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Abstract—Multimodal sentiment analysis and depression de-
tection are pivotal for advancing human-computer interaction,
yet significant challenges remain. First, the limited extraction
of global contextual information within individual modalities
risks the loss of modal-specific features. Second, existing methods
often prioritize unaligned textual interactions, neglecting critical
inter-modal discrepancies. To address these issues, we propose
the Scale-Selectable Global and Discrepancy Learning Network
(SSGDL), an innovative framework that integrates two core mod-
ules: the Cross-Shaped Dynamic Scale Attention Module (CS-
DSA) and the Primary-Secondary modal Discrepancy Learning
Module (PS-MDL). The CS-DSA dynamically selects scales and
employs cross-shaped attention to capture comprehensive global
context and intricate internal correlations, effectively producing a
fused modal representation. Meanwhile, the PS-MDL designates
the fused modal as primary and utilizes cross-attention mecha-
nisms to learn discrepancy representations between it and other
modalities (textual, acoustic, and visual). By leveraging inter-
modal discrepancies, SSGDL achieves a more nuanced and holis-
tic understanding of emotional content. Extensive experiments on
three benchmark multimodal sentiment analysis datasets (MOSI,
MOSEI, SIMS) and a depression detection dataset (AVEC2019)
demonstrate that SSGDL consistently outperforms state-of-the-
art approaches, setting a new benchmark for multimodal affective
computing.

Index Terms—Multimodal Sentiment Analysis, depression de-
tection, Scale-Selectabl Global Information, Inter-modal Discrep-
ancy Learning, Neuro-scientific theories.

I. INTRODUCTION

SEntiment plays a crucial role in human cognition, partic-
ularly in decision-making, perception, and interpersonal

communication. It can be inferred from various sources of
information, including speech, facial expressions, text, body
movements, and physiological signals, with each source rep-
resenting a distinct modal. Moreover, sentiment analysis serves
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as a key enabler in bridging the gap between artificial intel-
ligence (AI) and affective computing, allowing machines to
more accurately understand and respond to human emotions.
Early research efforts predominantly focused on single-modal
sentiment analysis, including text-based [1] [2], image-based
[3] [4], and audio-based sentiment analysis [5] [6]. While these
approaches have demonstrated utility in specific domains,
single-modal sentiment analysis models inherently suffer from
limitations such as sensitivity to noise, susceptibility to bias,
and the generation of ambiguous or contradictory results. To
address these shortcomings, Multimodal Sentiment Analysis
(MSA) has emerged as a robust alternative by integrating
data from multiple modalities, such as text, audio, and visual
signals-as illustrated in Fig. 1. By leveraging the comple-
mentary strengths of these modalities, MSA provides a more
comprehensive and accurate representation of the complexity
and diversity inherent in real-world emotional expressions [15]
[16] [17].

Recent advancements in multimodal fusion techniques have
further propelled the field of MSA. Common fusion strategies
include feature-level fusion [7] [8], decision-level fusion [9]
[10], and consistent regression fusion [11] [12]. Further-
more, state-of-the-art attention-based models, such as Multi-
Attention Recurrent Networks (MARNs) [13], have shown sig-
nificant progress in capturing both intra-modal and inter-modal
dynamics. Beyond these efforts, Wu et al. [14] introduced
an innovative mechanism for detecting word-level inconsis-
tency, while Wen et al. [57] proposed a hardware-optimized
architecture for long short-term memory networks (MLSTM)
based on memristor technology. Li et al. [56] further advanced
the field by leveraging raw multimodal data for pre-training,
facilitating deeper exploration of multimodal information, en-
hancing model generalization capabilities, and substantially
reducing manual labelling costs. As demonstrated by Qureshi
et al. [18], there is a strong correlation between sentiment
analysis and video-based depression diagnosis, which enables
the application of shared techniques such as temporal mod-
elling with LSTM architectures, multimodal fusion methods
(e.g., attention-based and tensor fusion), and feature extraction
strategies like Mel-frequency cepstral coefficients (MFCC) for
acoustic signals and lexical embedding models for textual
inputs. These methods are widely used in both domains to
detect nuanced emotional patterns and behavioral cues.

Despite recent advances, traditional multimodal sentiment
analysis (MSA) methods still exhibit fundamental limitations.
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Fig. 1. Multimodal Data Can Provide More Accurate Information for
Sentiment Analysis

Notably, those existing approaches rely on fixed-scale fea-
ture extraction strategies [32], which lack the capacity to
dynamically adapt to evolving cross-modal dependencies. This
static modelling strategy often leads to a loss of semantically
rich contextual information during fusion, particularly when
modalities are weakly aligned or temporally asynchronous.
For instance, emotional shifts in vocal tone may precede or
lag behind corresponding facial expressions—temporal dy-
namics that static fusion windows fail to capture effectively.
Furthermore, although several studies have explored inter-
modal interactions [13] [14], they typically assume modal
consistency and overlook the presence of inherent cross-modal
contradictions—such as sarcasm, irony, depressive indicators,
or affective ambiguity. These subtle emotional expressions
(e.g., a cheerful facial expression paired with a sarcastic tone)
demand explicit discrepancy modelling. Additionally, methods
such as [31] attempt to enhance inter-modal interactions, but
often neglect fine-grained discrepancies that are essential for
revealing nuanced emotional cues and underlying speaker
intentions. Thus, previous approaches either ignore these com-
plex signals or treat them as noise, resulting in coarse-grained
sentiment representations that fail to capture the intricacy and
variability of real-world emotional expression.

To overcome these challenges, we propose the Scale-
Selectable Global Information and Discrepancy Learning Net-
work (SSGDL), which introduces two novel modules: the
Cross-Shaped Dynamic Scale Attention Module (CS-DSA)
and the Primary-Secondary Modality Discrepancy Learning
Module (PS-MDL). The CS-DSA dynamically adjusts the
receptive field scale based on the input stimulus, employing a
cross-shaped attention mechanism to capture contextual infor-
mation at varying scales. This enables the model to effectively
aggregate global information and modal-specific correlations,
thereby generating robust fused modal representations. The
PS-MDL further enhances the fused modal representation by
treating it as the primary modal and designating the other
modalities (e.g., text, acoustic, visual) as auxiliary. It leverages
cross-attention and self-attention mechanisms to hierarchically
integrate the auxiliary modalities, effectively extracting critical
discrepancy information that highlights the complementarity
and uniqueness of each modal.

By combining these innovations, our approach not only
addresses the limitations of traditional fusion strategies but
also provides a more nuanced and holistic understanding
of emotional content. Extensive experiments on benchmark
datasets (MOSI, MOSEI, SIMS, and AVEC2019) demonstrate
that SSGDL consistently outperforms state-of-the-art methods,
setting a new benchmark for multimodal affective computing.

Thus, our contributions include:

• We contribute an innovative framework, the Scale-
Selectable Global and Differential Learning Network (SS-
GDL). By effectively leveraging cross-modal differences,
SSGDL enables a more nuanced and comprehensive un-
derstanding of emotional content. This approach enhances
the model’s ability to capture intricate interdependencies
between modalities, fostering a deeper integration of
multimodal information.

• We introduce the Cross-Shaped Dynamic Scale Attention
(CS-DSA) module. This efficient attention mechanism
automatically selects the most appropriate kernel size
and employs cross-shaped interactions to comprehen-
sively extract essential information from each neuron
while assessing correlations, thereby uncovering complex
interrelationships in multimodal data.

• We design a Primary-Secondary Modality Discrepancy
Learning Module (PS-MDL) to capture discordant infor-
mation. This network structure includes primary and aux-
iliary modal generation, cross-attention, and self-attention
mechanisms specifically designed to capture and utilize
inter-modal discrepancy information.

• Extensive experiments are conducted on three multimodal
sentiment analysis datasets—SIMS, CMU-MOSI, and
CMU-MOSEI—to thoroughly evaluate the superiority
and effectiveness of the proposed method. Furthermore,
to assess the robustness of the model across different
domains, additional experiments are performed on the
cross-domain AVEC 2019 depression detection dataset,
yielding exceptional results.

II. RELATED WORK

A. Multimodal Sentiment Analysis

Initial sentiment analysis research was heavily centred on
textual data to assess users’ emotional orientation (positive,
negative, or neutral) [19] [20]. MSA broadens this traditional
approach by integrating speech and visual features to more
comprehensively capture the sentiment expressed in an utter-
ance. Research in MSA mainly focuses on two areas: rep-
resentation learning and multimodal fusion. In the domain of
unimodal representation learning, Sun et al. [21] use utterance-
level representations from each modal as a global multimodal
context, which interacts with local unimodal features for mu-
tual enhancement. Cristina et al. [22] introduced CrowdDM,
a sentiment analysis-guided group decision-making model
that utilizes crowd intelligence from social networks to solve
decision-making challenges.

Regarding multimodal fusion, three main strategies have
been explored. We note that the categorization of fusion
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strategies in the previous section—namely feature-level fu-
sion, decision-level fusion, and consistent regression fu-
sion—originates from a signal-processing perspective and fo-
cuses on the level of fusion. In this section, we adopt a com-
plementary perspective that emphasizes when and how fusion
occurs during model training. Accordingly, the three strate-
gies discussed below—early, late, and hybrid fusion—can be
seen as architectural counterparts to the earlier categorization.
Specifically, early fusion typically corresponds to feature-level
fusion; late fusion aligns with decision-level fusion; hybrid
fusion often incorporates ideas from consistent regression or
multi-stage supervision.

Early fusion combines features from different modalities
at the initial stages, allowing the model to learn joint rep-
resentations from the start and enabling interaction between
modalities. For example, Tsai et al. [23] introduced a cross-
modal Transformer that enhances the target modal through
cross-modal attention, generating unified representations early
in the learning process. Late fusion, on the other hand,
integrates modalities after they have been processed indepen-
dently, typically through methods like concatenation or tensor-
based approaches. Zadeh et al. [24] developed a tensor fusion
network that computes the outer product of unimodal repre-
sentations, capturing cross-modal interactions at a later stage.
Additionally, hybrid approaches combine the strengths of both
early and late fusion. Li et al. [25] proposed a hierarchi-
cal disentanglement technique that effectively extracts shared
and private sentiment information from different modalities.
Meanwhile, Wu et al. [58] proposed the Multimodal Multi-
loss Fusion Network (MMML), which integrates audio and
text signals using a transformer-based fusion network. While
MMML focuses on optimizing the fusion process through
multi-task learning, our approach introduces a novel Cross-
Shaped Dynamic Scale Attention (CS-DSA) module, which
dynamically adjusts the receptive field scale to capture both
global and local contextual information. This dynamic scale
selection mechanism distinguishes our work from MMML and
allows for more flexible and adaptive feature extraction.

Despite recent advancements, existing studies often over-
look the heterogeneity across modalities—that is, the naturally
different ways in which text, audio, and visual cues express
sentiment [33]. This heterogeneity is critical for understanding
emotionally ambiguous or contradictory scenarios, such as a
sarcastic remark with a smiling face but a flat tone. Moreover,
current datasets often contain spurious correlations between
sentiment labels and superficial features (e.g., certain facial ex-
pressions co-occurring with positive labels regardless of actual
sentiment), which can mislead models into learning dataset-
specific biases rather than genuine emotional understanding.
These challenges increase the risk of intra-modal redundancy,
inter-modal information loss, and incorrect generalization.
Therefore, it is essential to design models that can both respect
modal-specific characteristics and explicitly account for mis-
leading cross-modal correlations. Our proposed discrepancy-
aware fusion module (PS-MDL) directly addresses this need
by modelling primary-secondary differences among modalities
to mitigate such issues.

B. Transformer-Based Multimodal Interaction

Transformer-based networks have shown promise in mod-
elling global contextual information, but important distinctions
are often overlooked. Specifically, intra-modal global context
refers to long-range dependencies within individual modalities,
such as emotional flow in textual discourse or tonal variation
in acoustic signals [26] [28]. Meanwhile, inter-modal global
context involves capturing coherent, aligned semantics across
modalities, which is essential for resolving cross-modal ambi-
guities and enhancing emotional understanding [27] [30].

However, those Transformer-based multimodal approaches
still suffer from two key limitations. First, they often apply
the same fusion mechanism across modalities—a problem
emphasized by [34] —which ignores the heterogeneity and
temporal misalignment inherent in real-world multimodal data.
Second, although models like the Multimodal Transformer
[27] and tensor-based methods [30] use cross-modal attention,
they fail to adaptively adjust to modality-specific dynamics
or distinguish between reliable and misleading cross-modal
cues. This can lead to spurious correlations, as noted in
[29], where models learn dataset-specific patterns (e.g., facial
expressions statistically tied to labels) instead of genuine
emotional semantics.

These issues motivate the need for a model that can selec-
tively aggregate both intra-modal and inter-modal global infor-
mation, while accounting for modality discrepancies. Our CS-
DSA module is designed to address this gap by dynamically
adjusting attention scales to model contextual relationships
along both temporal and modal dimensions.

III. METHODOLOGY

In this section, we will provide a detailed explanation of
the proposed model and its intricate architectural components.
Both multimodal sentiment analysis rely on extracting rele-
vant information from different modalities to assess potential
inconsistencies.

A. Task Setup

The acoustic (a), visual (v), and textual (t) modalities from
the same video segments are used for determining sentiment
polarity, and the fusion modal (f) generated by before three
modalities. These modalities can be represented as Im ∈
RTm×dm , where Tm denotes the sequence length, dm repre-
sents the dimensionality of each modal, and m ∈ {a, v, t, f}.

B. Overall Architecture

As shown in Fig. 2, the Scale-Selectable Global Information
and Discrepancy Learning Network (SSGDL) for multimodal
sentiment analysis includes four main components: feature
extraction, the Cross-Shaped Dynamic Scale Attention Mod-
ule (CS-DSA), the Primary-Secondary Modality Discrepancy
Learning Module (PS-MDL), and the prediction layer. The CS-
DSA layer employs a novel attention mechanism to explore
complex intra- and inter-modal relationships, generating a new
fused modal. The PS-MDL layer then captures discrepancies
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Fig. 2. The proposed SSGDL model framework.

between the primary and auxiliary modalities using cross-
attention, which is further refined with self-attention. Finally,
a sequence model in the prediction layer forecasts sentiment
outcomes based on all modal pairs.

C. Feature Extraction

1) Word Embedding: For the verbal modal, we selected
a modified and optimized version of BERT, specifically the
12-layer RoBERTa, as our text encoder. The text is initially
processed through RoBERTa’s tokenizer, which adds two
special tokens: [CLS] at the beginning and [SEP] at the
end of the sentence. These tokens help the model identify
sentence boundaries and assign contextually relevant repre-
sentations to each word. The resulting segmentation sequence
Im ∈ RTm×dm from the tokenizer is then utilized for further
processing in RoBERTa.

2) Visual Feature: For the visual modal, we utilize a pre-
trained Vision Transformer (ViT) as our visual encoder, focus-
ing on facial expressions as the primary medium of sentiment
conveyance. Since certain facial features, particularly the eyes
and mouth, more precisely reflect emotional states, the ViT is
leveraged to extract both global and localized facial details.
This method allows for a thorough capture of sentiment-
related signals from facial expressions. The visual modal
representation is expressed as Xv .

3) Acoustic Feature: For the acoustic modal, we utilize
the COVERAP analysis framework to extract a range of
handcrafted acoustic features. These features encompass 12
Mel-frequency cepstral coefficients, pitch, volume, glottal
source parameters, and additional vocal attributes pertinent
to emotional expression and tone. By employing the CMU-
MultimodalSDK, we generate COVERAP feature sequences
for each sample within the multimodal dataset, facilitating
an in-depth examination of auditory data. In this study, the
acoustic modal representation is denoted as Xa.

D. Cross-Shaped Dynamic Scale Attention Module

While the MMML model employs a fixed cross-modal at-
tention mechanism, our CS-DSA module introduces a dynamic
scale selection mechanism that adaptively adjusts the receptive
field based on the input stimulus. This allows our model to
capture both global and local contextual information more ef-
fectively. Additionally, the cross-shaped attention mechanism
in CS-DSA enables neurons to acquire dense contextual infor-
mation from all other neurons, further enhancing the model’s
ability to handle long-range dependencies. These innovations
distinguish our approach from MMML and contribute to the
superior performance of our model on benchmark datasets.

The CS-DSA is designed to extract comprehensive global
contextual information while capturing complex intra-modal
and inter-modal relationships. Unlike traditional methods that
rely on fixed-scale feature extraction, the CS-DSA dynami-
cally adjusts the receptive field scale based on the stimulus
level, inspired by the adaptive modulation of neuronal recep-
tive fields in the visual cortex. This dynamic scale selection
is achieved through a novel gating mechanism that integrates
information from multiple branches, each containing data at
different scales. Additionally, the CS-DSA employs a cross-
shaped attention mechanism to capture contextual information
along both the horizontal and vertical axes of the feature
map, enabling neurons to acquire dense contextual information
from all other neurons. This dual-loop cross-shaped attention
mechanism significantly enhances the model’s ability to cap-
ture global and local dependencies, addressing the limitations
of traditional attention mechanisms in handling long-range
dependencies. Specifically, the CS-DSA is operationalized
through four key processes—Divide, Cross-Interact, Fuse,
and Select—as depicted in Fig. 3. This figure illustrates a
dual-branch setup with kernels of different sizes, though the
approach can be extended to include multiple branches.

1) Divide: For any feature map Xm ∈ RC′×W ′×H′
, we

first apply two distinct transformations: F̃ : X → X̃ ∈
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Fig. 3. The proposed CS-DSA model framework.

RC×W×H and F : X → X ∈ RC×W×H , utilizing kernel
sizes of 3 and 5, respectively. It is essential to highlight
that both F̃ and F leverage efficient grouped or depth-wise
convolutions, followed by Batch Normalization and the ReLU
activation function in sequence. To enhance efficiency, the
traditional 5×5 convolution is substituted with a 3×3 dilated
convolution, featuring a dilation rate of 2.

2) Interact: The interaction module incorporates an ad-
vanced cross-shaped attention mechanism to capture contex-
tual information along both the horizontal and vertical axes
of the feature map, enhancing neuron-level representational
power. This is achieved through a series of convolution oper-
ations and attention mechanisms applied to the feature map.

First Pass: Given a local feature map X ∈ RC×W×H ,
the module first applies two 1 × 1 convolutions to generate
the query Q and key K feature maps, where {Q,K} ∈
RC′×W×H . Here, C ′ represents a reduced channel count,
lower than C, enabling effective dimensionality reduction. The
attention map A ∈ R(H+W−1)×W×H is then computed by
performing an affinity operation at each spatial location u
within feature map Q. This operation compares the feature
vector Qu at position u with a set of feature vectors from K
aligned along the same row or column as u, and the affinity
score is computed as:

di,u = Qu · Ω⊤
i,u (1)

where Ωi,u represents the feature vectors from K that align
with Qu along the same row or column. The soft-max opera-
tion is then applied across the resulting matrix D, producing
the attention map A.

Next, a second 1 × 1 convolution generates the adaptive
feature map V , and contextual information is aggregated from
neighbouring features in V via the following equation:

X
′
u =

∑
i∈|Φu|

Ai,uΦi,u +Xu (2)

where Φu consists of feature vectors from V that are aligned
along the same row or column as u, and Ai,u is the corre-
sponding attention weight. This process is illustrated in Fig.
3, where the flow of information during the first pass is shown.

Second Pass: To further enhance the contextual informa-
tion, a second pass of cross-shaped attention is applied. This
pass takes the feature map X

′
from the first pass as input and

generates the updated feature map X
′′

, as shown in Fig. 4.
The attention map for the second pass, denoted A′, is

computed similarly to the first pass, but now applied to the
updated feature map X

′
. This second pass allows the model to

propagate contextual information across all spatial dimensions,
capturing more global and non-local contextual relationships.

For any position u in X
′′

, if u and another position θ are
aligned in the same row or column, the update rule is:

X
′′
u ← f(A′, u, θ) ·Xθ · [f(A, u, θ) + 1] (3)

where f(A, u, θ) represents the function mapping attention
weights to the spatial relationship between u and θ. When u
and θ are not aligned in the same row or column, the update
rule becomes:

X
′′
u ← [f(A′, ux, uy, θx, uy) · f(A, θx, uy, θx, θy)+

f(A′, ux, uy, θx, θy) · f(A, ux, θy, θx, θy)] ·Xθ

(4)

This second pass enables the model to capture richer and more
global contextual information, overcoming the limitations of
the first pass by addressing both aligned and non-aligned
neurons. Additionally, for a more concise representation, we
provide the algorithmic flow of Interact in Algorithm 1.

3) Fusion: As outlined earlier, our aim is to provide neu-
rons with the ability to dynamically adjust their receptive field
(RF) sizes in response to the content of the input stimulus. To
accomplish this, we employ a gating mechanism that controls
the flow of information from various branches, each containing
data at different scales, into the neurons in the subsequent
layer. The gate must be capable of integrating information
from all these branches. Initially, the outputs from multiple
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Algorithm 1 The Algorithm Flow of Interact in the CS-DSA
Module
Input: Feature map X ∈ RC×W×H

Output: Enhanced feature map X
′′ ∈ RC×W×H

First Pass: Cross-Shaped Attention
1: Compute query, key, and value using 1× 1 convolutions:
2: Q← Conv1×1(X)
3: K ← Conv1×1(X)
4: V ← Conv1×1(X)
5: Construct affinity matrix D:
6: for each spatial position u in Q do
7: for each aligned position i do
8: di,u ← Qu · Ω⊤

i,u

9: end for
10: end for
11: Normalize using softmax to obtain attention map:
12: A← softmax(D);
13: Aggregate contextual information:
14: for each position u in X do
15: X

′
u ←

∑
i∈|Φu| Ai,uΦi,u +Xu

16: end for
Second Pass: Contextual Propagation
17: Compute new attention map A′ using X

′
following steps

5–16.
18: Update feature map X

′′
:

19: for each position u in X
′ do

20: if u and θ are in the same row or column then
21: X

′′
u ← f(A′, u, θ) ·Xθ · [f(A, u, θ) + 1]

22: else
23: X

′′
u ←

∑
f(A′, A) ·Xθ

24: end for
25: Return X

′′

Fig. 4. After two iterations of the cross-shaped attention mechanism, each
neuron is capable of fully acquiring dense contextual information from all
other neurons.

branches, such as the two branches illustrated in Fig. 3, are
merged using element-wise addition:

E = Ẽ + E (5)

Subsequently, we integrate global feature by using global aver-
age pooling to generate channel-specific statistics s ∈ RC . In

particular, the c-th component of s is determined by summing
E across the spatial dimensions H ×W :

sc = Pooling(Ec) =
1

H ×W

H∑
i=1

W∑
j=1

Ec(i, j). (6)

Furthermore, we generate a streamlined feature vector z ∈
Rd×1 to facilitate accurate and adaptive selection. This is
accomplished through a straightforward fully connected (fc)
layer, which improves efficiency and reduces the dimension-
ality:

z = Ffc(s) = δ(B(Ws)), (7)

Here, δ refers to the ReLU activation function, B indicates
Batch Normalization, and W ∈ Rd×C . To evaluate how d
affects model efficiency, we utilize a reduction ratio r to set
its value:

d = max(C/r, L), (8)

Here, L represents the smallest value of d, with L = 32
commonly used in our experiments.

4) Selection: A soft attention mechanism is employed to
dynamically select information across different spatial scales,
guided by a compact feature descriptor z. This selection
process computes the attention weights ac and bc for each
channel c by applying the soft-max function to the values
along the channel dimension. The attention weights are defined
as follows:

ac =
eAcz

eAcz + eBcz
, bc =

eBcz

eAcz + eBcz
, (9)

where A and B are matrices with dimensions RC×d, and
a and b are the soft attention vectors corresponding to the
feature maps E and Ẽ, respectively. Specifically, Ac ∈ R1×d

and Bc ∈ R1×d represent the c-th row of matrices A and B,
respectively. The attention weights ac and bc satisfy ac+bc = 1
in the two-branch case, eliminating the need for matrix B.

The final feature map V is generated by applying these
attention weights to the corresponding kernels:

Vc = ac · Ec + bc · Ẽc, ac + bc = 1, (10)

The aggregated feature map V is then formed as:

V = [V1, V2, ..., VC ], Vc ∈ RH×W . (11)

This process supports the two-branch case, and can be easily
extended to handle more branches by generalizing the attention
weights and combining feature maps accordingly.

E. Primary-Secondary Modality Discrepancy Learning Mod-
ule

PS-MDL Module evaluate the discrepancies among modal-
ities, it is essential to first identify the primary modal and
auxiliary modalities. In this work, we fuse the three modalities
(t, a, v) and apply the CS-DSA module for global context
extraction, resulting in a fourth modal—the fusion modal
X̂f ∈ Rc×w×H . By default, this fusion modal is treated as
the primary modal, while the original three serve as auxil-
iary modalities (ablation studies demonstrate the performance
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impact when other modalities are designated as the primary
one):

Xf = concat(Xt, Xa, Xv),

X̂f = CS −DSA(Xf ),
(12)

To capture inconsistencies between the primary and auxiliary
modalities, we employ a cross-attention (CA) mechanism that
facilitates interaction among the auxiliary modalities:

Ŝv = CA(X̂a → X̂v)⊕ CA(X̂t → X̂v),

Ŝa = CA(X̂t → X̂a)⊕ CA(X̂v → X̂a),

Ŝt = CA(X̂a → X̂t)⊕ CA(X̂v → X̂t).

(13)

Moreover, we also can calculate the fusion modal represen-
tations by cross-attention (CA) mechanism and self-attention
(SA):

Ŝf = CA(X̂a → X̂f )⊕ CA(X̂t → X̂f )⊕ CA(X̂v → X̂f ),

Ŝf = SA(Ŝf ),
(14)

Finally, the multimodal discrepancy representation is obtained
by concatenating the auxiliary modalities Ŝv , Ŝa, and Ŝt with
the primary modal Ŝf :

O = W1Ŝv ⊕W2Ŝa ⊕W3Ŝt ⊕ Ŝf . (15)

Here, W1, W2, and W3 are trainable weight parameters that are
learned by the modalities themselves to regulate the amount
of auxiliary information to be extracted.

F. Output Layer

The task of multimodal sentiment analysis involves predict-
ing the label y. Consequently, the final modal discrepancy
representation is passed through a fully connected layer with
a softmax activation function to produce a probability distri-
bution y within the decision space of these tasks:

y = softmax(WO + b). (16)

where Wo and bo are trainable parameters.

IV. EXPERIMENT

In this section, we will provide a detailed introduction to the
datasets, baselines, Evaluation Metrics, and parameter settings
used in our work.

A. Datasets

To evaluate the performance of our SSGDL model, we
utilize three well-established benchmark datasets: CMU-MOSI
[37], CMU-MOSEI [38], and CH-SIMS [39].. The purpose
to choose these dataset because they are commonly used for
multimodal sentiment analysis (MSA). Additionally, we in-
corporate an additional dataset, AVEC2019 [40], to verify the
robustness of the proposed method. This, in turn, sheds light on
the generalization capabilities and cross-domain performance
of the proposed method. Below is a detailed summary of the
datasets, including their training, validation, and testing set
distributions, as outlined in Table I:

• CMU-MOSI: This dataset comprises text, visual, and
acoustic data from 93 YouTube movie review videos,
segmented into 2,199 parts. Each segment is annotated
with a sentiment intensity score ranging from -3 to 3.
The dataset is divided into 1,284 segments for training,
229 for validation, and 686 for testing.

• CMU-MOSEI: This larger-scale dataset includes 23,453
annotated video segments from various online platforms.
It covers 250 topics and features 1,000 different speakers.
Each segment is labelled with sentiment intensity scores
from -3 to 3 and includes annotations for six basic
emotions. This dual labelling supports both sentiment and
emotion recognition tasks.

• CH-SIMS: Designed for sentiment analysis in a Chinese
context, CH-SIMS features 2,281 utterance-level video
segments from 60 diverse video sources, such as movies,
TV dramas, and variety shows. Each segment is annotated
with sentiment intensity scores from -1 (highly negative)
to 1 (highly positive). The dataset is split into 1,368
segments for training, 456 for validation, and 457 for
testing. Although it provides both multimodal and uni-
modal annotations, our study focuses on the multimodal
annotations.

• AVEC2019: The AVEC2019 dataset is aimed at mul-
timodal depression detection and includes audiovisual
recordings from clinical interviews with a virtual agent
and human interaction. Each sample is annotated with
PHQ-8 scores ranging from 0 to 24, indicating the
severity of depression. The dataset contains 163 training
samples, 56 validation samples, and 56 test samples.
For acoustic features, we use Mel-frequency cepstral
coefficients (MFCC), and for visual features, we use
facial action units.

TABLE I
SPLITTING RESULTS OF THE CMU-MOSI, CMU-MOSEI, CH-SIMS AND

AVEC2019 DATASETS.

Datasets Train Valid Test All

CMU-MOSI [37] 1284 299 686 2199
CMU-MOSEI [38] 16326 1871 4659 22856
CH-SIMS [39] 1368 456 457 2281
AVEC2019 [40] 163 56 56 275

B. Baseline

To validate the effectiveness of our SSGDL model across
both tasks, we compare our experimental results with the
accuracy and performance of several state-of-the-art methods
in sentiment analysis.
1) Multimodal Sentiment Analysis

TFN [24] TFN is a tensor-based approach that leverages
the Cartesian product to derive a holistic representation of the
involved modalities. It achieves this by employing a modal
embedding subnetwork to learn intra-modality dynamics and
a novel fusion method called tensor fusion to capture inter-
modal interactions.
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LMF [41] LMF discards traditional alignment methods for
different modalities and instead employs stacked Transformers
to expand the available temporal frames for alignment.

MulT [23] MulT employs directional pairwise cross-modal
attentions to facilitate interactions between modalities. This is
achieved by translating information from one modal to another
and vice versa.

MFM [42] MFM is a multimodal factorization model
that decomposes characterization factors using multimodal
discriminant factors and modal-specific generation factors.

MFN [43] MFN utilizes LSTM-related structures to simul-
taneously process temporal information from three modalities.

Self-MM [22] Self-MM jointly trains multimodal and uni-
modal tasks using both multimodal labels and generated
unimodal labels. This approach facilitates learning similarities
and differences between modalities effectively.

MNT [27] MNT employs the self-attention mechanism of
the Transformer to process cross-modal information, utilizing
various normalization operations.

TETFN [44] The Text-Enhanced Transformer Fusion Net-
work (TETFN) excels at creating cohesive multimodal rep-
resentations by focusing on pairwise cross-modal interactions
driven by text and highlighting the differences between modal-
ities through the use of unimodal labels.

C-MIB [45] C-MIB leverages the information bottleneck
concept, aiming to optimize the mutual information shared
between unimodal and multimodal representations with their
corresponding targets. It simultaneously restricts the mutual
information between these representations and their inputs,
guiding the model to learn an efficient and non-redundant
multimodal representation.

MCL [46] The MCL approach leverages prior knowledge to
uncover correlations among different modalities. It creates sets
of positive and negative samples from the same instance and
distinct instances, respectively. By utilizing a weak predictor to
discern relationships within these sets, MCL helps the model
to link unimodal features and identify commonalities across
modalities.

TSST [47] TSST breaks down the fusion process into
two distinct phases. Each phase is dedicated to capturing
interactions between unimodal signals and the interaction
information within fused representations, thereby enhancing
the communication across different modalities.

TSCL-FHFN [48] TSCL-FHFN introduces an attention-
driven directional cross-modal transformer that enables one
modal to draw information from another, facilitating the ac-
quisition of complementary data between them. FHFN then
employs a low-rank tensor fusion strategy to reinforce the
learning of interactions across multiple modalities.

MMML [58] MMML is a state-of-the-art model that
combines audio and text signals using a transformer-based
fusion network. It employs multi-loss training to optimize the
performance of individual modalities and the overall fusion
network.

2) Multimodal Depression Detection

Baseline [49] The baseline approach utilizes late fusion by
averaging the final predictions from all involved modalities.

Adaptive Fusion Transformer [50] Sun et al. propose
the Adaptive Fusion Transformer networks to dynamically
combine the final predictions.

EF [51] EF incorporates straightforward linguistic and
word-duration features to assess depression levels.

Bert-CNN & Gated-CNN [52] Bert-CNN & Gated-CNN
are designed with gating mechanisms to integrate information
from textual, acoustic, and visual modalities.

Multi-scale Temporal Dilated CNN [53] This method em-
ploys dilated CNNs to extract multimodal features, expanding
the receptive field to handle longer sequences.

Hierarchical BiLSTM [54] Hierarchical BiLSTM utilizes
a hierarchical BiLSTM structure to capture sequential data in
a pyramid-like fashion.

TensorFormer [55] TensorFormer is a tensor-based Trans-
former framework for multimodal data, considering interac-
tions among all relevant modalities.

C. Experimental Settings

Our model is optimized using the Adam optimizer, with
an initial learning rate of 5 × 10−5 for RoBerta, and 1 ×
10−3 for other parameters. We experiment with mini-batch
sizes of 16, 32, and 64, adjust the LSTM hidden layer sizes
to 32, 64, or 128, and set the kernel size for Conv1D to 3.
The sequence length for visual features k is maintained at 50,
and the number of attention heads for text-based multi-head
attention is configured to 5.

D. Assessment Metrics

The experiment adopts four evaluation metrics to assess the
performance of our model in multimodal sentiment analysis
tasks. The specific metrics are as follows:

Mean Absolute Error (MAE) Measures the average ab-
solute difference between the forecasted and actual values,
disregarding the direction of the errors.

Binary Classification Accuracy (Acc-2) Evaluated in two
scenarios: one comparing negative with non-negative (in-
cluding zero) and another contrasting negative with positive
(excluding zero).

F1 Score (F1) Assessed similarly in two contexts: nega-
tive versus non-negative (including zero) and negative versus
positive (excluding zero).

Pearson Correlation Coefficient (Corr) Gauges the
strength and direction of the linear relationship between the
predicted values and the actual outcomes of the samples.

V. RESULTS AND ANALYSIS

A. Quantitative Analysis

1) Multimodal Sentiment Analysis
Comparisons on CMU-MOSI and CMU-MOSEI

Datasets. Table II showcases a performance comparison be-
tween our SSGDL model and several leading baseline models
on the MOSI and MOSEI datasets. For each metric on these
datasets, two sets of results are provided. The values to the
left of the ’/’ represent the model’s performance when zero-
label samples are included in the dataset (has-0), while the
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TABLE II
RESULTS ON THE CMU-MOSI AND CMU-MOSEI DATASETS. FOR EACH METRIC ON THESE DATASETS, TWO SETS OF RESULTS ARE REPORTED: VALUES

ON THE LEFT OF THE ’/’ REPRESENT PERFORMANCE WHEN ZERO-LABEL SAMPLES ARE INCLUDED (HAS-0), WHILE VALUES ON THE RIGHT REFLECT
PERFORMANCE WHEN THOSE SAMPLES ARE EXCLUDED (NON-0). IN THIS CONTEXT, THE SYMBOL ”↑” INDICATES THAT HIGHER VALUES CORRESPOND
TO BETTER PERFORMANCE, WHILE THE SYMBOL ”↓ ” DENOTES THAT LOWER VALUES INDICATE BETTER PERFORMANCE. THE SYMBOL ”−” SIGNIFIES
THAT THE RELEVANT VALUE IS NOT PROVIDED IN THE CORRESPONDING REFERENCE. THE BEST PERFORMANCE FOR EACH METRIC IS HIGHLIGHTED IN

BOLD.

Models CMU-MOSI CMU-MOSEI

Acc2 ↑ F1↑ MAE↓ Corr↑ Acc2 ↑ F1↑ MAE↓ Corr↑

TFN [20] 79.15/80.95 79.03/80.9 0.933 0.672 79.96/81.38 80.2/81.45 0.913 0.686
LMF [13] 77.26/78.51 77.19/78.5 0.956 0.628 78.42/80.53 78.36/79.68 0.875 0.65
MulT [23] 78.28/79.73 78.3/79.81 0.908 0.696 79.5/80.64 80.3/81.54 0.865 0.715
MFM [24] 77.11/77.74 77.17/77.87 0.978 0.652 78.31/79.5 79.3/79.7 0.902 0.72
MFN [14] 77.2/78.81 76.82/78.6 0.902 0.681 78.92/79.31 78.8/79.54 0.843 0.726
Self-MM [17] 82.83/85.68 82.75/85.79 0.845 0.79 83.68/85.68 82.75/85.79 0.845 0.74
MNT [18] -/84.5 -/85.74 0.857 0.782 -/84.72 -/85.6 0.77 0.728
TETFN [37] 85.36/85.58 85.16/85.43 0.612 0.834 85.68/85.9 85.78/86.23 0.623 0.765
C-MIB [61] -/84.12 -/84.23 0.684 0.83 -/85.4 -/85.57 0.638 0.77
MCL [50] -/83.4 -/83.7 0.796 0.788 -/84 -/86.3 0.73 0.79
TSST [23] 85.73/85.89 85.23/85.49 0.649 0.85 86.5/86.2 86.45/86.69 0.586 0.76
FHFN [27] 85.79/86.21 85.98/86.46 0.62 0.842 85.9/86.36 85.62/86.8 0.57 0.785
MMML [58] 85.91/88.16 85.85/88.15 0.643 0.838 86.32/86.73 86.23/86.49 0.517 0.791
Our Model 89.17/89.34 90.32/89.84 0.58 0.877 88.86/89.04 89.54/89.35 0.587 0.872

values to the right indicate performance when those samples
are excluded (non-0). The best results for each metric are
emphasized in bold.

From the experimental results, several key insights emerge:
(1) Superior Performance on CMU-MOSI: Our proposed SS-
GDL method outperforms existing approaches on the CMU-
MOSI dataset. Specifically, when compared to the recent
state-of-the-art FHFN approach, our model exhibits significant
improvements of 3.38%/3.13% in Acc2 and 4.34%/3.38% in
F1 scores, respectively. performance gain can be attributed
to the Cross-Shaped Dynamic Scale Attention (CS-DSA)
module, which dynamically adjusts the receptive field scale
based on the input stimulus. By capturing fine-grained intra-
modal correlations and aggregating global contextual infor-
mation at varying scales, the CS-DSA module enables the
model to effectively handle the diverse and complex emotional
expressions present in multimodal data.

(2) Strong Performance on CMU-MOSEI: On the larger
MSA benchmark dataset, CMU-MOSEI, our method also
demonstrates considerable gains across most evaluation met-
rics. Notably, it surpasses the next-best method TSST by
2.36%/2.84% in Acc2 and 3.09%/2.66% in F1, respectively.
Additionally, our approach achieves the highest performance
in regression accuracy metrics, including MAE and Corr.
This success is largely due to the Primary-Secondary modal
Discrepancy Learning (PS-MDL) module, which leverages
cross-attention and self-attention mechanisms to capture dis-
crepancies between the primary (fused) modal and auxiliary
modalities (text, acoustic, and visual). By hierarchically inte-
grating these modalities, the PS-MDL module ensures that the
model effectively utilizes the complementarity and uniqueness
of each modal, leading to a more nuanced understanding of
emotional content.

(3) Combined Strengths of CS-DSA and PS-MDL: The
superior performance of SSGDL across both datasets under-
scores the efficacy of combining global context extraction

(via CS-DSA) and inter-modal discrepancy learning (via PS-
MDL). The CS-DSA module’s ability to adaptively capture
global and local correlations, combined with the PS-MDL
module’s focus on inter-modal discrepancies, enables the
model to better handle both objective and subjective ambi-
guities in sentiment analysis and depression detection. These
results demonstrate that the SSGDL framework provides a
more comprehensive and accurate representation of emotional
content, thereby setting a new benchmark for multimodal
affective computing.

However, it is also observed that the improvement of our
SSGDL method on the CMU-MOSEI dataset is somewhat
less pronounced compared to its performance on the CMU-
MOSI dataset. We hypothesize that this may be attributed to
the inherent diversity and complexity of the CMU-MOSEI
dataset. As one of the largest benchmark datasets for MSA
tasks, CMU-MOSEI encompasses a wider range of topics,
speakers, and emotional expressions, making it significantly
more intricate than CMU-MOSI. This added complexity in-
troduces a greater imbalance between fine-grained and coarse-
grained metrics, presenting more challenging conditions for
sentiment analysis models to effectively capture and generalize
emotional patterns.

Comparisons on CH-SIMS Dataset. On the CH-SIMS
dataset, we evaluate binary accuracy (Acc2), F1 score, Pear-
son correlation coefficient, and MAE. For all metrics except
MAE, higher values indicate better performance. The CH-
SIMS dataset stands out due to its use of Chinese text,
distinguishing it from the other two datasets that focus on a
limited number of English-language works. The performance
results are presented in Table III.

From the comparisons in Table III, we can derive several
key insights: (1) Our method shows notable improvements
on this Chinese-language dataset. Specifically, the proposed
SSGDL model surpasses the second-best approach, TSST, with
gains of 1.5% in multi-class classification and 1.02% in binary
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classification metrics. This underscores the effectiveness of our
approach across different languages, even with varying feature
extraction techniques. (2) It is also important to highlight
the relative lack of sentiment analysis research specifically
tailored to the Chinese language in multimodal datasets like
CH-SIMS. Compared to existing state-of-the-art methods, our
SSGDL model achieves significant performance enhancements
on this dataset, demonstrating its ability to address sentiment
analysis challenges by effectively managing both objective and
subjective ambiguities in human emotion analysis.

TABLE III
RESULTS ON THE CH-SIMS DATASET.

Model Acc2 ↑ F1↑ MAE↓ Corr↑

TFN [24] 74.48 74.37 0.79 0.485
MulT [23] 75.29 75.58 0.785 0.502
MFN [43] 76.2 76.35 0.782 0.52

Self-MM [22] 80.7 80.65 0.754 0.613
MNT [27] 77.94 78.15 0.774 0.7542

TETFN [44] 79.17 79.28 0.75 0.76
MCL [46] 81.88 81.9 0.764 0.78
TSST [47] 82.3 82.71 0.76 0.746

MMML [58] 82.93 82.9 0.332 0.733
Our Model 83.8 83.73 0.759 0.803

2) Comparisons on AV EC2019 Dataset
Table IV showcases the performance of our proposed SS-

GDL model on the publicly available AVEC2019 multimodal
dataset for depression detection. Upon analysing the results,
it is evident that our method demonstrates robust performance
in detecting depression. Notably, the SSGDL model surpasses
the second-best approach, TensorFormer, achieving a 0.041%
increase in the CCC metric and a 0.52% decrease in RMSE.
These findings highlight the sustained efficacy of our approach
in the field of depression detection. Thus, the results proof the
generalization capabilities and cross-domain performance of
our proposed method.

TABLE IV
RESULTS ON THE AVEC2019 DATASET.

Model CCC↑ RMSE↓

Baseline [49] 0.111 6.37
Adaptive Fusion Transformer [50] 0.443 5.61

EF [51] 0.344 -
Bert-and-Gated-CNN [52] 0.403 6.11

Multi-scale Temporal Dilated CNN [53] 0.430 4.39
Hierarchical BiLSTM [54] 0.442 5.50

TensorFormer [55] 0.493 4.31
Our Model 0.534 3.79

B. Case Study

Furthermore, to evaluate our model’s predictive capabilities,
we performed case studies using three selected video clips
from the CMU-MOSI dataset. Fig. 5 displays the sentiment
prediction outcomes for each clip, including corresponding
text, acoustic, and visual data, alongside the actual label
values and the model’s predictions. Here, negative values
correspond to negative sentiments, while positive values sig-
nify positive sentiments. The figure demonstrates a strong

alignment between the predicted values and the true labels,
providing compelling evidence of the model’s accuracy. These
results, combined with factors such as the incorporation of
global and spatial data, the deployment of a sophisticated
feature fusion strategy, and the success observed in the case
studies, significantly bolster the model’s overall performance
and confirm its effectiveness.

In Clip A, the model correctly predicts a positive senti-
ment despite the presence of conflicting cues in the acoustic
modal. This accurate prediction can be attributed to the Cross-
Shaped Dynamic Scale Attention (CS-DSA) module’s ability
to dynamically adjust the receptive field scale based on the
input stimulus. By focusing on the most relevant contextual
information in the visual and textual modalities, the CS-DSA
module effectively captures both global and local correlations.
The cross-shaped attention mechanism ensures that the model
aggregates comprehensive contextual information, leading to
a more accurate sentiment prediction even in the presence of
conflicting acoustic cues. In Clip B, the model successfully
identifies a negative sentiment by leveraging the Primary-
Secondary Modality Discrepancy Learning (PS-MDL) mod-
ule’s ability to capture discrepancies between the fused modal
and the acoustic modal. The cross-attention mechanism high-
lights subtle differences in tone and pitch, which are critical for
detecting negative emotions. This demonstrates how the PS-
MDL module’s hierarchical integration of modalities enables
the model to effectively utilize inter-modal discrepancies for
sentiment analysis. By emphasizing the unique contributions
of each modal, the PS-MDL module ensures a more nuanced
understanding of emotional content. In Clip C, the model
accurately predicts a negative sentiment by balancing the con-
tributions of all modalities. The CS-DSA module’s dynamic
scale selection allows the model to adaptively capture relevant
contextual information, while the PS-MDL module’s cross-
attention mechanism ensures that no single modal dominates
the prediction. This balanced approach highlights the model’s
ability to handle complex and ambiguous scenarios, where
multiple modalities may provide conflicting or complementary
information.

These case studies demonstrate that the SSGDL model’s
ability to adaptively capture global context (via CS-DSA)
and inter-modal discrepancies (via PS-MDL) enables it to
accurately predict sentiment even in complex and ambiguous
scenarios. The integration of these mechanisms ensures that
the model can effectively leverage the strengths of each modal
while mitigating the impact of conflicting cues, leading to
robust and accurate sentiment analysis.

C. Ablation Study

The proposed model comprises two key components: CS-
DSA and PS-MDL. To gain a deeper understanding of their re-
spective contributions, we conducted a comprehensive ablation
study on the CMU-MOSI dataset, involving four key analyses.
First, we systematically removed each internal component
while preserving the overall model structure to assess its
individual impact on performance. Second, we evaluated the
influence of each modality (text, visual, and acoustic) as the
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Fig. 5. Case Study Result. The samples in our dataset were labelled on a
scale ranging [-3, 3]. Values greater than 0 indicate positive sentiment, with
-3 representing the most positive sentiment. Conversely, values less than 0
indicate negative sentiment, with 3 representing the most negative sentiment.

primary modality to analyse modality-specific discrepancies
and assess the effectiveness of using the fusion modality as
the primary one. These experiments provide critical insights
into the role of each module, their relative importance, and
how they contribute to the overall architecture. Additionally,
we examined unimodal and multimodal configurations to
demonstrate the advantages of multimodal fusion for sentiment
analysis and depression detection. Finally, we further validated
the effectiveness of CS-DSA by replacing it with multiple
benchmark fusion techniques. In these experiments, CS-DSA
refers to the Cross-Shaped Dynamic Scale Attention module,
PS-MDL denotes the Primary-Secondary Modality Discrep-
ancy Learning module, where module removals are indicated
by ”−” and combined configurations are represented by ”+”.

TABLE V
ABLATION EXPERIMENT RESULTS FOR EACH COMPONENT.

Model Acc2 ↑ F1↑ MAE↓ Corr↑

non 81.52/82.4 81.6/82.75 0.842 0.601
- CS-DSA 86.38/86.84 87.02/87.75 0.741 0.748
- PS-MDL 87.24/87.55 86.9/87 0.81 0.72

+ All Module 89.17/89.34 90.32/89.84 0.58 0.877

1) The experimental results in Table V demonstrate that
removing any internal component leads to varying degrees of
performance degradation, highlighting the critical role each
component plays in enhancing the overall effectiveness of
the model. When all major modules are removed, the per-
formance drops sharply—up to 7.65% in Acc2 and 8.74% in
F1—confirming that these components are not merely additive
enhancements, but essential to the model’s representational
capacity. Specifically, when the CS-DSA module is removed,
the Acc2 and F1 scores decrease by 2.79%/2.5%. This reflects
the importance of scale-adaptive attention, which enables the
model to flexibly integrate both local and global contextual
cues. Without this mechanism, the model is forced to at-
tend to fixed receptive fields, which may either miss long-
range sentiment evolution or dilute sharp local emotional
triggers—especially in temporally misaligned modalities like
speech and vision. Similarly, when the PS-MDL module is ex-
cluded, Acc2 and F1 drop by 1.93%/1.79% and 3.42%/2.84%,
respectively. This demonstrates the importance of capturing
inter-modal discrepancies through cross-attention and self-

Fig. 6. The ablation study results for utilizing individual modalities or
combining multiple modalities.

attention mechanisms. The PS-MDL module’s hierarchical
integration of auxiliary modalities ensures that the model can
leverage the unique contributions of each modal, leading to a
more robust fused representation.

Together, these findings validate our hypothesis that ac-
curate affective understanding requires both context-sensitive
aggregation (CS-DSA) and discrepancy-aware alignment (PS-
MDL). Their combined contribution forms a dual mech-
anism: one that ensures comprehensive context modelling,
and another that guards against over-reliance on potentially
misleading modalities. These insights go beyond numerical
gains—they reflect a cognitive-inspired architecture design
that is both interpretable and generalizable.

TABLE VI
PERFORMANCE COMPARISON WITH LARGE VISION MODELS (IMAGE AND

TEXT ONLY).

Model Acc2 ↑ F1↑ MAE↓ Corr↑

LLava [59] 85.31 86.12 0.71 0.82
LLava Video [60] 86.03 86.78 0.69 0.83

LLama [61] 84.72 85.51 0.73 0.81
Our Model 87.14 87.7 0.645 0.842

TABLE VII
RESULTS OF ABLATION EXPERIMENTS WHEN EACH SINGLE MODE IS USED

AS THE PRIMARY MODAL.

Model Acc2 ↑ F1↑ MAE↓ Corr↑

Text 87.59/87.58 87.8/87.77 0.671 0.862
Audio 86.63/86.8 87.32/87.42 0.69 0.841
Visual 87.24/87.16 87.51/87.33 0.679 0.854
Fusion 89.17/89.34 90.32/89.84 0.58 0.877

2) To further demonstrate the importance of multimodal
data in sentiment analysis tasks, we conducted experiments
with various data configurations: text-only (T), audio (A),
video (V), video + audio (V + A), video + text (V + T),
and audio + text (A + T). These experiments were designed
to evaluate the complementary contributions of visual and
acoustic modalities to textual information. The results, pre-
sented in Fig. 6, indicate that performance degrades across
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all partial-modality configurations, reaffirming that sentiment
expression is inherently multimodal. Notably, the audio-only
setup yields the lowest performance, which can be attributed
to the inherent variability and noise in acoustic signals, mak-
ing them less reliable for consistent emotional inference. In
contrast, configurations including text consistently perform
better—particularly text + video (T + V)—as text typically
carries explicit semantic sentiment, while facial expressions
serve as rich affective complements. This pattern confirms that
different modalities offer non-redundant emotional cues, and
cross-modal alignment enhances robustness in interpretation,
especially under ambiguous or implicit emotional scenarios.

To comprehensively evaluate the robustness of our model on
datasets with only image and text modalities, we introduced
LLava [59], LLava Video [60], and LLama [61] models for
comparison. These models are state-of-the-art in handling
visual and textual modalities, providing a strong benchmark
for our model.

The results of the ablation experiments without audio inputs
are presented in Table.VI. Our model demonstrates superior
performance compared to LLava, LLava Video, and LLama
in terms of accuracy (Acc2) and F1 score. Specifically, our
model outperforming LLava (Acc2: 85.31%, F1: 86.12%),
LLava Video (Acc2: 86.03%, F1: 86.78%), and LLama (Acc2:
84.72%, F1: 85.51%). This performance advantage suggests
two key insights. One one hand, our architecture not only fuses
modalities but models their relative reliability through the
PS-MDL module, allowing the system to focus on modality-
consistent features and ignore irrelevant or misleading signals.
On the other hand, the CS-DSA module adaptively adjusts
its attention scale, enabling fine-grained alignment between
visual and textual information over varying spatial and tem-
poral scopes, which standard vision-language models (trained
primarily for static grounding or generation tasks) often lack.

These findings reinforce the importance of task-specific
multimodal alignment mechanisms over general-purpose fu-
sion, and demonstrate our model’s ability to outperform larger
pre-trained models in affective reasoning through more tar-
geted and cognitively aligned designs.

3) To investigate the effect of primary modality selection
within the PS-MDL framework, we conducted a series of
ablation experiments where each individual modality—text,
audio, or video—was treated as the primary input, instead of
the fused multimodal representation. The results (Table.VII)
show that this substitution consistently leads to performance
degradation, with accuracy and F1 drops of up to 1.5–2.5%
depending on the dataset and modality.

This decline highlights a key insight: while individual
modalities contain rich information, they are also prone to
modality-specific bias or noise. For example, textual inputs
may dominate in explicit sentiment cues but fail to reflect tonal
sarcasm or facial dissonance. Visual cues may be expressive
yet ambiguous without linguistic context. Using a single
modality as the primary reference forces the model to inter-
pret discrepancies relative to a potentially unstable or biased
baseline. In contrast, the fused modality representation serves
as a more reliable semantic anchor. It integrates shared af-
fective signals across modalities, suppresses modality-specific

noise, and offers a consensus-level baseline for discrepancy
modelling. This design mirrors how humans interpret emotion:
we often form a general impression based on combined cues
before noticing incongruence.

These results confirm that treating the fused modality as
primary enhances semantic stability, strengthens cross-modal
calibration, and enables more robust handling of emotionally
ambiguous or contradictory inputs. It also reinforces the design
philosophy behind PS-MDL: that affective reasoning benefits
from discrepancy detection around a central, semantically
averaged core.

4) To validate the effectiveness of the CS-DSA module,
we replaced it with several state-of-the-art fusion methods,
including Multi-head Cross Attention, Low-Rank Fusion, and
FHFN, keeping the rest of the model unchanged. As shown in
Table.VIII, CS-DSA achieves the best results across all metrics
on the MOSI dataset, outperforming the best baseline (FHFN)
by over 2.3% in accuracy.

These improvements reflect more than just numerical gains.
Traditional fusion methods often rely on static attention pat-
terns, which struggle with temporal misalignment and diverse
emotional cues. In contrast, CS-DSA introduces adaptive
attention scaling and a cross-shaped structure, enabling the
model to focus flexibly on both long-range dependencies (e.g.,
narrative sentiment flow) and localized cues (e.g., micro-
expressions or tonal shifts).

This design allows more precise and context-sensitive mul-
timodal integration, explaining its consistent advantage over
fixed-fusion methods. The results highlight CS-DSA’s suit-
ability for affective reasoning tasks, where sentiment is both
multi-faceted and temporally dynamic.

TABLE VIII
PERFORMANCE COMPARISON WITH DIFFERENT FUSION METHODS

Model Acc2 ↑ F1↑ MAE↓ Corr↑

MulT [23] 83.2/83.73 83.1/83.95 0.8 0.72
MFN [43] 81.8/82.45 81.94/82.73 0.853 0.694

Self-MM [22] 83.52/85.62 83.45/85.86 0.813 0.782
TETFN [44] 86.18/86.7 85.96/86.6 0.605 0.849
TSST [47] 86.5/86.16 86.18/86.84 0.622 0.86
FHFN [48] 86.8/87.36 86.5/87.42 0.61 0.85
Our Model 89.17/89.34 90.32/89.84 0.58 0.877

VI. LIMITATION

Although the proposed model effectively captures both
intra-modal and cross-modal differences through the CS-DSA
and PS-MDL modules, it does not specifically address the
potential inconsistencies that may arise between bimodal data
and the fusion of unimodal and bimodal inputs (e.g., text
and audio). In practical sentiment analysis tasks, the inte-
gration of multiple modalities presents inherent challenges,
particularly when the emotional expressions conveyed by
different modalities conflict or diverge. This is especially true
in complex and diverse scenarios, where inconsistencies in
affective information across modalities may emerge.

The primary focus of this work, however, is on extracting
global contextual information and learning the relationships
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between modalities in multimodal sentiment analysis. Conse-
quently, our efforts are concentrated on addressing the fusion
challenges between unimodal and multimodal data. While the
issue of cross-modal inconsistencies is certainly important, it
is not the central concern of this study.

We assert that ensuring the effective fusion of unimodal and
multimodal data to achieve accurate global context extraction
should be prioritized in the initial phase of development. Once
these foundational challenges are addressed, exploring the in-
consistencies between bimodal data and between unimodal and
bimodal inputs can become a valuable direction for future re-
search. Although these inconsistencies may impact the model’s
performance in certain contexts, they do not fundamentally
alter the core contributions of this paper. Therefore, while this
limitation exists, it is considered a localized constraint that
does not diminish the overall significance of the study.

VII. CONCLUSION AND FUTURE WORK

This paper presents the Scale-Selectable Global Information
and Discrepancy Learning Network (SSGDL), an advanced
model designed for multimodal sentiment analysis. Drawing
inspiration from neuroscience, where receptive field sizes in
the visual cortex adapt dynamically to stimuli, our model
utilizes a cross-shaped attention mechanism (CS-DSA) to au-
tonomously determine scale sizes. This mechanism effectively
captures both global and contextual information by incorpo-
rating processes such as division, cross-interaction, fusion,
and selection, which enhances the model’s ability to capture
intra-modal details. To address the cross-modal discrepancies
often neglected in prior research, we introduce the Primary-
Secondary modal Discrepancy Learning (PS-MDL) module. In
this setup, the fusion modal produced by CS-DSA serves as
the primary modal, with other modalities acting as secondary.
By leveraging cross-attention, the model learns and addresses
discrepancies between these modalities, thereby improving its
interpretation of emotional content and enriching the repre-
sentation of emotions. Experimental evaluations reveal that our
model performs competitively on benchmark datasets. Looking
ahead, future work will focus on enhancing accuracy through
multi-task learning and refining the architecture to achieve a
more streamlined design.
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