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Abstract

Filamin A (FLNA) is a key protein that binds actin filaments to transmembrane integrins and plays an important role in maintaining cell
shape and signaling. In the brain, FLNA is emerging as a critical regulator of neurodevelopment, neuronal migration, actin organiza-
tion, and neuromodulation. Mutations and/or aberrant expression of the FLNA gene are associated with various brain diseases, such as
periventricular heterotopia, Ehlers-Danlos syndrome, and other disorders with impaired cognitive function and brain maldevelopment.
Here, we discuss the critical role of FLNA in brain function; its interactions with receptors, integrins, and signaling molecules, as well
as the implications of its activity for brain health and disease.

Keywords: filamin A; neuronal migration; neurodevelopmental disorder; cognitive impairment; CNS signaling pathways; brain devel-
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1. Introduction
The FLNA gene encodes filamin A (FLNA), an im-

portant anchoring protein best known for linking actin fil-
aments to transmembrane integrin molecules in focal ad-
hesions of the cell membrane, thereby playing a prominent
role in maintaining cell shape and signaling across various
cell types, including neurons [1–3]. FLNA and its gene
FLNA are also critical for the central nervous system (CNS),
especially its development [4] and signaling pathways [5].
For example, neuronal migration, a key step in brain de-
velopment, is highly dependent on FLNA [6], whose inter-
action with various signaling molecules and membrane re-
ceptors directs neurons to their target areas, helping create
functionally specialized areas of the cortex and other brain
structures [7]. The role of FLNA in cellular signaling ex-
tends beyond normal physiological conditions and includes
pathological interactions with receptors in various CNS dis-
eases [5]. In the healthy brain, FLNA plays a role in the
regulation and trafficking of mu-opioid receptors, since its
absence leads to reduced desensitization and downregula-
tion of opioid receptors, as well as impaired activation of
the p38 mitogen-activated protein kinase (MAPK) signal-
ing pathway by opioids [8]. In the pathological contexts of

Alzheimer’s disease, FLNA interacts with the α7 nicotinic
acetylcholine receptor (α7nAChR) and Toll-like receptor
4 (TLR4) [9,10], collectively highlighting the dual nature
of FLNA as a critical regulator of both physiological and
pathological signaling pathways.

As FLNA interacts with β1-integrins and other scaf-
fold proteins (coordinating complex signaling pathways es-
sential for brain patterning) [5], disturbances in this process
can lead to serious CNS pathologies, such as periventric-
ular heterotopia (PH), also called periventricular nodular
heterotopia (PNH, emphasizing the nodular nature of the
anomaly, with characteristic clusters of neurons along the
ventricular walls), accompanied by the mislocalization of
neurons, epilepsy, and cognitive impairments [11–13], also
see Table 1 (Ref. [14–25]).

FLNA is also involved in the regulation of cell ad-
hesion and the mechanosensory apparatus, helping cells to
adapt to changes in their microenvironment [22] by modu-
lating the cytoskeletal response to external signals, thereby
influencing cell movement and positioning [26]. Such abil-
ity to adapt is particularly important for neurons that need to
remain flexible for the constant remodeling of synapses and
neural networks that underlie learning and memory [27].
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Table 1. Summary of the main cellular functions of filamin A (FLNA).
Function Description Examples

Binding to actin fila-
ments

Forming three-dimensional networks that support
cell structure and provide mechanical strength [14]

Forming isotropic, cross-linked, three-dimensional orthogonal
networks with actin filaments in the cortical region [15]

Interaction with inte-
grins

Binding to transmembrane integrins in focal adhe-
sions, enabling cell adhesion and migration [16]

Interaction with integrin β1 in focal adhesions [16]

Regulatory role in
signaling pathways

Modulating various signaling pathways by linking
signaling cascades to FLNA phosphorylation [17,
18]

Modulation of epidermal growth factor (EGF) signaling by af-
fecting integrin function via phosphorylation. Inducing aber-
rant phosphorylation/activation in pathological conditions (e.g.,
Alzheimer’s disease) by facilitating aberrant signaling via the
α7 nicotinic acetylcholine receptor (α7nAChR) and Toll-like
receptor 4 (TLR4) [19,20]

Regulation of cell
shape

Maintaining cell shape by linking actin to struc-
tures [21]

Conferring elastic properties on F-actin networks [21]

Mechanotransduction Responses to mechanical forces [22] Linking cytoskeleton to mechanosensitive pathways [22]
Scaffold for signal-
ing complexes

Acting as a scaffold for assembling signaling com-
plexes [23]

Attaching proteins to the actin cytoskeleton and the involve-
ment in supporting cell signaling [23]

Role in neurodevel-
opment

Essential for neuronal migration and nervous sys-
tem development [24]

Neural circuit dysfunction due to FLNA mutations [25]

Collectively, this suggests that FLNA may serve not only
as an essential structural element, but also a key regula-
tor of cellular dynamics and intercellular interaction in the
brain. Here, we review the role of FLNA and its gene in the
brain, and discuss the interactions of this protein with other
molecules and the consequences of mutations in FLNA for
the brain and behavior. Our improved understanding of the
roles of FLNA in the CNS may provide novel perspectives
for studying neurodevelopment and neuropathogenesis.

2. The Structure and Functions of FLNA
FLNA is located on the X chromosome (Xq28) and

consists of 48 exons and 47 introns that span ~26 kb of
genomic DNA [28,29]. This chromosomal location is sig-
nificant as it links FLNA mutations to unusually X-linked
dominant disorders, which predominantly affect females
due to the random inactivation of one X chromosome [30].
Human FLNA represents a large 280-kDa dimeric protein,
with each monomer containing 2647 amino acid residues
[23] with an N-terminal actin-binding domain, each con-
sisting of two calmodulin-like sequences followed by 24
immunoglobulin-like domains (Ig-like domains, Fig. 1)
[21]. The C-terminal part of FLNA, consisting of nine
immunoglobulin-like domains, forms a compact but flex-
ible structure that is responsible for dimerization, impor-
tant for actin cross-linking and interaction with various sig-
naling proteins (such as β7 integrin and migfilin), enabling
conformational changes and regulating protein interactions
[31]. The C-terminal end of the FLNA protein also plays an
important role in its dimerization, which allows the forma-
tion of Y-shaped structures required for actin binding and
mechanosensor functions [32].

FLNA is a generally evolutionarily conserved gene,
with its sequence in humans being 77.95%, 86.09%, and

86.35% homologous to those of mice, rats, and zebrafish,
respectively, based on Basic Local Alignment Search Tool
for Nucleotides (BLASTn) analyses [33]. This gene is
widely expressed in various tissues, including smooth and
skeletal muscle, vascular endothelium, and the brain [7,34]
(Fig. 1). FLNA expression is regulated by various transcrip-
tion factors and can be altered in response to external sig-
nals and stress conditions [17]. For example, microRNA-
200c can decrease FLNA levels by inhibiting the transcrip-
tion factors c-Jun, myocardin related transcription factors
(MRTFs), and serum response factor (SRF) [35]. The trans-
forming growth factor beta (TGF-β) signaling pathway reg-
ulates FLNA function through its interaction with Suppres-
sor of Mothers Against Decapentaplegic (SMAD) proteins,
affecting SMAD2 phosphorylation and promoting its ac-
cumulation in the nucleus, which is important for normal
signal transduction [36]. FLNA is also implicated in sig-
nal transduction pathways andmechanotransduction, which
are likely to be highly relevant to numerous CNS processes,
further emphasizing its multifaceted role in cellular physi-
ology [37].

3. The Role of FLNA in Brain Development
In the brain, FLNA plays an important role in early

development by controlling neuronal migration and differ-
entiation [7,38]. Fig. 1 summarizes its expression in dif-
ferent brain structures, showing the highest expression in
the vascular plexus that implicates FLNA in the production
and regulation of cerebrospinal fluid (CSF). FLNA may in-
deed be important for maintaining the integrity and struc-
ture of the cells of this epithelium, as well as for regulating
the movement of ion channels and receptors that play an
important role in CSF secretion [39]. The second highest
level of FLNA expression is observed in the cerebral cor-
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Fig. 1. Patterns of FLNA expression across human organs (blue bars) and major brain regions (red bars). The bar chart ranks the
top human tissues bymean gene expression, measured in Transcripts PerMillion (TPM) using the ENSEMBL database (https://www.ense
mbl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000196924;r=X:154348524-154374634, accessed September 2024). The
pie chart (top right) displays the normalized gene expression levels (nTPM) in different regions of the human brain, using data from
the Human Protein Atlas (https://www.proteinatlas.org/ENSG00000196924-FLNA/brain, accessed September 2024). Each pie chart
segment is labeled with specific brain regions and their corresponding expression values, providing a detailed view of FLNA distribution
within the central nervous system (CNS) (https://www.proteinatlas.org/ENSG00000196924-FLNA/brain, accessed September 2024).
Inset: Crystal structure of 19–21 Ig-like domains of human filamin A protein (FLNA), according to the Protein Database (PDB, https://
www.ncbi.nlm.nih.gov/protein/, PDB ID: 2J3S, plotted in pyMOL (https://www.pymol.org, assessed September 2024). For interpretation
of the references to color in this figure legend, the reader is referred to the online version of this article.

tex, implicating FLNA in the development and functioning
of cortical neurons, including their migration and structural
organization. In line with this notion, human FLNA muta-
tions disrupt neuronal migration in the cerebral cortex, lead-
ing to PH [40].

Fig. 2 also illustrates FLNA expression across dif-
ferent brain cell types. For example, FLNA expression
is markedly lower in oligodendrocytes and their precur-
sors, suggesting a somewhat limited role for FLNA in these
cells. Moderate FLNA expression is observed among var-
ious types of neurons, both excitatory and inhibitory, with
some variation likely reflecting the diversity of functional
activity of FLNA in these cells. In contrast, its highest
expression in astrocytes and microglia strongly implicates
FLNA in maintaining the brain environment and regulating
neuro-immune responses.

3.1 Neuronal Migration

Neuronal migration is key for brain development, en-
suring the proper placement of neurons in different brain
structures [41]. Importantly, FLNA regulates the cytoskele-

ton that is necessary for themovement of neurons from their
origin to final location in the cerebral cortex or other brain
areas [42]. FLNA also interacts with signaling molecules
(e.g., Rho GTPases) that regulate actin dynamics, thereby
coordinating the cytoskeletal rearrangements that are essen-
tial for directed neuronal movement [43]. The regulation of
the cytoskeleton, in turn, influences the morphology of cor-
tical neurons, facilitating their transformation from a multi-
polar to a bipolar form, which is critical for radial migration
[42]. Disruptions in FLNA function impede neuronal mi-
gration and cause brain malformations [44]. For example,
FLNA is involved in radial glia (RG) proliferation and po-
larity [45]. As RG serve as a scaffold for migrating neurons,
the role of FLNA in maintaining their structural integrity is
crucial for guiding neurons to their correct positions in the
developing brain [46]. By forming a physical connection
between integrins and the actin cytoskeleton, FLNA pro-
motes the migration of various brain cells, including RG
[43], neurons [47], neural progenitors [48], oligodendro-
cytes [49], astrocytes [44], and other cell types [50].
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Fig. 2. Heatmap of FLNA expression across various neuronal and glial cell clusters in the human brain, measured in normalized
Transcripts Per Million (nTPM), according to the Human Protein Atlas (https://www.proteinatlas.org/ENSG00000196924-FLN
A/brain, accessed September 2024). The heatmap shows FLNA expression in excitatory and inhibitory neurons, astrocytes, microglia,
and oligodendrocytes. The right three panels display the protein-protein interaction (PPI) network for FLNA (central red circle), with
interactions classified by data type, according to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING database,
https://string-db.org/, accessed September 2024; pink lines denote experimentally validated interactions, blue lines denote biological
databases, and black lines showgene co-regulation or similarity). ITGA2B, integrin alpha-IIb; PAK1, p21 activated kinase 1; CSRP1,
cysteine and glycine rich protein 1; ITGB, integrin subunit beta; ASB2, ankyrin repeat and SOCS box containing 2; CFTR, cystic fibrosis
transmembrane conductance regulator; GP1BA, glycoprotein Ib platelet subunit alpha; ACTA1, actin alpha 1 skeletal muscle; FBLIM1,
filamin binding LIM protein 1; CAMK2B, calcium/calmodulin dependent protein kinase II beta; FLNB, filamin B; FLNC, filamin C;
ABCE1, ATP binding cassette subfamily E member 1; RNASEL, ribonuclease; PDE12, phosphodiesterase 12; MAP2K4, mitogen-
activated protein kinase kinase 4; VCL, vinculin. For interpretation of the references to color in this figure legend, the reader is referred
to the online version of this article.

3.2 Neurogenesis

FLNA also plays a role in neurogenesis, which in-
volves the proliferation of neural precursors and their dif-
ferentiation into mature neurons [7]. For example, it con-
trols the proliferation of neural progenitors and the over-
all cortex size by regulating the phosphorylation of cyclin-
dependent kinase 1 (Cdk1) by the mitosis inhibitor protein
kinase (Wee1) [51]. FLNA also affects the growth of neu-
ral progenitors by controlling the expression and placement

of cell cycle proteins (e.g., Cdk1, which plays a vital role
during theG2/M (transition from the growthG2 stage tomi-
tosis) phase of the cell cycle, ensuring proper progression
and timing) [48]. The loss of FLNA function slows prolif-
eration due to extended cell cycle phases and impacts the
initial differentiation of progenitors [51]. In turn, such im-
paired proliferation can lead to microcephaly or other cor-
tical malformations, highlighting the critical role of FLNA
in early brain development [52]. Additionally, FLNA regu-
lates dendritogenesis and spinogenesis, thereby promoting
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a balanced ratio of excitatory and inhibitory inputs, suggest-
ing that mutations in FLNA can lead to neural circuit dys-
function [25].

4. Effects of FLNA on Cell Structure and
Signaling

FLNA is essential for maintaining cell shape, orga-
nizing the actin cytoskeleton by binding actin filaments to
form three-dimensional networks that provide mechanical
strength and flexibility to cells, allowing them to adapt to
changes in their environment [53]. This function is key for
maintaining the mechanical stability of the plasma mem-
brane and cellular cortex, shaping cell structure, enabling
mechanical responses, and facilitating cell movement. Re-
cent atomic force microscopy data how that the Ig-fold do-
mains of FLNA can reversibly unfold when subjected to
forces of 50–220 pN, allowing the molecule to extend far
beyond its natural length [54].

FLNA is also involved in the transmission of mechan-
ical signals from the extracellular matrix to the cell cy-
toskeleton [17]. Partnering with FilGAP (FLNA-binding
GTPase-activating protein specific for Rac GTPase) and β-
integrin, FLNA acts as a molecular switch that converts
mechanical stimuli into chemical signals to elicit cellular
responses in response to changes in environment, growth,
and development [55]. This process is crucial for trans-
mitting mechanical signals from the extracellular matrix to
the cell cytoskeleton via focal adhesions. Allowing cells to
sense and respond to mechanical stresses is particularly im-
portant for neurons in the face of the constant remodeling
of synapses and neuronal networks [56]. FLNA-mediated
mechanotransduction is also key for maintaining cytoskele-
tal structural integrity and regulating mechanosensitive sig-
naling, critical for synaptic plasticity and neuronal junction
stability [57]. Thus, the involvement of FLNA in maintain-
ing mechanical interactions and adhesive contacts is espe-
cially important in neurons, where constant remodeling of
synapses and the network requires flexibility and adaptation
to mechanical influences [58].

FLNA interacts with integrins and other adhesion
molecules to promote cell adhesion [50,59], which is
key for linking cell surface receptors to the cytoskeleton,
thereby stabilizing cell adhesion sites (focal adhesions)
[60]. FLNA binds to integrins through its Ig-like repeats,
facilitating connection of the actin cytoskeleton to the ex-
tracellular matrix [61], which is vital for maintaining cell
shape, enabling cell migration, and transmitting mechani-
cal signals from the extracellular environment to the cell
interior [50]. Moreover, the interaction of FLNA with in-
tegrins is regulated by mechanical forces, as its molecule
undergoes conformational changes that expose new bind-
ing sites, hence enhancing its interactions with integrins
and other signaling proteins [17,62]. This dynamic process
helps cells to adapt to varying mechanical environments,
which is particularly important for tissue repair [1]. FLNA

also interacts with proteins that regulate expression and re-
cycling, such as vimentin and protein kinase C (PKC) ep-
silon type, which regulate the expression and recycling of
integrins on the cell surface. These integrin-regulating pro-
teins play an important role in the CNS, particularly in neu-
ronal migration and the formation of neuronal connections,
especially in the context of neuronal migration and the for-
mation of neuronal connections [7,50]. This complex reg-
ulatory mechanism ensures that integrins are properly posi-
tioned and functional, further supporting robust cell adhe-
sion and spreading [63].

FLNA interacts with various signaling molecules, in-
cluding cell-surface receptors and cytoplasmic proteins
necessary for cell growth, survival, and differentiation [37],
which allows cells to adapt to changes in their environment
and maintain homeostasis. FLNA also acts as a β-arrestin-
binding partner to cooperatively activate the MAPK extra-
cellular signal-regulated kinase (ERK) downstream of acti-
vated receptors, such as the muscarinic M1 and angiotensin
II type 1a receptors [64]. Overall, FLNA serves as a scaf-
folding protein that not only maintains the structural in-
tegrity of the cytoskeleton but also integrates andmodulates
various signaling pathways essential for cellular homeosta-
sis [5].

Analyses using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database link FLNA to the hu-
man MAPK signaling (hsa04010) and the focal adhe-
sion (hsa04510) cascades, complementing the pathways
discussed above. Examining the known protein-protein
interactions (PPIs) of human FLNA (Fig. 2) using the
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING database) (https://string-db.org/) shows signifi-
cant enrichment of cell adhesion processes, including gen-
eral cell adhesion, cell-cell adhesion, and cell-matrix adhe-
sion. In addition, platelet aggregation and wound healing-
related proteins are present in PPIs, emphasizing the role
of FLNA in the regulation of processes related to dam-
age response and tissue repair. All identified processes
showed high statistical significance with extremely low
false discovery rates (FDRs). In addition, molecular func-
tion analysis confirms that FLNA-interacting proteins play
a key role in binding cell adhesion molecules, integrins,
and cytoskeleton proteins. Analysis of cellular components
revealed significant enrichment in focal adhesions, cell-
cell junctions, and integrin complexes, implying a role for
FLNA in maintaining structural connections and signaling
processes at the cell membrane level.

As shown in Fig. 2, integrin alpha-IIb (ITGA2B) is a
predicted functional partner of FLNA, and their interaction
may play an important role in cell adhesion and thrombo-
sis [65]. Disruption of ITGA2B regulation inhibits integrin
signaling pathways, which impairs cellular function and cy-
toskeletal remodeling [66]. Thus, the interaction between
the FLNA and ITGA genes is involved in cell adhesion pro-
cesses, affecting cytoskeleton maintenance and mediating
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cell migration and adhesion mechanisms [67]. The interac-
tion of FLNA with p21 activated kinase 1 (PAK1), which
is involved in the regulation of the cytoskeleton and cell
morphology, is also important for cell movement dynam-
ics and signaling [68,69]. In addition, the interaction of
FLNA with cysteine and glycine rich protein 1 (CSRP1)
may play a role in the regulation of the actin cytoskeleton.
CSRP1 plays significant roles in cellular differentiation, de-
velopment, and actin cytoskeleton regulation, and it can
bind to actin, contributing to cytoskeletal organization [70].
Thus, these interactions of FLNAwith ITGA2B, PAK1, and
CSRP1 enable a complex coordination of cytoskeletal and
signaling pathways required to maintain cell structural in-
tegrity and functional activity in response to various stim-
uli. Similar to the described interactions, each of the genes
in Fig. 2 can be considered in the context of a functional
partnership with FLNA.

5. FLNA Gene Mutations and Their CNS
Consequences

Mutations in FLNA (point-mutations, deletions, or du-
plications) alter FLNA functionality to cause various con-
genital anomalies [21] such as PH, Ehlers-Danlos syndrome
(EDS), skeletal dysplasia, neuronal migration abnormal-
ities, and intellectual disability [71,72]. Genetic analy-
ses, including genome-wide association studies (GWAS),
have identified genetic variations associated with suscepti-
bility to various brain diseases. For example, PH marked
by the presence of neuronal nodules outside their usual
location, specifically along the lateral ventricles, is of-
ten caused by mutations in the X-linked FLNA gene [73],
and while symptoms vary widely, they commonly include
treatment-resistant epileptic seizures [74,75]. A novel het-
erozygous intronic variant of FLNA (NM_001110556.1,
c.4304-1G>A) has been recently linked to severe pheno-
types, including PNH, cardiovascular anomalies, and inter-
stitial lung disease, highlighting the wide-ranging impact
of FLNA mutations [76]. These observations suggest that
interactions with actin dynamics alone are unlikely to un-
derlie the disparate impacts of FLNA mutations, especially
as the majority of genes associated with PH are involved in
vesicle trafficking [38].

Classic EDS is an inherited connective tissue disor-
der characterized by stretchable, fragile, and soft skin, slow
wound healing, and joint hypermobility [72,77]. The re-
lationship between EDS and PH is particularly evident in
EDS-PH, characterized by features of both EDS (skin and
joint manifestations) and PH due to mutations in FLNA,
leading to the connective tissue abnormalities seen in EDS
and the neuronal migration defects seen in PH. Individu-
als with FLNA mutations may also exhibit a combination
of symptoms of both EDS and PH, demonstrating the piv-
otal role of FLNA in both connective tissue integrity and
neurodevelopment.

Other pathologies linked to FLNA include otopala-
todigital spectrum disorders (otopalatodigital syndrome,
type I, otopalatodigital syndrome, type II, Melnick-Needles
syndrome, and frontometaphyseal dysplasia) that arise from
missense mutations [78,79]. Additionally, FLNA is mu-
tated in X-linked chronic intestinal pseudo-obstruction with
CNS involvement, a condition marked by gastrointestinal
dysmotility due to impaired smooth muscle function [73].
Terminal osseous dysplasia, also related to FLNA muta-
tions, leads to skeletal abnormalities particularly affecting
the terminal phalanges [80]. Furthermore, FLNAmutations
can result in X-linked cardiac valvular dysplasia, a con-
dition characterized by abnormalities in the structure and
function of heart valves [81]. All these pathologies under-
score the diverse and critical roles of the FLNA gene in hu-
man development and disease, highlighting its involvement
in both connective tissue and neuronal disorders as well as
in more systemic conditions (Table 2, also see [77,82–94]).

In addition to genetic alterations, CNS expression of
FLNA is significantly altered in PH, where mutations in
FLNA disrupt normal neuronal migration, leading to the for-
mation of ectopic neuronal nodules in the brain [7]. Re-
cent studies have identified a specific reading deficit in pa-
tients with PH, highlighting a link between PH and dyslexia
[95] characterized by poor reading but normal intelligence
[96]. Moreover, reading fluency deficits in patients with
PH can be associated with focal white matter defects adja-
cent to the gray matter nodules, indicating that disruptions
in white matter integrity may underlie the observed cogni-
tive impairments [97]. Cognitive assessments of individ-
uals with FLNA loss-of-function variants show an average
intelligence quotient (IQ) of 95, yet a high prevalence of
dyslexia, indicating that similar neurodevelopmental pro-
cesses might underlie both PH and dyslexia [98]. Disrup-
tions in neuronal migration and connectivity, as seen in
PH, potentially contribute to the milder cognitive deficits
observed in dyslexia, such as impairments in reading flu-
ency [99]. Furthermore, patients with FLNA-associated PH
present difficult-to-treat seizures [100]. Interestingly, a boy
with West syndrome recently presented a de novomissense
FLNA variant without PH (typically seen in such genetic
cases) on brain magnetic resonance imaging (MRI), yet ex-
hibited severe psychomotor delay and refractory seizures,
suggesting that FLNAmutations may cause overt neurolog-
ical impairments even in the absence of visible structural
brain abnormalities [101].

Collectively, these findings support the emerging im-
portant role of FLNA in both neurodevelopmental and neu-
rodegenerative disorders, and the link between white matter
integrity abnormalities and FLNA can underlie various cog-
nitive impairments beyond structural anomalies. Moreover,
the role of FLNA in Alzheimer’s disease reveals its active
involvement in key pathogenetic processes, including the
facilitation of toxic signaling pathways linked to the amy-
loid beta (Aβ) and tau proteins. These pathways contribute
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Table 2. Common Diseases associated with FLNA mutations.
Disease Details Main symptoms

Periventricular
nodular heterotopia

A neuronal migration disorder where neurons form nodules along
the lateral ventricles instead of migrating to the cerebral cortex [83]

Epileptic seizures, dyslexia, focal or multi-
focal seizures [83,84]

Ehlers-Danlos syn-
drome

A connective tissue disorder characterized by hyperelastic skin,
joint hypermobility, and tissue fragility [77,85]

Skin fragility, hypermobile joints, easy
bruising [77]

Otopalatodigital
spectrum disorders

Include otopalatodigital syndrome types I and II, Melnick-Needles
syndrome, and frontometaphyseal dysplasia [86]

Skeletal anomalies [87]

Chronic intestinal
pseudo-obstruction

A disorder with severe gastrointestinal motility impairment due to
smooth muscle dysfunction [88]

Intestinal obstruction, abdominal pain [89]

Terminal osseous
dysplasia

A rare skeletal disorder affecting terminal phalanges, with distinc-
tive skin lesions and limb anomalies [90]

Skeletal abnormalities, skin lesions, limb
deformities [91,92]

X-linked cardiac
valvular dysplasia

A condition with abnormal heart valve development [93] Heart failure, valvular regurgitation, chest
pains, shortness of breath [94]

to neuroinflammation and neurodegeneration, emphasizing
the broader implications of FLNA in disease progression
and calling for further studies of its FLNA-related mecha-
nisms.

6. FLNA in Non-Mutational Neuropathology
and Its Overexpression

Building on its role in astrocytes, the involvement of
FLNA in CNS processes extends to broader mechanisms
of neuroinflammation and cellular dysfunction. Indeed,
FLNA is abundant in reactive astrocytes, and the number
of FLNA-positive astrocytes increases as Alzheimer’s dis-
ease severity rises [102]. Recent evidence also links aber-
rant FLNA to Alzheimer’s disease [10], as altered confor-
mation of this protein facilitates toxic signaling pathways
associated with the Aβ and tau proteins, leading to tau hy-
perphosphorylation and increased neuroinflammation—the
two major contributors to Alzheimer’s pathogenesis [103].
Overexpression of FLNAmay lead to the accumulation and
altered phosphorylation of tau, contributing to neurodegen-
erative processes such asAlzheimer’s disease [104]. In neu-
roblastoma N2a cells, FLNA overexpression induces the
accumulation of both wild-type and mutant tau, exacerbat-
ing its pathology through increased phosphorylation and
impaired degradation, further contributing to Alzheimer’s-
type neurodegeneration [104].

Abnormal FLNA conformation enhances the inter-
action between Aβ and α7nAChR, causing tau hyper-
phosphorylation that, in turn, disrupts neuronal function
and forms neurofibrillary tangles (NFTs), triggering neu-
rodegeneration [10]. Likewise, increased insolubility of
FLNA in the prodromal stages of Alzheimer’s disease cor-
relates with Aβ pathology, suggesting that FLNA alter-
ations might serve as a hallmark of prodromal Alzheimer’s
disease, specifically in mildly cognitively impaired individ-
uals, hence illustrating its potential as a biomarker for early-
stage neurodegeneration [39]. Additionally, FLNA muta-
tions are also linked to abnormalities in the corpus callo-
sum highlighting its broader impact on neurodevelopment

[105]. These deficits cause various cognitive and neurolog-
ical dysfunctions, further emphasizing the critical role of
FLNA in proper brain function. FLNA is also detected in
astrocytic eosinophilic inclusions in patients with Aicardi
syndrome, predominantly in the cerebral cortex, suggest-
ing impaired cytoskeletal function in this disease [106,107]
and, more generally, in other filaminopathies [107]. Analy-
ses of FLNA in different brain cells of patients with progres-
sive supranuclear palsy (PSP) show higher expression in as-
trocytes than in oligodendrocytes, implicating astrocytes in
PSP pathogenesis, and suggesting that FLNA also drives
tau aggregation in this condition [108]. In Alzheimer’s dis-
ease, FLNA interacts with TLRs, particularly TLR4 and
TLR2, which are highly expressed on astrocytes and mi-
croglia [109,110]. These interactions facilitate the activa-
tion of pro-inflammatory pathways in the brain, exacerbat-
ing neuronal damage and contributing to the progression of
neurodegeneration [110].

Furthermore, the role of FLNA in the regulation of
cytoskeletal integrity and intracellular trafficking also im-
plicates it in neurodegenerative processes. For example,
its interaction with Aβ and α7nAChR facilitates tau hy-
perphosphorylation and NFT formation [10,104,111], im-
plying that FLNA serves as a mediator between amyloid-
and tau-related pathologies, hence bridging twomajor path-
ways that drive neuronal dysfunction in Alzheimer’s dis-
ease. Reduced levels of FLNA in cells with suppressed pro-
tein deglycase DJ-1 function may impair the cytoskeletal
structure and mechanical stability of cells, contributing to
the neurodegenerative changes associated with Parkinson’s
disease [112]. These examples highlight how FLNA dys-
function in cytoskeletal regulation, neuroinflammation, and
protein interactions contributes to the pathogenesis of vari-
ous neurodegenerative and cytoskeletal-related diseases be-
yond genetic mutations. In addition to neurodegenerative
diseases, FLNA overexpression is implicated in enhancing
tumor aggressiveness in neuroblastomas due to its ability to
influence cell proliferation, migration, and survival via in-
teractions with oncogenic signaling pathways, such as the
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Table 3. Selected open questions related to filamin A (FLNA) function in CNS pathobiology and associated conditions.
Open questions

Stress and conformational changes. How do stress conditions (e.g., oxidative stress, inflammation) influence the structure
and functions of FLNA, and how can these changes contribute to CNS disorders?
FLNA and neurodegenerative diseases. What post-translational modifications of FLNA regulate its role in neuroinflamma-
tion and neurodegeneration?
FLNA and cellular signaling. How does FLNA interact with other cytoskeletal proteins and organelles, such as mitochondria,
to influence cellular signaling and stress responses?
Epigenetics of FLNA. What epigenetic mechanisms, such as DNA methylation or histone modifications, regulate FLNA
expression in neurodevelopmental and neurodegenerative conditions? Do epigenomic (e.g., RNA methylation) processes con-
tribute to FLNA-related CNS mechanisms?
Effects on the blood-brain barrier. What role does FLNA play (if any) in maintaining blood-brain barrier integrity, particu-
larly during neuroinflammation or neurodegeneration?
Therapeutic opportunities. How can advanced genomic editing or small-molecule interventions target FLNA for therapeutic
purposes in CNS diseases?

signal transducer and activator of transcription 3 N-myc
proto-oncogene protein (STAT3-MYCN) axis [113].

7. Effects of FLNA Knockout in
Experimental Animal Studies

Animalmodels are important tools for studying FLNA
and its gene function, as well as their roles in neuronal mi-
gration, brain development, and other CNS processes [114].
Rodent (mice and rats) and zebrafish (Danio rerio) mod-
els have been widely utilized in this field [115–119]. For
example, paralleling mutations in human FLNA that inter-
fere with neuronal migration to the cerebral cortex leading
to cardiovascular abnormalities, complete FLNA ablation
in mice leads to embryonic death with severe structural de-
fects in the heart, including the ventricles and outflow tracts,
along with widespread abnormal blood vessel development
[114]. Additionally, FLNA-deficient mice display defects
in neural crest cell migration, which further contributes to
craniofacial abnormalities and congenital heart defects [3].

The zebrafish is a small teleost fish and a popular
model organism for studying genetics and development be-
cause of its high genetic and physiological homology with
mammals, rapid development, and transparent embryos,
allowing real-time visualization of processes [120,121].
FLNA knockdown in zebrafish results in hydrocephalus,
brain swelling, curved body axis, and notochord abnor-
malities. Additionally, embryos show renal cysts, cardiac
edema, and otic vesicle defects [122]. Zebrafish FLNA is
involved in ciliogenesis, interacting with meckelin (mks3)
on primary cilia, necessary for the proper formation and
function of cilia, essential for various cellular processes (in-
cluding the Wnt and other signaling pathways), and whose
disruptions are linked to ciliopathies [123]. Thus, FLNA is
an important element in maintaining the structural integrity
of cells and the integration of various signaling pathways,
key for cellular homeostasis and normal CNS development.

8. Concluding Remarks
FLNA has emerged as an important regulator of CNS

development and function, playing a key role in neuronal
migration, neuronal network formation, and maintaining
the structural and functional integrity of the brain [124,125].
As summarized in Fig. 3, FLNA plays a significant role
in cytoskeletal organization and signaling pathways regu-
lating neuronal migration and plasticity [126,127]. FLNA
also interacts with Rho GTPase and β1-integrins to reg-
ulate actin dynamics and provide directional movement
of neurons in the cerebral cortex [48,51,128]. In addi-
tion, FLNA is involved in the MAPK signaling pathways
that are important for neuronal differentiation and mainte-
nance of intercellular communication [129]. Furthermore,
FLNA, through its role in actin-dependent endocytosis and
the regulation of canonical Wnt signaling, acts as an im-
portant link to ensure neuronal proliferation [130]. Muta-
tions in the FLNA gene can cause hyperactivation of these
pathways, which is seen in neurocognitive disorders (e.g.,
autism and developmental delay syndromes) and is associ-
ated with a spectrum of pathologies including PH, connec-
tive tissue diseases, neurodevelopmental disorders, and rare
syndromes [131–133]. Patients with FLNA-associated dis-
orders also exhibit white matter defects, suggesting a role
for FLNA in the structural organization of brain connec-
tions [100].

In the context of neurodegeneration, FLNA con-
tributes to pathological tau hyperphosphorylation and NFT
formation [104]. This FLNA activity has been linked
to neuroinflammation and toxic accumulation of amyloid
proteins, making it a key player in the pathogenesis of
Alzheimer’s disease [20,134]. Its high expression in astro-
cytes and microglia (Fig. 2) indicates a role in the regula-
tion of the reactive state of these cells during neuroinflam-
mation. In pathologies such as progressive PSP, FLNA is
detected in reactive astrocytes, highlighting its involvement
in inflammation and tissue remodeling processes. Studying
the role of FLNA in the brain emphasizes the potential of
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Fig. 3. Functional roles of filamin A (FLNA) in cellular dynamics and neurodevelopment.

this protein as a putative diagnostic marker and therapeutic
target, with drugs like simufilam exploring its potential to
target altered forms of FLNA found in Alzheimer’s disease
[135,136]. The use of compounds that stabilize FLNA in-
teractions with signaling proteins may potentially prevent
defects in the cytoskeleton and improve neuronal migra-
tion. Such approaches may hold promise in the treatment of
CNS diseases caused by FLNA mutations. Finally, modern
gene editing techniques, such as clustered regularly inter-
spaced short palindromic repeats/CRISPR-associated pro-
tein 9 (CRISPR/Cas9) technology, enable precise FLNA
gene knockout, offering a platform to explore its role in var-
ious disorders and develop therapeutic approaches [81].

In summary, FLNA represents an important regula-
tor of normal CNS processes and a critical element in the
pathogenesis of various neurodegenerative and neurode-
velopmental conditions. Although multiple research ques-
tions related to FLNA neurobiology remain open (Table 3),
future studies of the mechanism of FLNA action and its
role in various cellular and molecular processes may foster
the development of novel therapeutic strategies for FLNA-
associated diseases. Further interdisciplinary efforts to ex-
plore the contributions of FLNA in CNS health and disease
may lead to more ‘integrative’ approaches to diagnosing,
monitoring, and treating a wide range of severely debilitat-
ing CNS disorders.
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