣∣∣f ∣∣∣∣p

But such ϵ > 0 can randomly small. We have

∥f∥q
∞µ(E) ≤

∫
X

∣∣∣∣f ∣∣∣∣q

= ∥f∥q−p
∞

∫
X

∣∣∣∣f ∣∣∣∣p
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which implies that

∥f∥∞µ(E)
1
q ≤ ∥f∥q ≤ ∥f∥

q−p
q

∞ ∥f∥
p
q
p .

Now after pushing the first inequality into ∞, we have

∥f∥∞ ≤ lim inf
q→∞

∥f∥q (7)

since lim inf
q→∞

µ(E)
1
q = 1 and from the second inequality, we have since p ≤ q, by Proposition 6.1.16

∥f∥q ≤ ∥f∥
q−p

q
∞ ∥f∥

p
q
p ≤ ∥f∥∞µ(X)

1
q

and after pushing both sides into ∞, we have

lim sup
n→∞

∥f∥q ≤ ∥f∥∞ (8)

since lim sup
q→∞

µ(X)
1
q = 1. Now by Definition of lim, combing (7) and (8), we prove that ∥f∥∞ = lim

q→∞
∥f∥q.
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Question 6.7: Let (X, M, µ) be a measure space with µ(X) < ∞. Let 1 ≤ p < ∞ and let fn and f be
measurable functions. Prove that

a. If fn → f in Lp, then fn → f in measure, and

b. If fn → f in measure and there exists a g ∈ Lp such that |fn| ≤ g for all n, then fn → f in Lp.

Proof. (a) We choose ϵ > 0 randomly. We denote A :=
{

x ∈ X : |fn(x)−f(x)| ≥ ϵ

}
. Since fn → f in Lp, by Definition

6.1.1. and continuity of product functions, ∫
X

∣∣∣∣fn(x) − f(x)
∣∣∣∣p

dµ → ∞ (9)

But now we have

ϵpµ(
{

x ∈ X : |fn(x) − f(x)| ≥ ϵ

}
) = ϵp

∫
A

1dµ =
∫

A

ϵpdµ ≤
∫

A

∣∣∣∣fn(x) − f(x)
∣∣∣∣p

dµ

. So by (9), we have

ϵp lim
n→∞

µ(
{

x ∈ X : |fn(x) − f(x)| ≥ ϵ

}
) = 0,

which immediately implies that

lim
n→∞

µ(
{

x ∈ X : |fn(x) − f(x)| ≥ ϵ

}
) = 0.

Since such ϵ > 0 was chosen randomly, by Definition 2.5.1, we proved that fn → f in measure.

(b) By Definition 6.1.1(a) and the continuity of product functions, it is enough to prove that∫
X

∣∣∣∣fn(x) − f(x)
∣∣∣∣p

dµ → 0

We denote hn(x) :=
(

fn(x) − f(x)
)p

for each n ∈ N. Then by Definition 6.1.1(a), it is equivalent to prove that

hn → 0 in L1. Now for each n ∈ N,

|hn(x)| =
∣∣∣∣fn(x) − f(x)

∣∣∣∣p

=
∣∣∣∣fn(x) + (−f(x))

∣∣∣∣p

≤
(

|fn(x)| + |f(x)|
)p

≤
(

g(x) + |f(x)|
)p

And we denote ĝ(x) :=
(

g(x) + |f(x)|
)p

. Now by Definition 6.1.1(a), we have

∥ĝ∥1 =
∫

X

∣∣∣∣ĝ(x)
∣∣∣∣dµ =

∫
X

∣∣∣∣g(x) + |f(x)|
∣∣∣∣p

dµ = ∥g + |f |∥p
p ≤

(
∥g∥p + ∥f∥p

)p

(10)

Since fn → f in measure, by Theorem 2.5.3, we can choose a subsequence fnk
such that fnk

→ f pointwise a.e. We
denote

A :=
{

x ∈ X : lim
k→∞

fnk
(x) = f(x)

}
.

Then by Definition we have µ(Ac) = 0 . By Definition 6.1.1(a), we have

∥f∥p
p =

∫
X

∣∣∣∣f ∣∣∣∣p

=
∫

A

∣∣∣∣f(x)
∣∣∣∣p

dµ(x) =
∫

A

∣∣∣∣ lim
k→∞

fnk
(x)

∣∣∣∣p

dµ(x) = lim
k→∞

∫
A

∣∣∣∣fnk
(x)

∣∣∣∣p

dµ(x) < ∞

since µ(X) < ∞, which implies that ∥f∥p < ∞ .Now since g ∈ Lp,by Definition 6.1.1(a), we have ∥g∥p < ∞
Then by (10), We have ĝ ∈ L1. We prove that hn → 0 in measure. We choose ϵ > 0 randomly. We have by Definition

2.5.1 where fn → f in measure

lim
n→∞

µ(
{

x ∈ X : |hn(x)| ≥ ϵ

}
) = lim

n→∞
µ(

{
x ∈ X :

∣∣∣∣fn(x) − f(x)
∣∣∣∣p

≥ ϵ

}
) = lim

n→∞
µ(

{
x ∈ X : |fn(x) − f(x)| ≥ ϵ

1
p

}
) = 0
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Since such ϵ > 0 was chosen randomly, by Definition 2.5.1, we proved that hn → 0 in measure. Now since hn → 0 in
measure, |hn| ≤ ĝ for each n ∈ N and ĝ ∈ L1, by Dominated Convergence Theorem for convergence in measure, we have
hn → 0 in L1.

Method 2

Proof. Since fn → f in measure, by Theorem 2.5.3, we can choose a subsequence fnk
such that fnk

→ f pointwise a.e..
Now by Definition of subsequence, we have |fnk

| < g for each k ∈ N. So by the Dominated Convergence for L1, we have∫
X

∣∣∣∣fnk
− f

∣∣∣∣dµ → 0

Then we have |fnk
− f | → 0 a.e.. So we can assume that |fnk

− f | < 1 a.e.. This implies that

0 ≤
∫

X

∣∣∣∣fnk
− f

∣∣∣∣p

dµ ≤
∫

X

∣∣∣∣fnk
− f

∣∣∣∣dµ.

Then after pushing both sides into ∞, by (11) and Definition 6.1.1(a), we have

∥fnk
− f∥p → ∞

Now we want to prove this by contradiction and suppose that ∥fn − f∥p ↛ 0, we could construct a subsequence of fn,
hi = fni

such that

∥hi − f∥p ≥ ϵ (11)

for some ϵ > 0. We would still have |hi| < g and hi → f in measure. So we may construct subsequence hik
of hi such

that

∥hik
− f∥p → 0. (12)

Now (11) and (12) gives us a contradiction.
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Question 6.8: Let 1 ≤ p < ∞, fn, f ∈ Lp, and fn → f a.e. prove that fn → f in Lp if and only if ∥fn∥p → ∥f∥p.
(Hint: The generalization dominated convergence theorem.)

Proof. We prove if fn → f in Lp, then ∥fn∥p → ∥f∥p in R. We have that

lim
n→∞

∣∣∣∣∥fn∥p − ∥f∥p

∣∣∣∣ ≤ lim
n→∞

∥fn − f∥p = 0

by triangle inequalities of norms, which implies that by Definition of (R, | · |), ∥fn∥p → ∥f∥p in R.
We prove if ∥fn∥p → ∥f∥p, then fn → f in Lp. Since p ≥ 1, we have inequalities

|fn − f |p ≤ (|fn| + |f |)p ≤ (2 max(|fn(x)|, |f(x)|))p ≤ 2p(|fn|p + |f |p).

Then after integrating them on X, we have∫
X

∣∣∣∣fn − f

∣∣∣∣p

dµ ≤ 2p

∫
X

(∣∣∣∣fn

∣∣∣∣p

+
∣∣∣∣g∣∣∣∣p)

which implies that

I := lim
n→∞

∫
X

∣∣∣∣fn − f

∣∣∣∣p

dµ ≤ 2p lim
n→∞

∫
X

∣∣∣∣fn

∣∣∣∣p

︸ ︷︷ ︸
:=A

+2p

∫
X

∣∣∣∣f ∣∣∣∣p

Now since fn, f ∈ Lp implies that |fn|p, |f |p ∈ L1 and |fn|p → |f |p in L1, by the generalization dominated convergence
theorem, we have

A =
∫

X

∣∣∣∣f ∣∣∣∣p

= ∥f∥p
p < ∞

since f ∈ Lp and Definition 6.1.1.(b). So

In ≤ 2pA + 2pA < ∞

Then again by Dominated convergence theorem, we have by the continuity of norms and fn → f a.e.

I =
∫

X

lim
n→∞

∣∣∣∣fn − f

∣∣∣∣p

dµ =
∫

X

∣∣∣∣ lim
n→∞

fn(x) − f(x)
∣∣∣∣p

dµ(x) = 0

which says that by Definition 6.1.1(a), lim
n→∞

∥fn − f∥p
p = 0 which implies that ∥fn − f∥p → 0. This proves fn → f in Lp

by Definition 6.1.1(b).
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Question 6.9: Prove that if dim(Lp) > 1, then Lp norm is a norm induced by an inner product if and only if
p = 2.(Hint: The parallelogram law.)

Proof. First we proved that if p = 2, then ∥ · ∥p is induced by an inner product. We define

⟨·, ·⟩ : Lp × Lp → C; (f, g) 7→
∫

fgdµ

There is no doubt that this is a well-defined map and we want to check the following items to confirm this is a well-defined
inner product according to Definition 5.3.1

i) For f, g, h ∈ Lp and a, b ∈ C, by linearity of integrations, we have

⟨af + bg, h⟩ =
∫ (

af + bg

)
hdµ = a

∫
fhdµ + b

∫
ghdµ = a⟨f, h⟩ + b⟨g, h⟩.

ii) For any f, g ∈ Lp, ⟨f, g⟩ =
∫

fgdµ =
∫

fgdµ =
∫

gfdµ = ⟨g, f⟩.

iii) For f ∈ Lp, ⟨f, f⟩ =
∫

ffdµ =
∫ ∣∣∣∣f ∣∣∣∣2

dµ ≥ 0. For any f ∈ Lp, ⟨f, f⟩ =
∫ ∣∣∣∣f ∣∣∣∣2

dµ = 0 if and only if f = 0 a.e.

Furthermore due to Definition 6.1.1(a), since p = 2 we have for any f ∈ Lp

√
⟨f, f⟩ =

√∫
ffdµ =

√∫ ∣∣∣∣f ∣∣∣∣2
dµ = ∥f∥p

which says that ∥ · ∥p is induced by a norm due to Definition 5.3.4.

Second we prove that if ∥·∥ is induced by an inner product, then p = 2. We prove this by contradiction and hence suppose
p ̸= 2. Then there are two cases. We consider the case p = ∞. Since the norm of Lp is induced by an inner product,
by Definition 5.3.1, we know Lp is an inner product space. We choose A, B ∈ M such that A ∩ B = ∅, µ(A) ̸= ∅ and
µ(B) ̸= ∅. Then we have by Definition 6.1.10

∥1A + 1B∥2
∞ + ∥1A − 1B∥2

∞

= inf
{

α ≥ 0 : µ({x ∈ X : |1A(x) + 1B(x)| > α}) = 0
}

+ inf
{

α ≥ 0 : µ({x ∈ X : |1A(x) − 1B(x)| > α}) = 0
}

= 12 + 12 = 2

and we also have by Definition 6.1.10

2
(

∥1A∥2
∞ + ∥1B∥2

∞

)
= 2

(
inf

{
α ≥ 0 : µ({x ∈ X : |1A(x)| > α}) = 0

}
+ inf

{
α ≥ 0 : µ({x ∈ X : |1A(x)| > α}) = 0

})
= 2(12 + 12) = 4,

which gives us a contradiction with the parallelogram rule since Lp is an inner product space.
We consider the case p < ∞. There is no doubt that Lp is an inner product space. We choose A, B ∈ M with A ∩ B ̸= ∅
such that 0 < µ(A), µ(B) < ∞. We denote

fp := 1
(µ(A))

1
p

1A ≥ 0 and gp := 1
(µ(B))

1
p

1B ≥ 0.

Then by Definition 6.1.10, we have

2
(

∥fp∥2
Lp + ∥gp∥2

Lp

)
= 2

( ∫
X

|fp|p +
∫

X

|gp|p
)

= 2(1 + 1) = 4

we have

1
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∥fp + gp∥2
Lp + ∥fp − gp∥2

Lp =
∫

X

∣∣∣∣ 1A

(µ(A))
1
p

+ 1B

(µ(B))
1
p

∣∣∣∣p

dµ +
∫

X

∣∣∣∣ 1A

(µ(A))
1
p

− 1B

(µ(B))
1
p

∣∣∣∣p

dµ = 2 · 2
2
p

and we have p ̸= 2, which gives a contradiction with the parallelogram rule since Lp is an inner product space.
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Question 6.10: Let 1 < p, q < ∞, 1
p + 1

q = 1, and k(x, t) ∈ Lq(R2, m2). Prove that for any
f(t) ∈ Lp(R, m(t)), k(x, t)f(t) ∈ L1(R, m(t)) for a.e. x. and

T (f)(x) =
∫
R

k(x, t)f(t)dt

is a bounded linear operator from Lp(R, m) to Lq(R, m) with ∥T∥ ≤ ∥k∥q

Proof. We choose f(t) ∈ LP (R, m) and k(x, t)f(t) ∈ L1(R, m(t)) for a.e. x. randomly. Since Lp denotes the quotient
space by Definition 6.1.1(b), if the statement involved in x is true , then it must be true a.e., and for the simlicity, we
dont use the word a.e to emphasize this, which is to say elements of Lp denotes the equivalence class and precisely f
denote [f ] for each f ∈ Lp.
First we want to prove that T is linear. For any α ∈ C, f, g ∈ Lp(R, m(t)) and any x ∈ R, we have by linearity of
integration

T (αf + g)(x) =
∫
R

k(x, t)(αf + g)(t)dt = α

∫
R

k(x, t)f(t)dt +
∫
R

k(x, t)g(t)dt = αT (f)(x) + T (g)(x).

Second we want to prove that T is well-defined. We choose f ∈ Lp(R, m(t)) randomly. We have

I :=
∫
R

∣∣∣∣T (f)(x)
∣∣∣∣q

dµ(x) =
∫
R

∣∣∣∣ ∫
R

k(x, t)f(t)dt

∣∣∣∣q

dµ(x) (1)

=
∫
R

(∣∣∣∣ ∫
R

k(x, t)f(t)dt

∣∣∣∣)q

dµ(x) (2)

≤
∫
R

( ∫
R

∣∣∣∣k(x, t)f(t)
∣∣∣∣dt

)q

dµ(x) (3)

=
∫
R

(
∥k(x, ·)f∥1

)q

dµ(x), (4)

where (3) is by triangle inequalities and (4) is by Definition 6.1.1(a). By Definition 6.1.1(b) and (a), k(x, t) ∈ Lq(R2, m2)
implies that by Theorem 2.6.13

∞ >

∫
R×R

∣∣∣∣k(x, t)
∣∣∣∣q

d(m × m)(x, t) =
∫
R

∫
R

∣∣∣∣k(x, t)
∣∣∣∣q

dm(t)dm(x) (5)

which implies that

∞ >

∫
R

∣∣∣∣k(x, t)
∣∣∣∣q

dm(t)

which immediately implies that by Definition 6.1.1(b), k(x, ·) ∈ Lq(R, m). Furthermore, since f ∈ Lp(R, m) and 1 <
p, q < ∞ with 1

p + 1
q = 1, by Holder’s inequality, we have

∥fk(x, ·)∥1 ≤ ∥k(x, ·)∥q∥f∥p (6)

Combing (4) and (6), we have

I ≤
∫
R

(
∥k(x, ·)∥q∥f∥p

)q

dµ(x) (7)

= ∥f∥q
p

∫
R

∥k(x, ·)∥q
qdµ(x) (8)

= ∥f∥q
p

∫
R

∫
R

∣∣∣∣k(x, t)
∣∣∣∣q

dm(t)dm(x) (9)

< ∞ (10)

where (8) is by properties of integration, (9) is by Definition 6.1.1(a) and (10) is by (5) and Definition 6.1.1(b) with
f ∈ Lp(R, m). So by Definition 6.1.1(a), ∥T (f)∥q = I

1
q < ∞. But such f ∈ Lp(R, m) is chosen randomly. We proved

that T is well-defined.
Third, we prove that T is bounded with ∥T∥ ≤ ∥k∥q. By Definition 5.2.3 and Definition 6.1.1(b), since k ∈ Lq(R2, m2),
it is enough to prove that ∥T∥ ≤ ∥k∥q. We choose f(t) ∈ Lp(R, m(t)) with ∥f∥p = 1 randomly. By Definition 5.2.3, we
are required to prove that ∥T (f)∥q ≤ ∥k∥q. But by Definition 6.1.1(a), (9) and our choice of f , we have

∥T (f)∥q = I
1
q ≤ ∥f∥p∥k∥q = ∥f∥p

Comment: In this question, µ and m are exchangeable.
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Question 6.11: Show that Lp(Rn, mn) is separable for all 1 ≤ p < ∞, and L∞(Rn, mn) is not separable.

Proof. First we show Lp(Rn, mn) is separable for all 1 ≤ p < ∞. We choose p ∈ [1, ∞) randomly.By Definition 4.1.3(m),
we need to find a countable subset S of Lp(Rn, mn) such that S = Lp(Rn, mn). We denote Cc(Rn) be the continuous
functions Rn → R with compact support. Since 1 ≤ p < ∞, by Theorem 6.1.8, we know that Cc(Rn) = Lp(Rn, mn). We
denote P be the set of polynomials with real coefficients defined on Rn having compact supports. By Stone–Weierstrass
theorem, we know that P = Cc(Rn). Since the closure of a closed set is itself, now it is enough to find a subset A ⊂ P such
that A = P. We denote A be the set of polynomials with rational coefficients defined on Rn. To prove it is countable, by
Definition of countable in the knowledge of the set theory, since the countable product of countable sets is still countable
and Q is countable, it is enough to find a bijection map from A to Q×Q×Q×· · · . By Definition of polynomials functions,
we have

A =
{
Rn ∋ f : x 7→ a0 + a1x + · · · + anxn ∈ R : n ∈ N0, a0, · · · an ∈ Q f has a compact support

}
(11)

We define α : A → Q × Q × · · · by f 7→ (a0, a1, a2, · · · , an, 0, · · · ). There is no doubt that α is well-defined map by (11).
It is obviously injective and it is surjective since Q × Q × · · · actually denotes the set collecting a sequence in Q of finite
non zero terms. We prove that A is dense in P. We choose ϵ > 0 and f ∈ P randomly. By Definition of topology and the
fact that the topology on normed space is induced by its norm, we are required to find g ∈ A such that ∥g − f∥p < ϵ. We
denote n := deg(p) for some n ∈ R. There is nothing to prove for n = 0 since Q ⊂ A and Q = R and all norms on finite
dimensional real vector space induce the same topology. For n ≥ 1, we write f = f0 + f1 + · · · + fn where we denote
fk := akxk for each k = 0, · · · , n. Now since by triangle inequality of norms, we have

∥g − f∥p ≤
n∑

k=0
∥gi − fi∥p

where we denote g := g0 + · · · + gn and gk := bkxk for each 0 ≤ k ≤ n. It is enough to prove that for each 0 ≤ k ≤ n, we
can find gi = bix

i such that ∥gi − fi∥p < ϵ
n+1 by Definition 6.1.1(a), which is equivalent to∫

K

∣∣∣∣bix
i − aix

i

∣∣∣∣p

dµ(x) =
∣∣∣∣ai − bi

∣∣∣∣p ∫
K

|xi|pdm(x) <

(
ϵ

n + 1

)p

where we denote K ⊂ Rn denote the compact support of f , due to µ(K) < ∞ by Definition of m which is implied by∣∣∣∣ai − bi

∣∣∣∣ <

(
1

µ(K)

) 1
p
(

1
M

) 1
p ϵ

n + 1

where we denote M := sup
x∈K

∣∣x∣∣ip for some M ∈ R by the fact continuous functions has extreme values on compact sets.

This is true, by Definition of normed spaces, since Q is dense in the normed space (R, | · |).

To avoid those dark analysis technical details, maybe we can argue A is dense in P in this way. We know that

P =
∞⊕

k=1
R[xk] and A =

∞⊕
k=1

Q[xk]

by Definition of the product of topology, it is enough to prove that for each k = 0, 1, · · · , the subspace Q[xk] is dense in
the space R[xk]. Also it is easy to check that R[xk] :=

{
αxk : α ∈ R

}
=

{
αe(k) : α ∈ R

}
is a 1-dimensional real vector

space where we denote e(k) := xk and the vector addition is defined as αe(k) −βe(k) := (α−β)e(k). Since any well-defined
norms on a finite dimensional vector space induces the same topology, as long as we construct a norm ∥ · ∥ on R[xk] such
that

for any f ∈ R[xk] any ϵ > 0, there exists g ∈ Q[xk] satisfy ∥g − f∥ < ϵ(*).

But now we define a norm ∥ · ∥ : R[xk] → [0, ∞); αe(k) 7→ |α| where | · | denotes the absolute function and check it is
well-defined norm and prove it satisfy (*) by using the fact Q is dense in (R, | · |). We are done.

To make logic more neat, maybe we argue Q[xk] is dense in R[xk] for each i in this way. Since any norms defined
on a finite dimensional vector space induce the same topology, topology isomorphism per serves the topological properties
and Q is dense in the topology (R, |·|), it is enough to construct an isomorphism f from R to R[xk] such that f(Q) = Q[xk].
We consider f : α 7→ αxk. There is no doubt this is well-defined linear bijective map and f(Q) = Q[xk]. Now to use the
Corollary 5.2.17 to prove f is an isomorphism, we need to construct inner products on R[xk] and R respectively, so that
R[xk] and R are both complete with respect to norms induced by inner products and the operator norm of f is finite with
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respect to these norms induced by those inner products. Now we define an inner product ⟨αxk, βxk⟩ := αβ and use the
usual product on R. All remaining checking works are left for readers and the completeness of (R[xk], ⟨·, ·⟩) is essentially
due to the completeness of (R, | · |).

Second we show that L∞(Rn, mn) is not separable. By Definition 4.1.3(m), it is equivalent to find an uncountable
set B such that the distance of any element of B is greater than 1. We denote

B :=
{

fs(x) = χ[0,s](x) : 0 ≤ s ≤ 1
}

=
{

fs

}
s∈[0,1]

.

There is no doubt that B is uncountable. since its index is [0, 1] which is obviously uncountable. We choose s, t ∈ [0, 1]
with s < t randomly and we consider

∥fs − ft∥∞ = inf{α ≥ 0 : µ(
{

x ∈ X : |fs(x) − ft(x)| > α

}
) = 0}

Now it remains to prove that ∥fs −ft∥∞ ≥ 1. We choose α ≥ 0 such that µ(
{

x ∈ X : |fs(x)−ft(x)| > α

}
) = 0 randomly.

By Definition of inf, it is enough to prove that α ≥ 1. We argue this by contradiction and suppose that 0 ≤ α < 1. Then
we have

µ(
{

x ∈ X :
∣∣∣∣χ[0,s](x) − χ[0,t](x)

∣∣∣∣ = 1
}

) = 0 (12)

We denote A :=
{

x ∈ X :
∣∣∣∣χ[0,s](x) − χ[0,t](x)

∣∣∣∣ = 1
}

Since the value of characteristic functions are only 0 or 1 and s < t,

the only possible value of χ[0,s](x) = 0 and χ[0,t](x) = 1. So A = (s, t) and hence µ(A) = µ((s, t)) = t − s > 0 which
contradicts with (12).

Page 5 of 8



Yunting Gao Homework 11 — Math 5323

Question 6.12: Let (X, M, µ) be a σ−finite measure space and g ∈ L∞(µ). Prove that the operator defined by
T (f) = fg is a bounded linear operator on Lp(µ) for all 1 ≤ p < ∞, and ∥T∥ = ∥g∥∞.

Proof. We choose 1 ≤ p < ∞ randomly. We want to prove that T ∈ L(Lp(µ), Lp(µ)). We prove that T is linear. For
α ∈ R, f1, f2 ∈ Lp(µ),

T (αf1 + f2) =
(

αf1 + f2

)
g = α(f1g) + f2g = αT (f1) + T (f2)

We prove that T is well-defined. We choose f ∈ Lp(µ) randomly. Now we have

∥T (f)∥p
p =

∫
X

∣∣∣∣fg

∣∣∣∣p

dµ (13)

=
∫

X

∣∣∣∣fpgp

∣∣∣∣dµ (14)

= ∥fpgp∥1 (15)
≤ ∥fp∥1∥gp∥∞ (16)

=
∫

X

∣∣∣∣fp

∣∣∣∣dµ∥gp∥∞ (17)

=
∫

X

∣∣∣∣f ∣∣∣∣p

dµ∥gp∥∞ (18)

= ∥f∥p
p∥gp∥∞ (19)

where (13) and (15) is due to Definition 6.1.1(a), (16) is due to Theorem 6.1.12(a), (17) and (19) is due to Definition
6.1.1(a) and (20) is due to our choice of f . By Definition 6.1.10(a) and Definition of inf, we have

∥gp∥∞ = inf
{

α ≥ 0 : µ(
{

x ∈ X : |gp(x)| > α

}
) = 0

}
(20)

= inf
{

α ≥ 0 : µ(
{

x ∈ X : |g(x)| > α
1
p

}
) = 0

}
(21)

= ∥g∥p
∞ (22)

Combing (19) and (22), we have that

∥T (f)∥p
p ≤ ∥g∥p

∞∥f∥p
p < ∞ (23)

where the last inequality is due to Definition6.1.1(b) and Definition 6.1.10 with g ∈ L∞(µ) and f ∈ Lp(µ) which implies
that ∥T (f)∥p < ∞ immediately. Then by Definition 6.1.1(b), we proved that T is well-defined since such f ∈ Lp(µ) was
chosen randomly.
We prove that ∥T∥ = ∥g∥∞ .We choose f ∈ Lp(µ) with ∥f∥p = 1 randomly. Then by (23), we have

∥T (f)∥p
p ≤ ∥g∥p

∞

which implies that due Definition 6.1.10 with g ∈ L∞(µ),

∥T (f)∥p ≤ ∥g∥∞

Then since such f was chosen randomly, by Definition 5.2.3, we proved that ∥T∥ ≤ ∥g∥∞. Now it remains to prove that
∥g∥∞ ≤ ∥T∥. We choose 0 < ϵ < ∥g∥∞ randomly. Then ∥g∥∞ − ϵ < ∥g∥∞. Then by Definition 6.1.10 and Definition of

inf, we have that ∥g∥∞ − ϵ /∈
{

α ≥ 0 : µ(
{

x ∈ X : |g(x)| > α

}
) = 0

}
. But we also have ∥g∥∞ − ϵ > 0 where ∥g∥∞ > ϵ.

Then by positivity of measures, we have

µ(
{

x ∈ X : |g(x)| > ∥g∥∞ − ϵ

}
) > 0. (24)

We denote Eϵ =
{

x ∈ X : |g(x)| > ∥g∥∞ − ϵ

}
. Since (X, M, µ) is σ−finite measure space, we can choose Aϵ ⊃ Eϵ such

that µ(Aϵ) < ∞. Also by the monotonicity of measures and (24), we have µ(Aϵ) > 0 . For making life easier, we keep
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the notation Eϵ. Now By Definition 6.1.1(b) and 0 < µ(Eϵ) < ∞, we have

∥T (χEϵ
)∥p

p =
∫

X

∣∣∣∣χEϵ
g

∣∣∣∣p

dµ

=
∫

Eϵ

∣∣∣∣χEϵ
g

∣∣∣∣p

dµ

≥
∫

Eϵ

∣∣∣∣χEϵ

∣∣∣∣p(
∥g∥∞ − ϵ

)p

dµ

=
(

∥g∥∞ − ϵ

)p

∥χEϵ
∥p

p

which implies that by Definition 5.2.3

∥T∥ ≥ ∥T (χEϵ
)∥p

∥χEϵ∥p
≥ ∥g∥∞ − ϵ

But ϵ > 0 could be randomly small. So ∥T∥ ≥ ∥g∥∞.
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Question 6.13: Let (X, M, µ) be a measure space, and 1 < p, q < ∞ with 1
p + 1

q = 1. Prove that for any
bounded linear operator T on Lp(µ), there is a bounded linear operator T ∗ on Lq(µ) with ∥T ∗∥ = ∥T∥ such that∫

X

T (f)gdµ =
∫

X

fT ∗(g)dµ(∗∗)

for any f ∈ Lp(µ) and g ∈ Lq(µ).

Proof. We define the rule of the operator T ∗ : Lq(µ) → Lq(µ) in the following process. We choose g ∈ Lq randomly. We
define a map ϕ : Lp(µ) → R; f 7→

∫
T (f)gdµ. This is a well-defined bounded linear operator, i.e. ϕ ∈ (Lp(µ))∗. We

check this in the following items

(i) (Well-defined) For f ∈ Lp(µ), we have

∣∣ϕ(f)
∣∣ =

∣∣∣∣ ∫
T (f)gdµ

∣∣∣∣ ≤
∫ ∣∣∣∣T (f)g

∣∣∣∣dµ = ∥T (f)g∥1 ≤ ∥T (f)∥p∥g∥q < ∞

where the second is due to triangle inequalities, the third is due to Definition 6.1.1(i), the forth is due to Holder’s
inequality where T (f) ∈ Lp(µ) and the last is due to T (f) ∈ Lp and g ∈ Lq, which immediately implies that
ϕ(f) ∈ R.

(ii) (Linearity) For any α ∈ R, and any f1, f2 ∈ Lp(µ), by linearity of integration and linearity of T , we have

ϕ(αf1 + f2) =
∫

X

T (αf1 + f2)gdµ = α

∫
X

T (f1)gdµ +
∫

X

T (f2)gdµ = αϕ(f1) + ϕ(f2).

(iii) (Bounded) For f ∈ Lp(µ), we have by Definition 5.2.3 and (i)∣∣ϕ(f)
∣∣ ≤ ∥T (f)∥p∥g∥q ≤ ∥T∥∥f∥p∥g∥q =

(
∥T∥∥g∥q

)
∥f∥p. (25)

Now since T ∈ L(Lp(µ), Lp(µ)) and g ∈ Lq(µ), by Definition 6.1.1(2), we have ∥T∥∥g∥q < ∞. Now by Definition
5.2.1, in (25), we can choose c := ∥T∥∥g∥q which is independent of f .

Now since ϕ ∈ (Lp(µ))∗, 1 < p, q < ∞ with 1
p + 1

q = 1, by Theorem 6.2.4, we have a unique h ∈ Lq(µ) such that ϕ = ϕh.
Now we assign this h to g. We proved that T ∗ is well-defined. We prove that T ∗ is linear. We choose α ∈ R and
g1, g2 ∈ Lq randomly. By the linearity, we are required to prove that

h3 := T ∗(αg1 + g2) = αT ∗(g1) + T ∗(g2)

which is equivalent to by the uniqueness in Theorem 6.2.4,

ϕh3 = ϕ(αh1+h2)

which is equivalent to by Definition of ϕ, for any f ∈ Lp(µ)∫
T (f)(αg1 + g2)dµ = α

∫
T (f)g1dµ +

∫
T (f)g2dµ

and this is true by linearity of T . We prove that T ∗ is bounded. For any g ∈ Lq with ∥g∥q = 1, then by proposition 6.2.1
and Definition of T ∗, we have

∥T ∗(g)∥q = ∥h∥q = ∥ϕh∥ = ∥ϕ∥ ≤ ∥T∥∥g∥q = ∥T∥

which implies that by Definition 5.2.3

∥T ∗∥ ≤ ∥T∥. (26)

By Definition 5.2.3, we proved that T ∗ is bounded. We prove (**). For any f ∈ Lp and g ∈ Lq, we have∫
X

fT ∗(g)dµ =
∫

X

fhdµ = ϕh(f) = ϕ(f) =
∫

X

T (f)gdµ. (27)

Now we define ϕ∗ : Lq → Lq by ϕ∗(g) =
∫

X

fT ∗(g)dµ. By the symmetric property in (26), replacing ϕ by ϕ∗ in the
previous proof, we have

∥T∥ ≤ ∥T ∗∥. (28)

Combing (26) and (28), we proved that ∥T∥ = ∥T ∗∥.
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Question 6.17:

a. Show that sin(nx) → 0 weakly in L2([0, 2π], m), but not a.e. or in measure. (Hint: Exercise 5.28)

b. Show that nχ(0, 1
n ) → 0a.e. and in measure, but not weakly in Lp([0, 1], m) for any 1 ≥ p ≥ ∞.

Proof. a. We denote H := L2([0, 2π], m). Since H is an infinite-dimensional Hilbert space, by Exercise 5.28(a),
Definition 6.1.1(a) and Definition 5.3.11, it is enough to prove that for n, k ∈ N with n ̸= k∫

[0,2π]
sin(nx)sin(kx)dx = 0 and

∫
[0,2π]

sin(nx)sin(nx)dx = 1

Now we choose n, k ∈ N with n ̸= k randomly and we compute with the help of matlab (Let us leave this stupid
computation for computers) ∫

[0,2π]
sin(nx)sin(kx)dx = 0

and ∫
[0,2π]

sin(nx)sin(nx)dx = 1

But such n, k was chosen randomly. So we proved that sin(nx) → 0 weakly in H. We disprove that sin(nx) → 0
a.e. by contradiction and hence we assume that sin(nx) → 0 .a.e. Then by Definition,

µ(A) = 0

where A =
{

x ∈ [0, 2π] : lim
n→∞

sin(nx) = 0
}

and we have

A =
{

x ∈ [0, 2π] : lim
n→∞

sin2(nx) = 0
}

(1)

Since | sin2(nix)| ≤ 1, by DCT, we have by (1) and properties of integration

π = lim
n→∞

∫ 2π

0
sin2(nx)dµ(x) = lim

n→∞

∫
[0,2π]

sin2(nx)dµ(x) =
∫

[0,2π]
lim

n→∞
sin2(nx)dµ(x) ≤

∫
A

lim
n→∞

sin2(nx)dµ(x) =

0

which is obviously a contradiction. So by Theorem 2.5.3, we disprove that sin(nx) → 0 in measure.

b. We have

µ(A) =
∫

A

1dµ(x)

where we denote A :=
{

x ∈ [0, 1] : lim
n→∞

nχ(0, 1
n )(x) = 0

}
. We denote g := χ[0,1]. Then by Riesz Representation

Theorem

⟨nχ(0, 1
n ), g⟩ − ⟨nχ(0, 1

n ), 0⟩ =
∫

[0,1]
nχ(0, 1

n )χ[0,1]dµ(x) =
∫

(0, 1
n )

ndµ(x) = 1 ↛ 0

So by Definition 5.3.11, we proved that nχ(0, 1
n ) ↛ 0 weakly in Lp([0, 1], m). We denote

A :=
{

x ∈ [0, 1] : lim
n→0

nχ(0, 1
n )(x) = 0

}
.

1
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details needed to be done
We choose 1 ≥ ϵ > 0 randomly. We find

lim
n→∞

µ(
{

x ∈ [0, 1] :
∣∣nχ(0, 1

n )(x)
∣∣ ≥ ϵ

}
) = lim

n→∞
µ((0,

1
n

)) = 0

So by Definition 2.5.1, we proved that nχ(0, 1
n ) → 0 in measure.
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Question 6.18: Let k(x, y) be Lebesgue measurable function on (0, ∞) × (0, ∞) such that k(λx, λy) = 1
λ k(x, y)

for all λ > 0 and ∫ ∞

0

∣∣k(z, 1)
∣∣dz < ∞

Prove that

T (f)(y) =
∫ ∞

0
k(x, y)f(x)dx

is a well-defined bounded linear operator on L∞(0, ∞), and

∥T∥ ≤
∫ ∞

0

∣∣k(z, 1)
∣∣dz

Proof. We prove that it is well-defined. We choose f ∈ L∞(0, ∞) randomly. By Definition of maps, we are required to
prove that T (f) ∈ L∞(0, ∞). First there is no doubt that T (f) : (0, ∞) → R is a well defined measurable function since
the integration of measurable functions is still measurable and we want to check it is a well-defined map. We have for
f ∈ L∞(0, ∞) and y ∈ (0, ∞)∣∣∣∣T (f)(y)

∣∣∣∣ ≤
∫ ∞

0

∣∣∣∣k(x, y)f(x)
∣∣∣∣dx ≤

∫ ∞

0
|k(z, 1)|dz∥f∥∞ < ∞ for a.e. y

where z := xy and transformation of variables are left for readers to check using k(λx, λy) = 1
λ k(x, y) for λ > 0 since

∥f∥∞ < ∞ a.e. which implies that T (f)(y) ∈ R. Then by Definition 6.1.10(a), we have

∥T (f)∥∞ ≤
∫ ∞

0
|k(z, 1)|dz∥f∥∞ < ∞ (2)

Now we prove the linearity of T . For any α ∈ R, any f1, f2 ∈ L∞(0, ∞) and any y ∈ (0, ∞), we have

T (αf1 + f2)(y) =
∫ ∞

0
k(x, y)(αf1 + f2)(y)dx = α

∫ ∞

0
k(x, y)f1(y)dx +

∫ ∞

0
k(x, y)f2(y)dx = (αT (f1) + T (f2))(y).

We prove the boundedness of T . We choose f ∈ L∞(0, ∞) with ∥f∥∞ = 1. Then (2) implies that

∥T (f)∥∞ ≤
∫ ∞

0
|k(z, 1)|dz.

But such f was chosen randomly. By Exercise 5.3, we have

∥T∥ ≤
∫ ∞

0
|k(z, 1)|dz
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Question 6.19: (Hilbert’s inequality) Let 1 < p < ∞.Prove that the operator

T (f)(x) =
∫ ∞

0

f(y)
x + y

dy

is a bounded linear operator on Lp(0, ∞), and

∥T∥ ≤
∫ ∞

0

1
z

1
p (z + 1)

dz

Proof. We define k : (0, ∞) × (0, ∞) → (0, ∞) by k(x, y) = 1
x+y . There is no doubt that k is measurable since any

continuous measurable function are measurable. Also we have for each λ > 0, k(λy, λx) = 1
λ

1
x+y = 1

λ k(x, y) and∫ ∞

0

|k(z, 1)|
z

1
p

dz =
∫ ∞

0

1
(z + 1)z

1
p

dz < ∞

which is given by Matlab. Since 1 ≤ p ≤ ∞, applying Theorem 6.3.4, we have

T (f)(x) =
∫ ∞

0

f(y)
x + y

dy

are well-defined bounded linear operator on Lp(0, ∞) and

∥T∥ ≤
∫ ∞

0

|k(z, 1)|
z

1
p

dz =
∫ ∞

0

1
(z + 1)z

1
p

dz
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Question 6.20: Let 1 < p < ∞, q be conjugate to p, and k(x), f(x), g(x) be positive Lebesgue measurable
functions on (0, ∞). Prove that∫ ∞

0

∫ ∞

0
k(xy)f(x)g(y)dxdy ≤

( ∫ ∞

0

k(x)
x

1
q

dx

)( ∫ ∞

0

f(x)p

x2−p
dx

) 1
p

︸ ︷︷ ︸
=:I

( ∫ ∞

0
g(x)qdx

) 1
q

(Hint: Apply the Holder inequality to the y integral, change variable u = xy, apply the Minkowski’s inequality for
integrals, and then change variable z = u

y )

Proof. We have that ∫ ∞

0

∫ ∞

0
k(xy)f(x)g(y)dxdy =

∫ ∞

0
g(y)

( ∫ ∞

0
k(xy)f(x)dx

)
dy (3)

=
∫ ∞

0
g(y)F (y)dy (4)

=
∫ ∞

0

∣∣∣∣g(y)F (y)
∣∣∣∣dy (5)

= ∥gF∥1 (6)
≤ ∥g∥q∥F∥p (7)

=
( ∫ ∞

0
g(x)qdx

) 1
q

∥F∥p (8)

where we denote F (y) :=
∫ ∞

0 k(xy)f(x)dx, (5) is due the positivity of k, f, g, (6) is to Definition 6.1.1(a), (7) is due to
Holder’s inequality and (8) is due to Definition 6.1.1(a). Now to finish the proof, it remains to prove that ∥F∥p ≤ I. But
actually we have

∥F∥p =
( ∫ ∞

0

∣∣∣∣F (y)
∣∣∣∣p

dy

) 1
p

(9)

=
( ∫ ∞

0

∣∣∣∣ ∫ ∞

0
k(xy)f(x)dx

∣∣∣∣p

dy

) 1
p

(10)

=
( ∫ ∞

0

( ∫ ∞

0
k(xy)f(x)dx

)p

dy

) 1
p

(11)

=
( ∫ ∞

0

( ∫ ∞

0

1
y

k(u)f(u

y
)du

)p

dy

) 1
p

(12)

≤
∫ ∞

0
k(u)

( ∫ ∞

0

(
f( u

y )
y

)p

dy

) 1
p

du (13)

=
∫ ∞

0
k(u)

(
f(z)p

up−1z2−p

) 1
p

dudz (14)

=
( ∫ ∞

0

k(x)
x

1
q

dx

)( ∫ ∞

0

f(x)p

x2−p
dx

) 1
p

(15)

where (9) is due to Definition 6.1.1(a), (11) is due to positivity of F , (12) is due to we denote u = xy, (13) is due to
Minkowski’s inequality, (14) is due to we denote z = u

y and (15) is due to 1
p + 1

q = 1.
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Question 6.21: Let k(x) be a Lebesgue measurable function on (0, ∞) such that
∫ ∞

0

|k(u)|
u

1
2

du < ∞. Prove that

T (f)(x) =
∫ ∞

0
k(xy)f(y)dy

is a well-defined bounded linear operator on L2(0, ∞), and ∥T∥ ≤
∫ ∞

0
|k(u)|

u
1
2

du.(Hint: Show

(
∫ ∞

0 (
∫ ∞

0 |k(xy)f(y)|dy) 1
2 dx) 1

2 ≤
∫ ∞

0
|k(u)|

u
1
2

dudx∥f∥2 by changing variable u = xy, applying the Minkowski’s
inequality for integrals, and changing variable z = u/x.)

Proof. By the proof of 6.21 with p = 2, we have for f ∈ L2(0, ∞) and x ∈ (0, ∞), due to f ∈ L2(0, ∞)∣∣∣∣T (f)(x)
∣∣∣∣ ≤

∫ ∞

0

∣∣∣∣k(x, y)f(y)
∣∣∣∣dy ≤

( ∫ ∞

0

|k(u)|
u

1
2

du

)( ∫ ∞

0
f(x)2dx

) 1
2

=
( ∫ ∞

0

|k(u)|
u

1
2

du

)
∥f∥2 < ∞

This immediately implies that T (f)(x) ∈ R. There is no doubt T (f) is a well-define measure function. We prove that
∥T (f)∥2 < ∞. We have for f ∈ L2(0, ∞) due to the proof in the previous question with g(x) ≡ 1, the given condition
and Definition 6.1.1.(b)

∥T (f)∥2 =
( ∫ ∞

0

∣∣∣∣T (f)(x)
∣∣∣∣2

dx

) 1
2

=
( ∫ ∞

0

( ∫ ∞

0
k(xy)f(y)dy

)2
dx

) 1
2

≤
∫ ∞

0

|k(u)|
u

1
2

du∥f∥2 < ∞

But such f was chosen randomly. By Exercise 5.3, we have ∥T∥ ≤
∫ ∞

0
|k(u)|

u
1
2

du . It remains to prove the linearity of T .
For any α ∈ R, f1, f2 ∈ L2(0, ∞) and x ∈ (0, ∞), we have

T (αf1 + f2)(x) =
∫ ∞

0
k(xy)(αf1 + f2)(y)dy = α

∫ ∞

0
k(xy)f1(y)dy +

∫ ∞

0
k(xy)f2(y)dy = (αT (f1) + T (f2))(x).
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Question 6.22: (A generalized Holder inequality) Let 1 ≤ pj ≤ ∞ and
∑n

j=1
1
pj

= 1
r ≤ 1. Let {fj} be measurable

functions. Prove that, ∥∥∥∥ n∏
j=1

fj

∥∥∥∥
r

≤
n∏

j=1
∥fj∥pj

(1)

Proof. We want to prove this by induction on n ∈
{

2, 3, · · ·
}

. For the base step n = 2, we are required to prove that

∥∥∥∥ 2∏
j=1

fj

∥∥∥∥
r

≤
2∏

j=1
∥fj∥pj

which is equivalent to

∥f1f2∥r ≤ ∥f1∥p1∥f2∥p2 . (2)

We have from (4), ∫
X

∣∣∣∣fg

∣∣∣∣
pq

p+q

≤
( ∫

X

∣∣∣∣f ∣∣∣∣q) 1
p
( ∫

X

∣∣∣∣g∣∣∣∣p) 1
q

where we denote q := p2,p := p1 f := f1 and g := f2, which implies that after taking both side of the square 1
r root, we

have ( ∫
X

∣∣∣∣fg

∣∣∣∣r) 1
r

≤
( ∫

X

∣∣∣∣f ∣∣∣∣q) 1
q
( ∫

X

∣∣∣∣g∣∣∣∣p) 1
p

.

Finally, by Definition 6.1.1(a), we proved (2). Now we want to finish the inductive step. We assume (1) holds for n ≥ 2.
We are required to prove it holds for n + 1. But actually we have∥∥∥∥f1 · · · fnfn+1

∥∥∥∥
r

≤
∥∥∥∥f1 · · · fn

∥∥∥∥
rn+1

∥∥∥∥fn+1

∥∥∥∥
pn+1

(3)

≤
( n∏

j=1
∥fj∥pj

)∥∥∥∥fn+1

∥∥∥∥
pn+1

(4)

=
n+1∏
j=1

∥fj∥pj
(5)

where (3) is due to the base step where we denote 1
rn+1

= 1
p1

+ · · · + 1
pn

and f1 · · · fn are measurable, and (4) is due to
the inductive hypothesis.

1
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Question 6.23: Prove that if f and g are Lebesgue measurable over Rn, then h(x, y) := f(x − y)g(y) is Lebesgue
measurable from R2n to R. (Hint: f(x − y)g(y) is a composition of f(ug(v)) with the linear transformation
u = x − y, v = y.)

Proof. We finish the proof in 3 steps.

Step 1: We define F : R2n → R defined by F (u, v) := f(u) and G : R2n → R defined by G(u, v) := g(v). We choose
α ∈ R randomly. Then F −1((α, ∞)) = f−1((α, ∞)) × Rn is measurable by Definition and Proposition 2.1.4(a) and
Definition 2.6.1 where f is measurable and Rn ∈ BRn . But such α ∈ R was chosen randomly. We proved that F is
measurable. Similarly we can prove that G is measurable.

Step 2: We define α : R2n → R by α(u, v) := f(u)g(v). Then we have α = FG and we have α is measurable due to
Proposition 2.1.5.

Step 3: We denote T (x, y) :=
[
In −In

0 In

] [
x
y

]
for x, y ∈ Rn and we consider T is a function from Rn × Rn → Rn × Rn We

denote

A :=
[
In −In

0 In

]
Then we have by Definition of α and Definition of h, for (x, y) ∈ Rn × Rn ≃ R2n

α(T (x, y)) = α(x − y, y) = f(x − y)g(y) = h(x, y)

Since A is singular where det(A) = 1 ̸= 0, by Theorem 2.7.5, we have that h = α ◦ T is measurable.
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Question 6.24: Prove that if f is continuous and it is integrable over bounded subset of Rn and g ∈ Ck(Rn) has
compact support, then f ∗ g ∈ Ck(Rn).

Proof. We denote A := supp(g) for some compact set A ⊂ Rn and we know A is bounded due to Heine-Borel Theorem.
We define f1 := fχA. We denote B ⊂ Rn for some bounded subset B such that f ∈ L1(B). We denote C := A ∩ B for
some C ⊂ Rn. Now we have∫

C

∣∣∣∣f1

∣∣∣∣dµ =
∫

A∩B

∣∣∣∣fχA

∣∣∣∣dµ =
∫

A∩B

∣∣∣∣f ∣∣∣∣dµ ≤
∫

A∩B

sup
A∩B

(|f |)dµ = Mµ(A ∩ B) < ∞

where the first equality is due to Definition of C, and last is due to the extreme value theorem since f is continuous where
we denote M := supC(|f |) for some M ∈ R and we know µ(A ∩ B) < ∞ since A and B are both bounded. By Definition
2.3.1. we proved that f1 ∈ L1(C). By Definition 6.4.1 and Definition of support domains, we have

f1 ∗ g(x) =
∫
Rn

f1(y)g(x − y)dy

=
∫
Rn

fχA(y)g(x − y)dy

=
∫

A

fχA(y)g(x − y)dy +
∫
Rn\A

fχA(y)g(x − y)dy

=
∫

A

f(y)g(x − y) +
∫
Rn\A

f(y)g(x − y)dy

=
∫
Rn

f(y)g(x − y)dy

= f ∗ g(y),

which says that it is enough to prove that f1∗g ∈ Ck(Rn). Since f1 ∈ L1 and g ∈ Ck(Rn), by Proposition 6.4.6, it is enough
to prove that ∂αg is bounded for |α| ≤ k. There is no doubt that ∂αg is continuous for |α| < k by Definition of Ck(Rn).
Then by the extreme value theorem and Definition of compact supports, we have sup

x∈Rn

|(∂αg)(x)| = sup
x∈A

|(∂αg)(x)| < ∞.

So we are done.
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Question 6.25: Let 1 ≤ p ≤ ∞ and q be conjugate to p. Prove that for any f ∈ Lp(R) and g ∈ Lq(R), f ∗ g
exists, f ∗ g ∈ L∞(R), and

∥f ∗ g∥∞ ≤ ∥f∥p∥g∥q.

Proof. We choose f ∈ Lp(R) and g ∈ Lq(R) randomly. By Proposition 6.4.4, we have that f ∗ g(x) exists for every x ∈ R
and h := f ∗ g is bounded and uniformly continuous. By Definition 6.1.10(a), to prove that ∥h∥∞ < ∞, it is enough to

find 0 ≤ α < ∞ such that µ(
{

x ∈ R : |h(x)| > α

}
) = 0. We denote M := sup

x∈R
|h(x)| for some M ∈ R by Definition of

boundedness. Then by Definition of sup, we have

A :=
{

x ∈ R : |h(x)| > M + 1
}

= ∅

which immediately implies that µ(A) = 0 by Definition 1.3.1. We prove the more general case which is called Young’s
inequality for convolutions and the assertion is : Suppose 1 ≤ p, q, r ≤ ∞ and f ∈ LP (R) and g ∈ Lq(R). Prove that

∥f ∗ g∥r ≤ ∥f∥p∥g∥q where 1
r + 1 = 1

p + 1
q

We denote a := p
r and b := q

r and we find that∣∣∣∣ ∫
f(y)g(x − y)dy

∣∣∣∣ ≤ ∥f(y)g(x − y)∥L1(y) (6)

= ∥(f(y)
p
r g(x − y)

q
r )f(y)1− p

r g(x − y)1− q
r ∥L1(y) (7)

Since we have
1
r

+ 1
pr/(r − p) + 1

qr/(r − q) = 1
p

+ 1
q

− 1
r

= 1,

we apply Generalized Holder’s inequality to (7) to have

(7) ≤ ∥f(y)
p
r g(x − y)

q
r ∥Lr(y)∥f(y)1− p

r ∥
L

r−p
pr

∥g(x − y)1− q
r ∥

r
r−q
qr

=
( ∫

|f(x)|p|g(x − y)|qdy

) 1
r

∥f∥
r−p

r

Lp ∥g∥
r−q

r

Lq

Finally, we compute that

∥f ∗ g∥r
Lr ≤

( ∫ ∫
|f(x)|p|g(x − y)|qdydx

)
∥f∥r−p

Lp ∥g∥r−q
Lq

=
(

∥g∥q
Lq

∫
|f(x)|pdx

)
∥f∥r−p

Lp ∥g∥r−q
Lq

= ∥f∥p
Lp∥g∥q

Lq ∥f∥r−p
Lp ∥g∥r−q

Lq

= ∥f∥r
Lp∥g∥r

Lq

Taking rth roots completes the computation.
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Question 6.26: Prove that if f ∈ L1 and g ∈ Lp for 1 ≤ p ≤ ∞, then f ∗ g(x) exists for a.e. x, f ∗ g ∈ Lp and

∥f ∗ g∥p ≤ ∥f∥1∥g∥p

(Hint: Theorem 6.3.2.)

Proof. We consider k(x, y) = f(x − y) in the Theorem 6.3.2. Since f ∈ L1, by Definition 6.1.1(a), we have∫
|k(x, y)|dµ(x) =

∫
|f(x − y)|dµ(x) =

∫
|f(z)|dz < ∞ for a.e. y ∈ R and for a.e. x ∈ R.

Then plugging k(x, y) = f(x, y) in Theorem 6.3.2, since g ∈ Lp(R), we have f(x − y)g(y) ∈ L1
y. Then by Definition of

convolution and Definition 6.1.1(a), we have for any x ∈ R∣∣∣∣f ∗ g(x)
∣∣∣∣ =

∣∣∣∣ ∫
R

f(x − y)g(y)dν(y)
∣∣∣∣ ≤

∫
R

∣∣∣∣f(x − y)g(y)
∣∣∣∣dν(y) < ∞

which immediately implies that f ∗ g(x) exists for a.e. x. Also we have by Definition of convolution∫
R

∣∣∣∣(f ∗ g)(x)
∣∣∣∣p

dµ(x) =
∫
R

∣∣∣∣ ∫
R

f(x − y)g(y)dν(y)
∣∣∣∣p

dµ(x) =
∫
R

∣∣∣∣T (g)(x)
∣∣∣∣p

dµ(x) < ∞

which immediately implies that by Definition 6.1.1(b) f ∗ g ∈ Lp(R). By Definition of convolution, we have

∥f ∗ g∥p =
∥∥∥∥ ∫

R
g(x − y)f(y)dν(y)

∥∥∥∥
p,µ(x)

(8)

≤
∫
R

∥g(x − y)f(y)∥p,µ(x)dν(y) (9)

due to Theorem 6.3.3. where f(x − y)g(y) is ν(y)-integrable function. Now from (9), we have∫
R

∥g(x − y)f(y)∥p,µ(x)dν(y) (10)

=
∫
R

( ∫
R

|g(x − y)f(y)|pdµ(x)
) 1

p

dν(y) (11)

=
∫
R

(
|f(y)|

( ∫
R

|g(x − y)|pdµ(x)
) 1

p
)

dν(y) (12)

=
∫
R

|f(y)|
( ∫

R
|g(u)|pdµ(u)

) 1
p

dν(y) (13)

=
( ∫

R
|f(y)|dν(y)

)( ∫
R

|g(x)|pdµ(x)
) 1

p

(14)

= ∥f∥1∥g∥p (15)

where (11) and (15) is due to Definition 6.1.1(a). Combing (9) and (15), we proved that

∥f ∗ g∥p ≤ ∥f∥1∥g∥p.
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