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Abstract 5 

This research investigated the key factors that influenced patients' individual thermal sensations 6 

in a rehabilitation ward. Maintaining thermal comfort is important for occupant’s well-being in 7 

healthcare facilities. The commonly used Predicted Mean Vote (PMV) thermal comfort model 8 

has limitations on considering an individual’s needs, especially if the individual has impaired 9 

health. There was a lack of thermal sensation studies in medical settings. This study conducted 10 

a ten-week fieldwork in a real rehabilitation environment in order to develop a thermal 11 

sensation analysis model that could help understand individual patient’s thermal needs. 12 

Traditional statistical models and artificial neural network (ANN)-based models, using real-13 

world data including spatial and healthcare-related parameters, were established for a 14 

comparative study.  15 

The results of the study unveiled the substantial influence of spatial and healthcare-related 16 

parameters on inpatients' indoor thermal sensations. Furthermore, the ANN-based model 17 

demonstrated better performance in aligning with real-world conditions and in providing more 18 

accurate prediction outcomes compared to the traditional statistical model. These findings can 19 

be used by hospital designers and engineers to optimising the overall quality of the thermal 20 

environment within healthcare environment. 21 

 22 

Keywords: Individual thermal sensation, Prediction model, Artificial Neural Network (ANN), 23 

Healthcare environment, Inpatients 24 

 25 

1. Introduction 26 

It is important to improve the indoor thermal environment in healthcare facilities, as it can 27 
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profoundly affect occupants' health, well-being, and productivity (Tang & Chen, 2021; Pereira 1 

et al., 2020; Phiri & Chen, 2014). Maintaining optimal thermal comfort levels for inpatient 2 

rooms plays a crucial role in promoting positive emotions and facilitating favourable healthcare 3 

outcomes (Shajahan et al., 2019). Previous research in thermal comfort predominantly focused 4 

on evaluating the occupants’ average thermal comfort levels, considering factors such as air 5 

temperature, relative humidity, air velocity, mean radiant temperature, clothing insulation, and 6 

metabolic rate. This approach was originally developed by Fanger (1970), who carried out 7 

controlled climate chamber studies using, mainly, healthy individuals such as students. 8 

Nevertheless, it has been observed that individuals often exhibit distinct and different 9 

perceptions of indoor comfort despite experiencing identical environmental conditions (Zhe et 10 

al., 2018). There is an urgent need to develop a more tailored approach to indoor thermal 11 

environment design by taking into account "individual differences". Additionally, previous 12 

research has indicated that spatial design elements, encompassing orientation, spatial layout 13 

design, and occupants' positions, will influence users’ thermal sensations (Du et al., 2016). 14 

Furthermore, patients' thermal sensations within inpatient rooms may be affected by their health 15 

status and the unique medical environment (Ucinowicz & Bogdan, 2021; Yuan et al., 2022). 16 

Patients' underlying medical conditions can affect their thermal physiology, thermal sensation, 17 

metabolism, blood flow, and regulatory responses, making them more sensitive to their 18 

surroundings compared to individuals in good health (Diller, 2015). 19 

Several models have been established for predicting thermal comfort. The Predicted Mean Vote 20 

(PMV) model has been applied extensively in assessing indoor thermal comfort across office 21 

buildings, educational institutions, and commercial settings (Fanger, 1970). However, the PMV 22 

model fails to consider individual differences (Wang et al., 2018), spatial parameters (Gong et 23 

al., 2022), or healthcare-related factors (Del Ferraro et al.,2015; Alotaibi et al., 2020). As a 24 

result, the abilities of the PMV model have been found inadequate in predicting individual 25 

patient’s thermal sensation (Feng et al., 2022). To address this disparity, researchers have 26 

undertaken efforts to develop advanced models that can accurately predict personalised thermal 27 

comfort. Among these models, machine learning (ML) has emerged as a promising approach 28 

for predicting an individual occupants' thermal sensation. However, prevailing personal thermal 29 

sensation analysis models have primarily focused on healthy subjects, while their validation in 30 
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medical settings remains limited (Uścinowicz & Bogdan, 2021). It is also challenging to exam 1 

the indoor thermal sensation in healthcare environments according to the requirements of the 2 

ASHRAE-55 standard as patients’ distinctive physical and psychological health conditions 3 

cannot tolerate intensive or large-range air temperature changes. 4 

To fill in the gaps, this research aims to investigate patients' individual thermal sensation in a 5 

real-world healthcare environment by developing an analysis model based on machine learning 6 

(ML). 7 

 8 

2. The influencing mechanism of thermal sensation 9 

Fiala et al. (1999) proposed two mechanisms that influence thermal comfort: passive and active 10 

systems. Specifically, the passive system involves exchanging heat between the human body 11 

and the surrounding physical environment through various ways, including heat conduction, 12 

convection, radiation, and sweat evaporation. Among them, there are several environmental 13 

factors, including air temperature, relative humidity, air velocity, and mean radiant temperature, 14 

intricately linked to the occupant’s skin temperature, determining occupants’ thermal comfort 15 

(Kim et al., 2021). In addition, an individual's metabolism plays a crucial role in regulating 16 

body temperature through heat generation and transfer via blood circulation (Zhao et al., 2021). 17 

While increased metabolism can improve thermal comfort in a stable environment, excessive 18 

increases can lead to discomfort (Kim et al., 2021). Moreover, clothing, acting as a barrier 19 

between the thermal environment and the skin, can affect the metabolic rate of occupants (Yang 20 

et al., 2016; Havenith, 2002), thereby affecting individual occupant’s thermal perception. 21 

Furthermore, the indoor architectural spatial layout (Du et al., 2016) and room orientation 22 

(Caner & Iten, 2020) also influence the ambient environment of occupants, consequently 23 

affecting their thermal perception. It is worth noting that Chaudhuri et al. (2017) have 24 

demonstrated that outdoor weather conditions can have either a psychological or direct impact 25 

on indoor thermal comfort. 26 

The active system encompasses various physiological processes, including vasoconstriction, 27 

relaxation, trembling, and sweating, which interact with and impact the passive system (Fiala 28 

et al., 2001). It plays a crucial role in regulating human body's core temperature, maintaining it 29 
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at approximately 36.5 ℃ through heat output and exchange (Fiala et al., 2001; Gagga et al., 1 

1971). Previous research showed that there was a significant correlation between heart rate and 2 

metabolic rate, which impacted the thermal perception of individuals in buildings (Choi et al., 3 

2012; Wilson & Crandall, 2011). Some studies demonstrated that the relationship between 4 

indoor temperature and blood pressure was nonlinear (Umishio et al., 2022), while blood 5 

pressure exhibited a linear association with human metabolism and activity level (Gilani et al., 6 

2016). In response to an uncomfortable thermal environment, the body often employs 7 

peripheral vascular dilation and perspiration to regulate body temperature (Charkoudian, 2016). 8 

Additionally, the body elevates heart rate to maintain blood pressure (Schlader and Wilson, 9 

2016).  10 

Variations in gender, age, and body mass index (BMI) also exert an influence on both the 11 

passive and active systems (Wang et al., 2018). Previous studies have demonstrated disparities 12 

in heat preferences among different age and gender groups (Jiao et al., 2017; Soebarto et al., 13 

2019). Schellen et al. (2010) reported that older adults perceived heat and cold differently 14 

compared to younger adults. Furthermore, Katić et al. (2018) have identified that variances in 15 

body mass and height can lead to changes in skin temperature, thereby impacting individual’s 16 

thermal comfort. The mechanism of passive and active systems has been synthesised and 17 

visually represented in Figure 1. In addition, specific medical treatments can influence the 18 

thermal sensation experienced by patients in a medical setting. Figure 1 illustrates that massage 19 

and acupuncture have been shown to impact on patients' skin temperatures and heart rates 20 

(Drust et al., 2003; Huang et al., 2013; Kim, 2021), while infusion treatments can affect their 21 

heart rate, blood pressure, and body temperature (Groll et al., 2009). These factors have the 22 

potential to influence patients' thermal perception and overall comfort.  23 

Therefore, when investigating patients' thermal comfort, it is crucial to consider individual 24 

differences such as age, gender, and body mass index (BMI), along with the specific medical 25 

interventions, while concurrently analysing both passive and active systems. 26 

 27 
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 1 

Figure 1 The influencing mechanism of thermal comfort. 2 

 3 

3. Thermal sensation analysis model 4 

In comparison to residential and educational buildings, the exploration of indoor thermal 5 

comfort in healthcare settings remains limited, and influential factors confirmed in non-medical 6 

settings have not been thoroughly validated within healthcare settings (Grassi et al., 2022). The 7 

Predicted Mean Vote (PMV) model, introduced by Fanger in 1970, stands as the most widely 8 

used assessment model for indoor thermal comfort worldwide. This model encompasses six 9 

influential parameters, including air temperature and humidity, air speed, mean radiant 10 

temperature, occupant metabolic rate, and clothing insulation. Since its initial application in a 11 

medical setting in 1977, the PMV model has been extensively employed to assess patients’ 12 

thermal comfort levels (Smith & Rae, 1977). However, many studies have revealed 13 

inconsistencies between the predicted results of the PMV model and the actual thermal 14 

sensations reported by patients (Feng et al., 2022). For instance, researchers at an Italian health 15 

centre found that the PMV model underestimated the subjects' actual thermal sensations (Fabbri 16 
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et al., 2019). This discrepancy primarily arises from the fact that the PMV model was based on 1 

data obtained from healthy adults, without considering the unique physiological characteristics 2 

of patients (Lan & Lian, 2016). Moreover, the PMV model fails to account for the special 3 

physical conditions of patients (Ciabattoni et al., 2015). 4 

To improve the accuracy and effectiveness of thermal comfort prediction models, researchers 5 

have increasingly proposed data-driven prediction models, with machine learning (ML) 6 

emerging as a prominent approach (Feng et al., 2022). ML presents features such as self-7 

learning, rapid computation, and intricate issue resolution (Qian et al., 2020; Wang et al., 2020). 8 

ML has demonstrated superior performance in developing models for predicting personal 9 

thermal comfort in schools, offices, and residential environments, with some scholars 10 

suggesting that ML-based thermal comfort prediction is on average 40% more accurate than 11 

the PMV model (Kim et al., 2018; Cosma & Simha, 2018). This was further verified in recent 12 

research which found that the PMV model's prediction accuracy for personal thermal comfort 13 

levels reached only 27.63%, which was 43% lower than the ML-based model (Gong et al., 2023; 14 

Gong et al., 2022). 15 

Moreover, ML is well-suited for handling non-standard and nonlinear relationships (Wang et 16 

al., 2020). Several studies have utilised machine learning algorithms to establish personalised 17 

models that account for individual diversity. For instance, Katić et al. (2020) employed Support 18 

Vector Machines (SVM), Boosted Trees, Bagged Trees, and RUSBoost Trees to establish 19 

personalised models in an office building, achieving a mean accuracy of 0.84 using 20 

RUSBoosted trees. In another study by Lu et al. (2019), various factors, including skin 21 

temperature and clothing surface temperature, were considered during the development of 22 

individual thermal models in a school. The study utilised Random Forest (RF) and SVM, and 23 

the linear kernel SVM-based model achieved an impressive accuracy exceeding 97%. 24 

Artificial neural networks (ANNs) have demonstrated exceptional performance in predicting 25 

thermal sensation vote outcomes (Qian et al., 2020). Shan et al. (2020) proposed an ANN-based 26 

model for predicting personal thermal comfort using the average skin temperature of occupants, 27 

achieving an average prediction accuracy of 89.2%. Furthermore, Gong et al. (2022) 28 

incorporated spatial impact into an ANN-based prediction model, yielding prediction results 29 

superior to those obtained with K-Nearest Neighbors (KNN) and SVM. However, it is 30 
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important to note that these prediction models have not yet been validated in healthcare settings, 1 

and establishing such models has not adequately considered healthcare-related parameters, such 2 

as bio-signals and medical treatment.  3 

Therefore, it is crucial to incorporate additional healthcare-related parameters and spatial 4 

parameters into the inpatient's personalised comfort model and to validate them in healthcare 5 

environments. 6 

 7 

4. Research Methods 8 

A methodology has been formulated to incorporate spatial parameters and healthcare-related 9 

parameters of inpatients into the personal thermal sensation analysis model (Figure 2).  10 

 11 

 12 

Figure 2 The proposed methodology. 13 

 14 

The methodology comprised of four stages: (i) identifying parameters for model development, 15 

(ii) conducting fieldwork, (iii) developing the model, and (iv) analyzing the results. In the first 16 

phase, parameters were categorised into four groups: personal-dependent parameters, indoor 17 

and outdoor environmental parameters, spatial parameters, and healthcare-related parameters 18 

(Table 1). Real-world conditions guided the selection of data used for model development. 19 



 8 

Subsequently, fieldwork was carried out to gather the necessary data.  1 

Individual datasets were compiled and utilised during the model development phase to establish 2 

a regression analysis model using the statistical software STATA (STATA, 2023). Correlation 3 

analysis was conducted to explore the significance of spatial and healthcare-related factors on 4 

inpatients' thermal sensation. Additionally, an ANN-based model was developed for predicting 5 

personal thermal comfort. The model's prediction accuracy, and the impact of spatial parameters 6 

on its accuracy, were investigated. The sensitivity coefficient (SC) was calculated to determine 7 

the relative importance of individual and combined influential variables on the prediction model 8 

(Gong et al., 2022; Gong et al., 2023). Finally, the influential variables that had a significant 9 

impact on subjects’ thermal sensations were summarised.  10 

 11 

Table 1 Parameter identification and classification (adopted from Gong et al., 2022; Gong et al., 2023). 12 

Categories Features Description 

Personal- 

dependent 

parameters 

Subject’s basic 

information 
Age, gender and BMI 

Metabolic rate 

Obtained by using ASHRAE-2010 
Clothing 

insulation 

level 

Bedding 

insulation 

level 

According to Liu et al. (2021), various types of bedding 

materials have different thermal insulation values. Specifically, 

a no cover provides a thermal insulation value of 0.9 clo, while 

a blanket has a higher value of 1.65 clo. A thin quilt offers even 

better insulation with a value of 1.98 clo, and a thick quilt 

provides even more warmth with a value of 2.7 clo. If the thick 

quilt has more than one layer, its thermal insulation value 

increases to 3.38 clo. 

Indoor 

environmental 

parameters 

Indoor 

environment 
Average indoor air temperature, humidity and air speed 

Mean Radiant 

Temperature 
Calculated by using ASHRAE-2010 

Outdoor 

environmental 

parameters 

Outdoor 

weather 

The outdoor temperature, humidity, and weather conditions 

were recorded. The weather conditions were categorised as 

follows: sunny (1), cloudy (2), overcast (3), and rainy (4), 

respectively. 

Spatial 

parameters 

Surface temperature of windows, doors and heat sources 

Location 
Statistical model: The frequently active locations of the 

subjects were marked as indicated in the displayed Figure 3, as 
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STATA software cannot recognise three-dimensional 

coordinates (STATA, 2023).  

ML-based model: The distances of subjects to windows, doors, 

and heat sources in three dimensions (X-axis, Y-axis, Z-axis) 

(Gong et al., 2022). 

Orientation 

(O) 

The window orientation, whether facing north or south, was 

specifically recorded as (N) for northward and (S) for 

southward. 

Ambient 

environment 

(AE) 

The air temperature and relative humidity  

Healthcare-

related 

parameters 

Personal 

biosignal 

A report for monitoring health on a daily basis, which includes 

information about body temperature, heart rate, and blood 

pressure (both systolic and diastolic). 

Medical 

treatment 

The medical treatments given during the data collection 

periods were documented in the following manner: absence of 

treatment (0), acupuncture (1), physical therapy (2), massage 

(3), and infusion (4). 

 1 

5. Fieldwork 2 

5.1 Study area 3 

The fieldwork took place in Xuzhou, which was situated in Eastern China at 33° 43′‒34° 58′ N, 4 

116° 22′‒118° 40′ E. Xuzhou experiences a monsoon climate with four distinct seasons. In 5 

Xuzhou, air conditioning units are the main source of cooling during the summer. The research 6 

fieldwork was conducted throughout the region's regular summer months, from July 1 to 7 

September 3. During the experimental period, the average outdoor air temperature was 29.9 °C, 8 

ranging from 21 to 37 °C. Various weather patterns, including sunny, cloudy, gloomy, and rainy, 9 

were present during the experiment. 10 

 11 

5.2 Experiment settings 12 

The research took place in the rehabilitation department of a hospital, located on the fifth floor 13 

of a five-story hospital building. The experiment was conducted across eleven wards, 14 

comprising of four rooms facing north and seven rooms facing south. All wards had identical 15 

layouts, consisting of three inpatient beds, one bathroom, four windows, one door, and an air 16 
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conditioner. The size of the northern rooms was 3.93 m × 9.09 m × 2.8 m, while the southern 1 

rooms was 3.93 m × 9.9 m × 2.8 m. Additionally, all the rooms had a window-to-wall ratio of 2 

0.487 (Figure 3). 3 

 4 

Figure 3 Layout and locations of subjects in an inpatient room 5 

 6 

As show in Figure 4, the indoor air temperature was measured using six digital thermometers, 7 

each set at a height of 1.1 m. Kim (2017) states that the forehead's skin is most susceptible to 8 

temperature variations. Thus, three extra thermometers were placed adjacent to the patients' 9 

pillows, aligned with their foreheads when lying down, in order to measure the ambient air 10 

temperature throughout the study. The coordinates of the windows, doors, air conditioning 11 

outlets, and the centre points of the subject sites were also recorded. 12 

 13 

 14 

Figure 4 The experiment ward and relevant monitoring devices. 15 

 16 
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Xiaomi Bluetooth thermometers were employed to measure indoor air temperature and relative 1 

humidity (RH) with a precision of 0.1 °C and 1% RH, respectively. These thermometers had a 2 

measurement range of 0% to 99% for RH and 0°C to 60°C for temperature. To assess the surface 3 

temperatures of windows, doors, and air conditioners, a FLIR E85 thermal camera was utilised 4 

with a measurement range of -20℃ to 120°C, and an accuracy within 2°C. Additionally, Testo 5 

405i anemometers were employed to detect air velocity, which had a measurement range of 0-6 

10 m/s and an accuracy of 0.1 m/s.  7 

 8 

5.3 Experimental procedure 9 

Due to impaired physical and psychological conditions, patients in healthcare settings are 10 

typically more sensitive to environmental changes than healthy individuals (Ban et al., 2021). 11 

Despite ASHRAE guidelines recommending consideration of indoor temperature as a variable 12 

in healthcare research, it has been challenging to incorporate this in to practical healthcare 13 

settings. This study employed real-world data gathering to collect information about the 14 

environment, participants, and the results of thermal sensation voting without the influence of 15 

the surrounding environment. Personal information, including age, gender, BMI, and daily 16 

health data, such as body temperature, heart rate, and blood pressure, were obtained from the 17 

participants' clinical records. Additionally, the positions of patient beds, air conditioning outlets, 18 

windows, and doors were recorded before the fieldwork. 19 

Four data collection activities were conducted daily at 9:00 am, 12:00 pm, 2:00 pm, and 4:00 20 

pm, respectively. During each data collection time, various factors were noted, including the 21 

insulation level of participants' clothing and bedding, their metabolic rate, indoor relative 22 

humidity and temperatures at different locations, indoor wind speed, and the subjects' ongoing 23 

medical treatments. The thermal sensation level of patients was regularly assessed using the 24 

ASHRAE 7-point thermal sensation voting scale, ranging from -3 (cold) to 3 (hot) (Figure 5). 25 

However, it is worth noting that the majority of participants were individuals over 60 years old, 26 

with reading and vision difficulties. The authors did not provide additional instructions or 27 

information that could potentially influence the outcome; instead, they read each participant's 28 

thermal sensation voting questions. The air temperature and relative humidity were recorded 29 
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during each data collection slot.  1 

 2 

Figure 5 ASHRAE Thermal Sensation scale (ASHRAE, 2021). 3 

 4 

5.4 Subjects 5 

All patients in the experimental wards who had neurological rehabilitation issues and 6 

demonstrated autonomous consciousness were recruited during the experimental period. 7 

Ultimately, twenty-seven Chinese patients, comprising six females and twenty-one males, were 8 

willing to participate in the data collection and were selected as participants for the study. Their 9 

ages ranged from 46 to 85, and they presented with various neurological conditions, including 10 

7 cases of cerebral haemorrhage, 12 cases of cerebral infarction, 5 cases of hemiplegia, 1 case 11 

of carotid-cavernous fistula infarction, 1 case of thalamic haemorrhage, and 1 case of 12 

extracerebral haemorrhage. The participants also had different types of neurological disorders. 13 

On average, they stayed for 20.9 days. 14 

 15 

5.5 Academic ethics consideration 16 

The field experiment has been approved by the University's research ethics committee 17 

(reference number 19-02-79). Before the beginning of the experiment, the participants were 18 

fully informed of the objectives and content of the experiment. The attending physician of the 19 

subjects oversaw the data collection process.  20 

 21 

6. Traditional statistical analysis model 22 

6.1 Regression analysis model 23 

A total of 1,304 unique thermal comfort votes were collected during a 10-week data collection 24 

period. These datasets were analysed using multiple linear regression analysis conducted with 25 

STATA MP-17 software (STATA, 2023), which had been widely used in environmental, 26 
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behavioural, and evidence-based studies (Chen et al., 2013). Multiple linear regression analysis 1 

is a statistical technique that is widely used in indoor thermal comfort studies to explore 2 

relationships between different parameters and thermal comfort perception (Oseland, 2005; 3 

Humphreys, 1975). This approach has also been used to analyse the effects of influential 4 

variables, such as clothing insulation, relative humidity, air velocity, radiant temperature, and 5 

metabolic rate, on occupants' thermal sensations (Oseland, 2005; Brager & de Dear, 1998). 6 

The correlation analysis performed in this study aimed to explore the effects of each significant 7 

variable on the level of thermal comfort experienced by patients in a real-world inpatient room, 8 

as well as the interactions between these variables. Initially, the investigation focused on factors 9 

included in the Predicted Mean Vote (PMV) model, including air temperature, relative humidity, 10 

airspeed, mean radiant temperature (MRT), clothing insulation, and metabolic rate (MET). 11 

Person-specific information, such as age, gender, and body mass index (BMI), was also 12 

considered. Spatial variables were considered, including the location and surface temperature 13 

of windows, doors, and air conditioning, as well as ambient environment and orientation. The 14 

locations of the individuals were represented by markers, as shown in Figure 3. Furthermore, 15 

healthcare-related variables were also considered, including patients' body temperature, heart 16 

rate, blood pressure (both systolic and diastolic), and medical interventions.  17 

 18 

6.2 Partial correlation analysis 19 

Partial correlation is indicated to be useful when interactions among multiple independent 20 

variables exist, as in multiple regression analysis (Hair et al., 2010). Therefore, a partial 21 

correlation analysis was conducted using STATA MP, and the findings are presented in Table 2.  22 

 23 

Table 2 Partial correlation results. 24 

Variable 

Partial 

corr. (r) 

(B-value) 

Significance 

value 

(p-value) 

Age -0.0864 0.002** 

Gender -0.1455 <0.001*** 

BMI 0.2263 <0.001*** 

Clothing insulation 0.1353 <0.001*** 

MET 0.0663 0.0177 
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Medical treatment 0.0374 0.181 

Body temperature 0.0247 0.3766 

Heart rate -0.0202 0.4698 

Systolic blood pressure -0.0058 0.8368 

Diastolic blood pressure -0.0567 0.0426** 

Weather -0.041 0.1423 

Temperature -0.0133 0.6344 

Humidity -0.0217 0.4384 

Air speed -0.0922 0.001*** 

MRT 0.0191 0.4957 

Location 0.0402 0.151 

Surface temperature_W1 -0.0207 0.4592 

Surface temperature_W2 0.0542 0.0525* 

Surface temperature_W3 -0.0304 0.2768 

Surface temperature_W4 0.0328 0.2415 

Surface temperature_door 0.0002 0.994 

Surface temperature_air conditioning -0.0874 0.0017** 

Ambient temperature 0.2836 <0.001*** 

Ambient humidity 0.1447 <0.001*** 

Orientation 0.0087 0.7566 

(*** denotes statistical significance at p< 0.01; ** denotes statistical significance at p< 0.05; * 1 

denotes statistical significance at p< 0.1; and the parameters highlighted in bold present whose 2 

p-value is less than 0.1.) 3 

 4 

Table 2 displays the partial correlation coefficients, squared values of the partial correlation 5 

coefficients, and p-values for each variable.  6 

The results indicate that the subject’s age, gender, BMI, clothing insulation, air speed, air 7 

conditioning outlet surface temperature, ambient temperature, and ambient relative humidity 8 

significantly correlated with their thermal comfort sensation (p<0.001). Clothing insulation 9 

showed a positive regression coefficient (B=0.1353) with a significant level (p<0.001), 10 

suggesting that, as clothing insulation increases, the thermal sensation level increases. 11 

Furthermore, BMI exhibited a positive coefficient (0.2263), indicating that individuals with 12 

higher BMI may have a higher level of thermal comfort. On the other hand, age showed a 13 

negative correlation with thermal sensation (B=-0.0864, p=0.002), indicating that younger 14 

subjects were more tolerant of cold environments than older subjects. Gender displayed a 15 

negative coefficient (-0.1455), suggesting that, on average, female respondents had lower 16 

thermal comfort levels than their male counterparts when all other variables in the model were 17 
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consistent. Moreover, airspeed has a negative correlation with thermal sensation (B= -0.0922, 1 

p=0.001), which means that higher airspeeds from the air conditioning gave the subject a cool 2 

feeling. In addition, MET had a positive coefficient (0.3441) and a moderate p-value (0.018), 3 

indicating that as MET increases, the thermal comfort level also increases.  4 

The abovementioned variables were fundamental factors covered by the PMV model and 5 

existing personal thermal comfort prediction models. Moreover, including spatial and biosignal 6 

variables revealed significant associations with subjects' thermal sensation, underscoring their 7 

noteworthy relationship with thermal comfort. Specifically, the surface temperature of the air 8 

conditioning outlet displayed a negative coefficient (-0.0874) and a low p-value (0.0017), 9 

indicating that, as the air conditioning temperature decreased, the level of thermal comfort 10 

decreased. Additionally, ambient temperature and humidity exhibited positive coefficients of 11 

0.2836 and 0.1447, respectively, implying that occupants perceived a greater sensation of heat 12 

as these factors increased. Furthermore, the study identified the subjects' diastolic blood 13 

pressure as a significant variable affecting thermal comfort (p<0.05). Specifically, diastolic 14 

blood pressure was found to have a stronger impact on thermal comfort compared to systolic 15 

blood pressure. However, further investigation is required to explore the extent of bio-signal 16 

influence by incorporating other bio-signal information and a larger sample size. Regarding the 17 

influence of windows on thermal comfort, the study found that the second window from the 18 

west had a significant impact (p=0.053), although differences in impact among windows could 19 

not be fully explored. Consequently, the study concludes that the surface temperature of 20 

windows indeed plays a role in human thermal comfort. 21 

In summary, the ambient temperature and humidity, blood pressure of patients, as well as the 22 

surface temperature of windows and air conditioning outlets, demonstrated a significant 23 

correlation with thermal sensation in rehabilitation wards. Therefore, when establishing a 24 

predictive model for the personal thermal comfort of rehabilitation patients, it is important to 25 

consider these variables. 26 

 27 
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7. ANN-based prediction model 1 

7.1 Establishment of ANN-based prediction model 2 

An ANN-based model for predicting individual thermal comfort was developed based on the 3 

fieldwork data, as depicted in Figure 6. The model incorporated conventional parameters (i.e., 4 

age, gender, BMI, clothing insulation, metabolic rate, average air temperature, humidity, air 5 

speed, and mean radiant temperature) commonly found in existing personal thermal sensation 6 

prediction models. In addition to these parameters, spatial parameters and patients' healthcare-7 

related parameters were incorporated into the ANN-based model. Specifically, the spatial 8 

parameters considered in the study encompassed surface temperature, windows, doors, air 9 

conditioning outlets, and room orientation. In contrast to the statistical model, the 10 

representation of these variables in the context of spatial parameters involves the utilisation of 11 

three-dimensional coordinates to denote their respective locations. Conversely, the patients' 12 

healthcare-related parameters encompassed bio-signals (e.g., heart rate, body temperature, and 13 

blood pressure) and medical treatments received by the inpatients (e.g., acupuncture, physical 14 

therapy, massage, and intravenous drips). 15 

A baseline model was established for comparison to assess these parameters' relative impact on 16 

the prediction accuracy of ANN-based models. The baseline model included the 17 

aforementioned nine conventional parameters. In contrast, the ANN-based model incorporated 18 

all nine parameters of the baseline model while additionally incorporating one or more spatial 19 

and healthcare-related parameters, either individually or in combination. 20 

 21 
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 1 

Figure 6 The end-to-end artificial neural network structure (Gong et al. 2023). 2 

 3 

Figure 6 illustrates the overall structure of the four-layer ANN employed in this study. The 4 

ANNs consisted of an input layer, two hidden layers, and a classification output layer. The 5 

number of nodes in the input layer corresponded to the number of input features (i.e., 40), while 6 

the number of nodes in the output layer corresponded to the 7-scale thermal sensation. The 7 

configuration of the ANNs, such as the number of hidden layers and nodes per layer, was 8 

carefully selected to achieve a balance between prediction accuracy and computational 9 

efficiency. The study revealed that the prediction accuracy of the ANNs reached a plateau with 10 

the current size. While a slight increase in the size of the ANNs led to a minor improvement in 11 

prediction accuracy, it significantly increased the processing time. As a result, the selected size 12 

of the ANNs was considered to be the optimal choice, striking a balance between prediction 13 

accuracy and processing time. For the activation function, the rectified linear unit (ReLU) was 14 

utilized, while the loss function employed was cross-entropy. To train the Artificial Neural 15 

Network (ANN), the dataset was randomly partitioned into a training set (70%) and a test set 16 

(30%). The scaled conjugate gradient method was utilised to optimise the ANN. To mitigate 17 

the influence of randomness caused by weight initialization and dataset partitioning, the 18 

performance of each feature combination was evaluated by calculating the average test 19 

accuracy over one thousand training sessions.  20 

 21 
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7.2 The impact of influential variables 1 

The comparison among single spatial variables, including windows (which were marked as W1, 2 

W2, W3 and W4 from west to east), door (D), air conditioning (AC), ambient environment (AE) 3 

and orientation (O), were conducted to explore their impact on prediction accuracy. Among 4 

them, the combinations among four windows were discussed as the “single spatial variable” as 5 

homogeneous variables. 6 

The average prediction accuracy and SC values of various scenarios were reported in Table 3 7 

and Figure 7 using the traditional model's output as a benchmark. The accuracy of model 8 

prediction is increased to a greater extent by larger SC values (Gong et al., 2022). To quantify 9 

the disparities between the predicted and actual values, the R2 (coefficient of determination) 10 

and RMSE (Root Mean Squared Error) values were also computed and the results were shown 11 

in Table 3. Prediction models are more accurate with a higher R2 value. On the other hand, the 12 

accuracy of prediction models decreases as RMSE increases.  13 

  14 

Table 3 The results of the personal thermal comfort prediction model considering the single variable. 15 

Variable Accuracy SC value R2 RMSE 

Conventional model 0.7172  0.00% 0.3588 0.5937 

W1 0.7008  -2.28% 0.3657 0.5905 

W2 0.7127  -0.63% 0.3794 0.5841 

W3 0.7245  1.02% 0.3789 0.5843 

W4 0.7228  0.78% 0.5100 0.5190 

W1+W2 0.7276  1.46% 0.3691 0.5889 

W1+W3 0.7288  1.62% 0.3844 0.5818 

W1+W4 0.7318  2.03% 0.4925 0.5282 

W2+W3 0.7265  1.30% 0.4147 0.5672 

W2+W4 0.7243  0.99% 0.4430 0.5533 

W3+W4 0.7264  1.29% 0.4084 0.5703 

W1+W2+W3 0.7322  2.09% 0.3891 0.5795 

W1+W2+W4 0.7271  1.38% 0.4180 0.5795 

W1+W3+W4 0.7477 3.01% 0.4408 0.5544 

W2+W3+W4 0.7235  0.88% 0.4664 0.5416 

W1+W2+W3+W4 0.7330  2.21% 0.4302 0.5597 

D 0.7226  0.76% 0.4209 0.5642 

AC 0.7286  1.59% 0.4497 0.5642 

AE 0.7192  0.28% 0.3820 0.5829 

O 0.7273  1.41% 0.4021 0.5733 



 19 

BT 0.7073 -1.38% 0.3209 0.6110 

HRV 0.7144 -0.39% 0.3359 0.6042 

BP 0.6999 -2.40% 0.2779 0.6300 

MT 0.7082 -1.26% 0.3806 0.5835 

 1 

 2 

Figure 7 Results of ANN-based prediction models. 3 

 4 

Figure 7 illustrates that incorporating spatial variables generally led to improved accuracy in 5 

the model's predictions, except for the combination of W1 and W2. When all windows were 6 

taken into account, the maximum accuracy achieved was 0.733, which was 2.21% higher than 7 

the conventional model. Considering multiple windows together, such as W1+W2+W3 and 8 

W1+W4, also resulted in increased precision, with accuracies of 0.7322 and 0.7318, 9 

respectively. It was observed that the impact of multiple windows on prediction accuracy was 10 

more substantial than that of a single window. The average accuracy for single-window 11 

predictions was 0.7152, whereas for multiple-window predictions, it reached 0.7281. The 12 

inclusion of AC and O variables also made notable contributions to enhancing prediction 13 

accuracy, with accuracies of 0.7286 and 0.7272, respectively. Additionally, the variable D 14 

improved prediction accuracy by 0.76%. However, the effect of AE was relatively smaller, 15 

resulting in only a 0.28% increase in accuracy compared to the conventional model. 16 

On the other hand, the sole consideration of healthcare-related factors resulted in decreased 17 
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prediction accuracy compared to the conventional model. Among these variables, HR exhibited 1 

the best performance with an accuracy of 0.7144 when considered individually. MT and BT 2 

followed with accuracies of 0.7082 and 0.7073, respectively. The inclusion of BP had the most 3 

adverse impact, resulting in an accuracy of 0.6999, which was 2.4% lower than the conventional 4 

model.  5 

 6 

7.3 Combinations among spatial and healthcare-related parameters 7 

In Table 4 and Figure 8, the prediction results of considering combined spatial and healthcare-8 

related variables are displayed. These 10 models were compared with the benchmark models, 9 

which simply considered the spatial model without including healthcare-related factors, in order 10 

to investigate the impact of occupants' bio-signals and medical treatment on the model 11 

improvement. 12 

 13 

Table 4 The combinations among spatial and healthcare-related parameters with Top 10 accuracy. 14 

 15 

Combination Accuracy 

SC value to the 

conventional 

model 

SC value to 

the reference 

model 

R2 
RMS

E 

Conventional model 0.7172 0.00% 0.00% 0.3588 0.5937 

W2+W3+W4+AE+O+BP 0.7753 8.10% 2.53% 0.5035 0.5224 

W1+W3+W4+AE+O+BP+MT 0.7747 8.02% 1.95% 0.4769 0.5363 

W4+AE+O+BT 0.7718 7.61% 1.83% 0.6323 0.4496 

W1+W3+W4+AC+AE+O+BP 0.7699 7.35% 5.56% 0.3920 0.5781 

W2+W3+D+AC+AE+BP+MT 0.7698 7.34% 2.92% 0.5546 0.4948 

W1+W3+W4+AE+HR+BP+MT 0.7696 7.31% 1.27% 0.5081 0.5200 

W3+AE+O+HR+BP 0.7696 7.30% 1.03% 0.5731 0.4844 

W1+W4+AE+O+BP 0.7695 7.29% 1.18% 0.5338 0.5062 

W1+W4+AC+AE+O+HR+BP 0.7692 7.26% 0.71% 0.5483 0.4983 

W1+W3+W4+AC+AE+BP 0.7683 7.13% 1.71% 0.5157 0.5160 
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 1 

Figure 8 The prediction accuracy of combinations among all parameters with Top 10 accuracy. 2 

 3 

Figure 8 illustrates the substantial enhancement in prediction accuracy achieved by integrating 4 

spatial and healthcare-related variables, surpassing the traditional model. Furthermore, the 5 

beneficial effects of spatial impact were significantly amplified by incorporating healthcare-6 

related variables. The highest accuracy of 0.7753 was achieved when considering variables W2, 7 

W3, W4, AE, O, and BP, which represented an improvement of 8.1% compared to the 8 

traditional model. Additionally, compared to the conventional model, this integrated approach 9 

exhibited a higher R2 value of 0.5035 and a lower RMSE value of 0.5224. 10 

The subsequent nine combinations also demonstrated notable improvements, yielding an 11 

accuracy increase exceeding 7.13% and showcasing robust prediction performance. The highest 12 

R2 value observed was 0.6323, with a reduced RMSE value of 0.4496. Furthermore, including 13 

bio-signals within these combinations further enhanced the accuracy of predictions based on 14 

geographical impact, resulting in an average increase of approximately 2.1% and a maximum 15 

improvement of 5.56%. Among the ten models, BP exhibited the most substantial impact, 16 

appearing twice in the top two combinations and nine times in the top ten. Moreover, half of 17 

the top six combinations, which yielded the highest model prediction accuracy, were influenced 18 

by MT. While BT and HR also exerted some influence on the model, their impact was not as 19 
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pronounced as that of BP and MT. 1 

In addition to the Top 10 combinations, the study also investigated the Top 100 combinations. 2 

This was to explore the number of occurrences and the occurrence rate of each variable in the 3 

Top 3, Top 5, Top 10, Top 30, Top 50 and Top 100 combinations, as indicated in Figure 9.  4 

 5 

 6 

Figure 9 The occurrence of each variable and combinations in the TOP 100 combinations. 7 

 8 

Across all 100 combinations, the occurrence of AE was observed in 100% of cases. O appeared 9 

three times in the top three combinations, five times in the top five combinations, and 77 times 10 

in the top 100 combinations. Although individual windows (W) were infrequent, they appeared 11 

in an alternating pattern within these combinations. Notably, the combinations that included 12 

any of the windows accounted for 100% of the top 50 combinations and 99% of the top 100 13 

combinations. Hence, AE, O, and W significantly improved the model's prediction accuracy. 14 

AC was present in over half of the remaining combinations, despite not being in the top three. 15 

Therefore, AC was a highly significant variable in the model's development. Additionally, BP 16 

appeared seven times in the Top 10 and twice in the Top 3 combinations. MT was present in 17 

50% of the Top 100 combinations and the ideal combination. Therefore, MT and BP had some 18 

influence on the personal prediction model. Although BT's performance in these 100 19 

combinations was poor, it participated in the combination with the best forecast accuracy. 20 
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Hence, it is important to consider BT's influence on the model's development. 1 

 2 

8. Discussion 3 

Based on the available data, a correlation analysis was conducted to examine the significance 4 

of various influential variables on patients' thermal sensations. The findings revealed that 5 

spatial parameters (such as ambient temperature and relative humidity, surface temperature of 6 

windows, and air conditioning outlets) and inpatients' bio-signals (i.e., blood pressure) had a 7 

significant impact on individual’s thermal sensation. Subsequently, an ANN-based model was 8 

developed, by integrating spatial parameters and healthcare-related parameters, to predict 9 

inpatients' individual thermal sensations. The analysis indicated that spatial variables played a 10 

crucial role in improving the accuracy of the predictive model. Notably, the presence of 11 

windows profoundly affected the performance of personal thermal comfort prediction models, 12 

particularly when all windows were considered together. While considering the ambient 13 

environment alone had a minimal impact on model development, it made a substantial 14 

contribution when examined alongside other spatial parameters. The orientation of the space 15 

also had a notable influence on the model's predictive accuracy, especially when evaluated in 16 

conjunction with windows and the ambient environment. Although the inclusion of a single 17 

biosignal variable did not significantly contribute to model development, the combination of 18 

spatial and biosignal variables enhanced the prediction accuracy of personal models. In 19 

particular, when combined with spatial variables, blood pressure improved the model's accuracy 20 

in establishing a personal thermal comfort prediction model for neurological rehabilitation 21 

patients. Additionally, the incorporation of medical treatment had a noticeable impact on 22 

enhancing the model's predictive ability. 23 

Both the traditional statistical analysis model and the Artificial Neural Network (ANN)-based 24 

prediction model produced similar findings, indicating that spatial parameters and patients' 25 

healthcare-related parameters exerted a significant influence on inpatients’ indoor thermal 26 

sensations. However, unlike the traditional statistical analysis model, the ANN-based prediction 27 

model captured the integrated impact of multiple influential variables, including various spatial 28 

parameters and combinations of spatial and healthcare-related parameters. Specific parameters 29 
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exhibited noteworthy significance when considered in conjunction with other variables, 1 

highlighting the ANN-based model's capacity to offer more comprehensive and detailed 2 

insights into the integrated impact of multiple variables on patients' thermal sensation. In the 3 

context of real healthcare environments, interactions among different environmental variables 4 

are inevitable (Zhang et al., 2023; Levin & Emmerich, 2013). For instance, the spatial 5 

orientation of a room and the window-to-wall ratio have been identified as crucial factors that 6 

directly influence the transmission of direct gained solar radiation into the indoor environment, 7 

subsequently impacting upon indoor temperature and relative humidity levels (Li et al., 2021). 8 

Furthermore, empirical research has demonstrated the significant role of air temperature and 9 

relative humidity in sound propagation within indoor spaces (Nowoświat, 2022). Thus, the 10 

ANN-based prediction model is better suited for analysing and comprehending the intricate 11 

dynamics of real-world conditions. 12 

However, it is important to acknowledge several limitations in this research. Firstly, the dataset 13 

used in the study was relatively small, which may restrict the generalizability of the findings to 14 

a larger population. Additionally, the collection of on-site data within healthcare environments 15 

presented challenges and might have introduced certain biases into the analysis. Having said 16 

this, in the context of limited and heterogeneous data, the findings demonstrated that the 17 

performance of the analysis model based on ANN surpassed that of the linear regression 18 

analysis model. Furthermore, it is crucial to note that this research was conducted in a four-19 

season city during a typical summer, with the subjects specifically being orthopaedic 20 

rehabilitation patients. It is worth considering that different diseases may manifest distinct bio-21 

signals and require specific medical treatments. For instance, orthopaedic rehabilitation patients 22 

often experience heightened painful thermal sensations (Grzelak et al., 2022). As the number 23 

of measurement parameters and the size of the dataset increase, it is possible that the results 24 

could benefit from further scrutiny and debate. Furthermore, recruiting a substantial number of 25 

subjects and collecting comprehensive data within real-world hospital wards presents 26 

considerable difficulties, resulting in an inadequate dataset. Nonetheless, the research findings 27 

demonstrate that the use of artificial neural networks (ANNs) can still achieve satisfactory 28 

prediction performance with limited data. However, it is imperative to acknowledge that, as the 29 

measurement parameters and data size increase, the outcomes of the algorithm may be subject 30 
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to increased scrutiny and potential challenges over time. Furthermore, owing to the real-world 1 

nature of this research, the study encompassed all neurorehabilitation patients possessing self-2 

awareness. Notably, during the study period, the proportion of male patients was significantly 3 

higher than that of female patients, reflecting the typical patient distribution observed in 4 

neurorehabilitation wards. However, it is worth acknowledging that this study did not 5 

extensively delve into the potential impact of gender-specific factors on patient outcomes.  6 

Therefore, future research is expected to address these limitations by conducting investigations 7 

with larger sample sizes, encompassing diverse patient populations in various healthcare 8 

settings, and accounting for variations across seasons. Additionally, it would be advantageous 9 

to incorporate relevant and effective bio-signal variables into the predictive model to enhance 10 

its accuracy and applicability. 11 

 12 

9. Conclusion 13 

A fieldwork study was conducted to gather real-world data within rehabilitation wards to 14 

explore the influential variables affecting patients' personal thermal sensations. Both a 15 

regression analysis model and an ANN-based prediction model were developed for this purpose. 16 

Findings of this study indicated that both spatial parameters and healthcare-related factors 17 

significantly impacted on patients' thermal sensations. Specifically, it was found that spatial 18 

parameters, such as windows and the ambient environment, as well as patients' blood pressure, 19 

significantly influenced personal thermal sensation. Furthermore, room orientation and the 20 

presence of medical staff also demonstrated their contribution to improving the prediction 21 

performance of the ANN-based model. Therefore, the development of inpatients’ personal 22 

thermal sensation analysis model should integrate spatial and healthcare-related parameters. 23 

Moreover, the ANN-based prediction model offers a more comprehensive understanding of the 24 

integrated effects of multiple influential variables compared to the traditional statistical analysis 25 

model. This characteristic aligns more closely with real-world conditions involving complex 26 

interactions among various variables. As a result, this approach significantly aids in the design 27 

process and supports designers in attaining optimal thermal comfort for patients. By 28 

considering adjustments to the thermal environment and strategic spatial design factors, such 29 
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as positioning windows and air conditioning outlets, designers can effectively achieve this 1 

objective. Moreover, this model offers engineers accurate and realistic prediction outcomes, 2 

empowering the development of intelligent HVAC control systems that conserve energy while 3 

simultaneously meeting the thermal preferences of occupants. Furthermore, this model also 4 

assists medical staff in understanding inpatients' personal thermal preferences, enabling them 5 

to arrange the positioning of patient rooms and beds accordingly. As the sample size of hospitals 6 

and patients increases, the model can further develop, allowing for the identification of specific 7 

thermal design characteristics for different diseases and climate regions. Ultimately, this can 8 

influence the development of healthcare environment design standards in the field. 9 

In future work, the dataset is expected to be expanded to encompass a larger sample size. For 10 

instance, recruiting a more diverse cohort of patients with varying medical conditions, as 11 

different ailments may manifest distinct bio-signals and necessitate specific medical treatments. 12 

Furthermore, gathering data from various seasons and healthcare environments that encompass 13 

diverse outdoor climates and indoor settings would provide valuable insights.  14 

 15 
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