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Abstract—Current large language models (LLMs) provide a
strong foundation for large-scale user-oriented natural language
tasks. Numerous users can easily inject adversarial text or
instructions through the user interface, thus causing LLM model
security challenges. Although there is much research on prompt
injection attacks, most black-box attacks use heuristic strategies.
It is unclear how these heuristic strategies relate to the success
rate of attacks and thus effectively improve model robustness. To
solve this problem, we redefine the goal of the attack: to maximize
the KL divergence between the conditional probabilities of the
clean text and the adversarial text. Furthermore, we prove that
maximizing the KL divergence is equivalent to maximizing the
Mahalanobis distance between the embedded representation x
and x′ of the clean text and the adversarial text when the
conditional probability is a Gaussian distribution and gives a
quantitative relationship on x and x′. Then we designed a simple
and effective goal-guided generative prompt injection strategy
(G2PIA) to find an injection text that satisfies specific constraints
to achieve the optimal attack effect approximately. Notably, our
attack method is a query-free black-box attack method with a low
computational cost. Experimental results on seven LLM models
and four datasets show the effectiveness of our attack method.

Index Terms—Prompt Injection, KL-divergence, LLM, Maha-
lanobis Distance.

I. INTRODUCTION

Large Language Models (LLMs) [1], [2] are evolving
rapidly in architecture and applications. As they become more
and more deeply integrated into our lives, the urgency of
reviewing their security properties increases. Many previous
studies [3], [4] have shown that LLMs whose instructions are
adjusted through reinforcement learning with human feedback
(RLHF) are highly vulnerable to adversarial attacks. Therefore,
studying adversarial attacks on large language models is of
great significance, which can help researchers understand the
security and robustness of large language models [5]–[7] and
thus design more powerful and robust models to prevent such
attacks.

Various strategies have been developed to attack language
models, categorized into white-box and black-box approaches.
White-box methods, such as GBDA [8], HotFlip [9], and
AutoPrompt [10], use gradient-based techniques to optimize
adversarial loss but face challenges with closed-source mod-
els. Black-box attacks often involve token manipulation, as
seen in SEAR [11] and EDA [12], with BERT-Attack [13]

† Corresponding Author. This work was partially supported by Research
Development Fund with No. RDF-22-01-020, the “Qing Lan Project” in
Jiangsu universities and National Natural Science Foundation of China under
Grant U1804159.

employing context-aware replacements. Our approach focuses
on inserting adversarial prompts instead of merely altering
words. Additionally, prompt injection attacks exploit vulnera-
bilities in large language models [14]–[16], aiming to expose
or redirect system prompts. The black-box paradigm also
includes methods like BadNets [17] and model substitution
[18]. A key drawback of white-box attacks is their limitation to
open-source models; they are ineffective against widely used
closed-source LLMs like ChatGPT due to lack of access to
model architecture and parameters. Black-box strategies em-
ploy heuristic methods due to the unknown internal structures
of large models, yet the relationship between these heuristics
and attack success rates remains unclear, highlighting the need
for more effective strategies.

In our work, we assume that the clean text representation
x and the adversarial text representation x′ satisfy the con-
ditional probability distribution p(y|x) and p(y|x′) respec-
tively, and the goal of the black-box attack is to maximize
the KL divergence KL(p(y|x), p(y|x′)), then we prove that
maximizing the KL divergence is equivalent to maximizing the
Mahalanobis distance between x and x′ under the assumption
of Gaussian distribution. Furthermore, we give the quantitative
relationship between optimal attack text representation x′∗ and
x. Based on the above theoretical results, we designed a simple
and effective prompt text injection method to search for attack
texts that meet approximately optimal conditions.

Overall, our contributions are as follows: 1) We propose a
new objective function based on KL divergence between two
conditional probabilities for black-box attacks to maximize the
success rate of black-box attacks; 2) We theoretically prove
that under the assumption that the conditional probabilities
are Gaussian distributions, the KL divergence maximization
problem based on the posterior probability distributions of
clean text and adversarial text, respectively, is equivalent
to maximizing the Mahalanobis distance between clean text
and adversarial text. 3) We propose a simple and effective
injection attack strategy for generating adversarial injection
texts, and the experimental results verify the effectiveness of
our method. Note that our attack method is a query-free black-
box attack method with low computational cost.

II. METHODOLOGY

A. Threat Model with Black-box Attack

1) Adversarial scope and goal.: Given a text t containing
multiple sentences, we generate a text t′ to attack the language
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model, ensuring that the meaning of the original text t is
preserved; otherwise, then we believe that the attack text t′

is attacking another text that is unrelated to t. Here, we use
D(t′, t) to represent the distance between the semantics of text
t and t′. If the LLM outputs M(t) and M(t′) differ, then t′

is identified as an adversarial input for M . Our objective is
formulated as follows:

M(t) = r, M (t′) = r′, D(r, r′) ≥ ε, D (t′, t) < ε,
(1)

where the texts r and r′ are the outputs of model M on
text t and t′ respectively, and r is also the groundtruth of
text t. The distance function D(·, ·) and the threshold ε
approximately represent the semantic relationship between two
texts. In particular, the above problem has the following attack
characteristics

• Effective: The condition D(M(t′), r) ≥ ε ensures that
the model has a high attack success rate (ASR), while
the condition D(M(t), r) < ε shows that the model has
a high benign accuracy.

• Imperceptible: Prompt injection attacks can ensure that
the adversarial text is better adapted to the problem
context so that it is difficult for the model’s active defense
mechanism to detect the presence of our prompt injection
attack.

• Input-dependent: Unlike fixed triggers, input-dependent
triggers are imperceptible in most cases and difficult to be
detected by humans [19]. According to the equation (1),
the adversarial text (or trigger) t′ is input-dependent, and
thus the trigger t′ is inserted into t via prompt injection
to form an attack prompt (see Sec. II-D).

B. Analysis on Objective

For the convenience of discussion, we regard the text
generation of LLM as a classification problem, where the
output will be selected from thousands of texts and each
text is regarded as a category. Below, we first discuss the
necessary conditions for the LLM model to output different
values (M(t) ̸= M(t′)) under the conditions of clean text t
and adversarial text t′, respectively.

Assume that the input t and output r of model M are both
texts. Given two different input texts t and t′, model LLM will
output two different output texts r and r′. Assuming there is
a bijective function w (or text embedding function) between
text and vector, we have

x = w(t), x′ = w(t′) (2)
y = w(r), y′ = w(r′) (3)

where x (x′) and y(y′) are the embedded representations of the
input text and the output text, respectively. Note that since the
outputs of LLM r and r′ come from an enumerable discrete
space, and there is a one-to-one correspondence between text
representation and vector representation, their vector repre-
sentations y and y′ are also enumerable, so the output of the

LLM model M can be restated as the posterior probability
maximization problem in the enumerable discrete space Y

y = argmax
ŷ∈Y

p(ŷ|x) = w(M(w−1(x))),

y′ = argmax
ŷ∈Y

p(ŷ|x′) = w(M(w−1(x′))),
(4)

where w−1(·) is the inverse function of w(·) the function.
Furthermore, we have

∀ŷ, p(ŷ|x) = p(ŷ|x′) ⇒ argmax
ŷ∈Y

p(ŷ|x) = argmax
ŷ∈Y

p(ŷ|x′).

(5)
So, we get its converse proposition

argmax
ŷ∈Y

p(ŷ|x) ̸= argmax
ŷ∈Y

p(ŷ|x′) ⇒ ∃ŷ, p(ŷ|x) ̸= p(ŷ|x′).

(6)
Thus, we can derive the necessary condition for the LLM
to output different values (such as M(t) ̸= M(t′)): the
LLM has different posterior probability distributions under
different input conditions. We maximize the Kullback-Leibler
(KL) divergence between the posterior probability distributions
p(y|x) and p(y|x′) to maximize the likelihood of the LLM
outputting different values

max
x′

KL(p(y|x), p(y|x′)). (7)

x

p(y|x)

y y1y2

Fig. 1. Assumption that the output y of LLM under the condition of x satisfies
the discrete Gaussian distribution: Answers (output) y close to question (input)
x are usually more relevant to x and have a higher probability of being
sampled.

First, we assume that the output distribution p(y|x) of
LLM satisfies the discrete Gaussian distribution [20] under
the condition of input x,

p(y|x) = e−
1
2 (y−x)TΣ−1(y−x)∑

ŷ∈Y e−
1
2 (ŷ−x)TΣ−1(ŷ−x)

, (8)

as shown in Fig. 1, that is, the output of LLM is defined
on a limited candidate set Y , although this candidate set
Y may be very large. Since the input x and output y of
LLM are questions and answers, the spaces where they are
located generally do not intersect with each other, so there
are y = argmaxŷ∈Y p(ŷ|x) ̸= x, which is different from the
commonly used continuous Gaussian distribution y = x, as
can be seen in Fig. 1. For the same question x, LLM usually
outputs different answers and the answer y most relevant to x
has a higher probability of being sampled. In the embedding
space, the distance between y and x is usually closer. Similarly,
answers y that are almost uncorrelated with x and far away
from x in the embedding space have a smaller probability of
being sampled.

To solve the problem (7) theoretically, we do the following
processing: Replace the discrete Gaussian distribution with a
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continuous Gaussian distribution to facilitate the calculation of
KL divergence although the output text on condition of input
text still obeys discrete distribution in practical applications.
Subsequently, we present the following theorem (see Appendix
Section A and B for details).

Theorem 1 Assuming p(y|x) and p(y|x′) respectively fol-
lows the Gaussian distribution N1(y;x,Σ) and N2(y;x

′,Σ),
then the maximization KL(p(y|x), p(y|x′)) is equivalent to
maximizing the Mahalanobis distance (x′−x)TΣ−1(x′−x),
which is further transformed into the following minimization
optimization problem given the clean input x

min
x′

∥x′∥2, s.t. (x′ − x)TΣ−1(x′ − x) ≤ 1, (9)

which has an optimal solution of the form (λ is Lagrange
multiplier)

x′∗ = (Σ + λI)−1λx, λ > 0. (10)

C. Solving Problem (9) Approximately via Cos Similarity

x

x′∗

Ax′

B

o

Fig. 2. Assuming x′∗ = (x′
1, x

′
2) is the optimal solution to problem (9),

then when x′ moves from A through x′∗ to B on the ellipse, cos(x′, x) first
increases and then decreases, while ∥x′∥2 first decreases and then increases.

Note that our method is a black-box attack and does not
know the model parameters Σ, so we cannot solve the problem
(9). Below, we try to approximately solve the problem (9)
using cos similarity, which does not contain any parameters.
Fig. 2 shows the optimal solution x′∗ of the problem (9)
in two-dimensional space. When the vector x′ moves from
A to B along the ellipse through the optimal point x′∗,
cos(x′, x) first increases and then decreases, while ∥x′∥2 first
decreases and then increases. Therefore, we introduce the
hyperparameter γ to approximate the solution to problem (9)

cos(x′, x) = γ, 0 ≤ γ ≤ 1, (11)

where x (known) and x′ (unknown) are the embedded rep-
resentations of clean and adversarial input, respectively. Note
that in our implementation, we relax the constraint satisfaction
problem of the optimal solution x′∗ as

| cos(x′, x)− γ| < δ, δ is a small positive constant. (12)

Below we discuss the problems of γ ̸= 0 and γ ̸= 1 from
two perspectives. First, we prove this conclusion mathemati-
cally. We compute cos(x′∗, x) to obtain

cos(x′∗, x) =
x′∗Tx

∥x′∗∥2∥x∥2
=

λxT (Σ + λI)−1x

∥x′∗∥2∥x∥2
. (13)

If cos(x′∗, x) = 0 (x ̸= 0), then λ = 0, that is, x′∗ = 0, which
is meaningless to LLM. If cos(x′∗, x) = 1, then x′∗ and x
are in the same direction, i.e. x′∗ = λ(Σ + λI)−1x = tx,
where t is a ratio value. So x′∗ must be the eigenvector of
the matrix λ(Σ + λI)−1. However, x′∗ can be an embedding
representation of any input. So we arrive at a contradiction.

From the perspective of a black-box attack, when
cos(x′, x) = 1, the vectors x and x′ will have the same
direction. When using vectors (often using unit vectors) to
represent text, we care more about the direction of the vector,
so x = x′. In addition, note that w(·) is a bijective function,
then for clean text t and adversarial text t′, there is t = t′.
There we have r = M(t) = M(t′) = r′, which contradicts the
condition r ̸= r′ in problem (1). When cos(x′, x) = 0, then
w(t′) and w(t) are linearly uncorrelated, which is conflicted
with the condition D(t′, t) = 0 in problem (1).

D. Goal-guided Generative Prompt Injection Attack

Note that w(t) = x and w(t′) = x′. Based on the previous
discussion, we can simplify our problem (1) into the following
constraint satisfaction problem (CSP)

min
t′

1, (14)

s.t. D(t′, t) < ϵ, (15)
| cos(w(t′), w(t))− γ| < δ, (16)

where x and x′ represent clean input (known) and adver-
sarial input (unknown), respectively, while w(·) represents
the embedded representation of the text (literal meaning) and
D(·, ·) represents the distance between the semantics (intrinsic
meaning) of the two texts. The hyperparameters δ and ϵ are
used to control the difficulty of searching constraint, where δ
or ϵ is smaller, the search accuracy is higher.

In our method, we implement a black-box attack through
prompt injection: generate an adversarial text t′ that satisfies
conditions (16) and (15), and then mix t′ into the text t to
obtain a prompt t̄. The advantage of using prompt insertion
is that since the prompt t̄ contains both clean input t and
adversarial input t′, on one hand, the concealment of the
adversarial input (or trigger) t′ is enhanced, and on the other
hand the adversarial input t′ plays a very good interference
role to the output of the LLM model.

Next, we first find the core word set that determines the
text semantics through the semantic constraint condition (15)
and then use the core word set to generate adversarial text that
satisfies the cos similarity condition (16). It is worth noting
that the embedded representation is defined on texts , so we
use the BERT model to convert any text t into w(t). However,
in our work, the semantic distance between texts is defined on
the core words of the text, so we use the word2vec model
to define the semantic distance D(t′, t) between text t′ and t.

E. Solving Semantic Constraint(15)

Usually, the semantic meaning of text r is determined by
a few core words C(r) = {ω1(r), ω2(r), · · · , ωn(r)}, which
will not be interfered by noise words in the text r. Based on
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Original
Question

Correct
Answer

Wrong
Answer

Part-of-
speech
Feature

Extraction

Injection
Sentence

Generation

New Prompt 
Generation

A cobbler can mend 3 pairs of shoes in
an hour. From Monday to Thursday, the
cobbler works for 8 hours each day......

NN: No change
VBD: Random verb
NNS: Synonyms

A cobbler can mend 3 pairs of shoes in an hour. From Monday 
to Thursday, the cobbler works for 8 hours each day, and on 
Friday, he only works from 8 am to 11 am. How many pairs of 
shoes can the cobbler mend in a week? + <Injection Sentence>

A cobbler repaired an Oxfords.

Constraint Checking

Injection
Sentence

!(#|%)

! # %, %′

max ,- ! # % , ! # %, %′
 !′

Injection Disturbance Generation

Fig. 3. Overview of Goal-guided Generative Prompt Injection Attack: 1) We use the part-of-speech method to find the subject, predicate and object of the
question in the clean text x and fetch synonyms of the predicate and object plus a random number as core words; 2) Put the core words into assistant LLM
to generate an adversarial text x′ that satisfies the constraints; 3) Insert the generated adversarial text into the clean text x to form the final attack text; 4)
Enter the attack text into the LLM victimization model to test the effectiveness of our attack strategy.

the core word set C(r), we will use cos similarity to define
the semantic distance D(t′, t) between two texts t and t′

D(t′, t) = 1− cos(s(ωi(t
′)), s(ωi(t))), i = 1, 2, · · · , n, (17)

where s(·) represents the word2vec representation of the word.
In a text paragraph, usually, the first sentence is a summary

of the entire paragraph (maybe some exceptions that we
ignore), where the meaning of a text will be determined by
its subject, predicate, and object. Therefore, the subject St,
predicate Pt and object Ot that appear first in text t will serve
as the core words of the text (n = 3)

ω1(t) = St, ω2(t) = Pt, ω3(t) = Ot. (18)

Because the change of the subject will have a great impact on
the meaning of the text, the subject St′ in the adversarial text t′

is directly set to the subject St in the clean text t. Through the
WordNet tool, we randomly select a word from the synonym
lists of Pt or Ot to check whether the constraints (15) are
met. Once the conditions are met, the search process will stop.
Finally, we obtain the core word set of the adversarial text t′

that satisfies the semantic constraints

C(t′) = {ω1(t
′) = St′ = St, ω2(t

′) = Pt′ , ω3(t
′) = Ot′}.

(19)

F. Solving Cos Similarity Constraint (16)

Next, we will generate adversarial text that satisfies con-
straint (16) through the core vocabulary C(t′) of adversarial
text. Note that to increase the randomness of the sentence, we
add another random number Nt′ between 10 and 100 as the
core word. Now the core vocabulary of the adversarial text t′

becomes (n = 4)

C(t′) = {ω1(t
′) = St′ , ω2(t

′) = Pt′ ,

ω3(t
′) = Ot′ , ω4(t

′) = Nt′}.
(20)

The core word set is embedded into the prompt template
to generate a sentence text t′ with LLM. We iterate N times

to randomly generate multiple sentence texts t′ until the text
t′ satisfies Eqn. (16). Finally, we insert the adversarial text
t′ after the text t to attack the LLM. Inserting t′ after any
sentence in t is also feasible. In Appendix Section G, we
will see minimal difference in attack effectiveness at different
locations.

III. EXPERIMENTS

A. Experimental Details

Below we describe some details of the prompt insertion-
based attack method, including the victim model, dataset,
and evaluation metrics. In particular, ChatGPT-4-Turbo (gpt-
4-0125-preview) is used as our auxiliary model to generate
random sentences that comply with grammatical rules. Unless
otherwise stated, all results of our algorithm use the parameter
settings ϵ = 0.2, δ = 0.05 and γ = 0.5. We randomly selected
300 examples from the following dataset and tested them using
two large model families.

1) Victim Models:
• ChatGPT. ChatGPT, developed by OpenAI, is a language

model capable of generating human-like conversations
[21]. In our experiments, we use GPT-3.5-Turbo and
GPT-4-Turbo as victim models.

• Llama-2. Llama-2 [22], by Meta AI, is an advanced
open-source language model that surpasses its predeces-
sor and other models in reasoning, encoding, proficiency,
and knowledge tests. It includes Llama 2-7B, 13B, and
70B models based on the transformer framework.

2) Q&A Datasets: We chose datasets for plain text and
mathematical Q&A scenarios.

• GSM8K The GSM8K dataset, consisting of 800 billion
words [23], is the largest language model training re-
source available today.

• web-based QA The dataset [24] is mostly obtained
from online Question Answering communities or forums
through Web crawlers.
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• MATH dataset The MATH dataset [25] has 12,000+
question-answer pairs for researchers to develop and
evaluate problem-solving models.

• SQuAD2.0 SQuAD2.0 [26] has 100K+ question-answer
pairs from Wikipedia for reading comprehension.

3) Evaluation Metrics: Assume that the test set is D, the
set of all question answer pairs predicted correctly by the LLM
model f is T , and a(x) represents the attack sample generated
by the clean input. Then we can define the following three
evaluation indicators

The results on four public datasets show that the first-
generation ChatGPT-3.5 and ChatGPT-3.5-Turbo have the low-
est defense capabilities. Obviously, when ChatGPT first came
out, it didn’t think too much about being attacked. Similarly,
the small model 7b of Llama-2 is also very weak in resisting
attacks. Of course, it is indisputable that the clean accuracy of
the models of the Llama series is also very low. The output
of small models is more susceptible to noise.

On the other hand, taking ChatGPT-4 as an example, if we
compare the ASR values on the 4 data sets, we can conclude
that our attack algorithm is more likely to succeed on the data
set SQuAD 2.0, while mathematical problems are the most
difficult to attack. In contrast to ASR 41.15 with ChatGPT-
3.5 on GSM8k in the paper [27], our attack algorithm with
ASR 44.87 is a general attack strategy and is not specifically
designed for problems involving mathematical reasoning.

B. Comparison to Other Mainstream Methods

Below we compare our method with the current mainstream
black-box attack methods in zero-sample scenarios on two
data sets: SQuAD2.0 dataset [26] and Math dataset [25].
Microsoft Prompt Bench [28] uses the following black box
attack methods to attack the ChatGPT-3.5 language model,
including BertAttack [13], DeepWordBug [29], TextFooler
[30], TextBugger [31], Prompt Bench [28], Semantic and
CheckList [32]. For fairness, we also use our method to attack
ChatGPT 3.5. Tab. II compares the results of these methods on
the three measurements of Clean Acc, Attack Acc, and ASR.

Multiple attack strategies attack ChatGPT-3.5 on two data
sets, the SQuAD2.0 dataset and the Math dataset, respectively.
As seen from Tab. II, our attack strategy achieves the best
results on both data sets. It is worth noting that we count
Clean Acc and Attack Acc for each algorithm at the same
time, so there are subtle differences between the multiple
Clean Acc shown in Tab. II, but since Clean Acc and Attack
Acc are calculated in the same attack algorithm, therefore
it has little effect on the value of ASR. Especially on the
Math dataset, our algorithm is significantly better than other
algorithms, with an ASR of 44.87% compared to BertAttack’s
33.46%. However, our algorithm is a general attack method
not specifically designed for mathematical problems. To some
extent, it is shown that our algorithm has good transfer ability
on different types of data sets.

IV. ABLATION STUDY

In this section, we will analyze our baseline approach by
conducting ablation studies based on two strategies. The first
strategy involves extracting sentence components, while the
second involves traversing insertion positions. To extract sen-
tence components, we randomly replaced all three components
with synonyms. We also randomly performed an ablation
study with random breakpoint insertion. The results show that
the average ASRs of random location prompt injection and
random sentence component replacement multiple times are
lower than our method.

A. Parameter sensitivity analysis

In our method, the parameters ϵ and δ are two important
parameters. The former controls the distance between the
adversarial text and the clean text in the semantic space,
while the latter will affect the optimality of the approxi-
mate optimal solution. We selected a total of 9 values from
{0.1, 0.2 · · · , 0.9} for the two parameters to attack ChatGPT-
3.5 on the GSM8K data set and calculated their ASR values.
The ASR is simply a decreasing function of the distance
threshold ϵ. That is, the farther the distance, the worse the
attack effect. This aligns with our intuition: injected text that
is too far away from the clean text will be treated as noise
by LLM and ignored. The results show that when γ = 0.5,
our attack strategy achieves the best attack effect. The attack
effect will be somewhat attenuated when the gamma value
exceeds 0.5 or less than 0.5. It is worth noting that the value
of parameter γ may vary depending on the model or data. See
the Appendix for more results and discussions.

V. CONCLUSION

In our work, we propose a new goal-oriented generative
prompt injection attack (G2PIA) method. To make the injected
text mislead the large model as much as possible, we define
a new objective function to maximize, which is the KL diver-
gence value between the two posterior conditional probabilities
before injection (clean text) and after injection (attack text).
Furthermore, we proved that under the condition that the
conditional probability follows the multivariate Gaussian dis-
tribution, maximizing the KL divergence value is equivalent to
maximizing the Mahalanobis distance between clean text and
adversarial text. Then, we establish the relationship between
the optimal adversarial text and clean text. Based on the
above conclusions, we design a simple and effective attack
strategy with an assisted model to generate injected text that
satisfies certain constraints, maximizing the KL divergence.
Experimental results on multiple public datasets and popular
LLMs demonstrate the effectiveness of our method.
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TABLE I
COMPARISON OF ATTACK EFFECTS OF G2PIA ON DIFFERENT LLM MODELS AND DATASETS

Models GSM8K Web-based QA SQuAD2.0 Dataset Math Dataset

Clean Attack ASR ↑ Clean Attack ASR ↑ Clean Attack ASR ↑ Clean Attack ASR ↑

text-davinci-003 71.68 36.94 48.47 41.87 17.97 57.19 68.30 14.00 79.50 21.33 11.76 44.87
gpt-3.5-turbo-0125 72.12 37.80 47.60 41.98 24.17 42.42 68.33 12.67 81.46 21.33 15.99 29.72
gpt-4-0613 76.43 41.67 45.48 53.63 33.72 37.12 71.87 19.71 72.58 41.66 28.33 32.00
gpt-4-0125-preview 77.10 43.32 43.81 54.61 34.70 32.80 71.94 24.03 69.34 44.64 32.83 26.49
llama-2-7b-chat 44.87 27.51 38.69 47.67 24.26 49.10 78.67 37.66 52.13 79.33 52.44 33.90
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