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Abstract. In the domain of Large Vision-Language Models (LVLMs),
securing these models has emerged as a critical issue for both researchers
and practitioners. In this paper, we highlight and analyze the security-
related issues of LVLMs, with a special emphasis on the reliability chal-
lenges in practical deployments. We begin by reviewing recent studies
on threats like jailbreak and backdoor attacks, alongside discussing the
potential countermeasures implemented to mitigate these risks. Addi-
tionally, we touch on real-world application problems, such as halluci-
nations and privacy leakages, as well as the ethical and legal related
researches around them. We also outline the shortcomings observed
in current studies and discuss directions for future research, with the
aim of promoting LVLMs towards a safer direction. A curated list
of LVLMs-security-related resources is also available at https://github.
com/MingyuJ666/LVLM-Safety.
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1 Introduction

Large Vision-Language Models (LVLMs) have made significant advancements
in Artificial General Intelligence (AGI) by demonstrating the ability to process
and integrate vision and language information. This breakthrough has unlocked
new and innovative opportunities across various applications [7,22,52,88,90],
enabling LVLMs to effectively perform multi-modal conversation and visual
question-answering tasks. However, recent studies have revealed that LVLMs
exhibit a concerning characteristic - adversarial vulnerability. This vulnerability,
which has been observed in classical deep learning models [17–19,29,62], is now
also present in LVLMs [9,65,70,79,83,99]. This poses a notable challenge to the
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security and reliability of LVLMs when deployed in real-world applications, as
they can be susceptible to adversarial attacks, similar to classical deep learning
models.

This paper aims to analyze and categorize the security risks of LVLM in
a broad sense. Review the attack assessment methods of researchers on LVLM
vulnerabilities and efforts in mitigating security risks. In summary, the review
scope is shown in Fig. 1, and we will discuss the following issues:

– Malicious Attacks on LVLMs: We investigate three primary malicious attacks
against LVLMs: Jailbreak, Backdoor attacks, and Controllable misinfor-
mation generation. Jailbreak attacks induce LVLMs to generate content
that violates security restrictions by manipulating input, usually with fixed
model parameters, and directing the model to output malicious content
through malicious manipulation of input images. Backdoor attacks, con-
versely, implant triggers during the model training phase that cause the model
to produce harmful responses when specific trigger patterns are encountered.
Furthermore, LVLMs also possess the capability to generate controllable mis-
information that both humans and detection systems struggle to identify.

– Defenses against LVLMs Malicious Attacks: We review a variety of defense
avenues that cover input preprocessing techniques, such as identifying poten-
tially adversarial samples by transforming the input image and output mon-
itoring techniques. In addition, with regard to the backdoor attack defense
method, improving the training process and parameter tuning of models to
enhance their resistance to malicious manipulation are discussed. Finally,
for controllable misinformation generation, some methods for detecting mis-
information using LVLMs were investigated, and concluded that the robust
multi-modal capabilities of LVLMs can be effectively harnessed to detect mis-
information.

– Application Risks and Mitigation Methods : Regarding application risks, we
discuss issues that LVLMs may arise in real-world applications, namely
Hallucinations and Privacy. The hallucination describes LVLMs generating
responses that do not correspond to facts or user prompts, which can pose
potential risks in domains closely related to human life, such as medical advice
and legal assistance. The problem of privacy leakage, on the other hand,
involves the leakage of personal information, and we review the work related
to the privacy of LVLMs and discuss future directions for privacy research on
LVLMs.

To better understand the security risks and causes of LVLMs, this paper
first explores the architectural design of LVLMs, the training mechanism, and
the efforts in alignment. Then, we review recent research results on jailbreak
attacks, backdoor attacks, and other potential threats and analyze the defense
strategies carried out by researchers to address these challenges. In addition, this
paper discusses the reliability issues that LVLMs may raise in real-world appli-
cations, i.e., hallucination and privacy leakage. It emphasizes the importance of
prospective research and development to ensure that deploying these advanced
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technologies complies with ethical norms and legal frameworks. Finally, we sum-
marize the limitations of the current research and discuss future work.
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Fig. 1. Categorization of Malicious Attack, Defenses, Application Risk and Mitigation
methods in LVLMs. Each branch shows relevant recent research regarding the topic.

2 Architecture and Training of LVLMs

Architecture: The overall architecture of Large Vision-Language Models
(LVLMs), as shown in Fig. 2, consists of four key components: Visual Encoder,
Text Encoder, Connector, and LLM [73]. This modular design allows for the
seamless integration of visual and textual information, facilitating the ability of
LVLMs to process and generate responses for a wide range of multimodal tasks.
Specifically, the text encoder embeds a text into embedding to obtain a bet-
ter understanding of the intrinsic relationships between the tokens. Simultane-
ously, variants of CLIP [72] are adopted as vision embedded for better alignment
between text and vision embedding due to the superior cross-modality under-
standing ability. To further align vision embeddings from the output of the vision
encoder with the text embedding, various works [3,15,78] adopt a connector to
push two embedding spaces closer. Furthermore, based on the MLP connec-
tor, multiple works have proposed improved methods to enhance the alignment
capability of the connector, such as cross-attention mechanisms [2], specialized
adapters [24] and q-formers [47]. Finally, the LLM serves as the central process-
ing unit within the LVLM framework. It receives the aligned visual and textual
features and generates corresponding outputs.

Training: Training LVLMs generally has two stages: The first stage is pre-
training, and LVLMs learn to understand visual and textual information from
matched image-text samples. The second stage is instruction fine-tuning, LVLMs
undergo training to comprehend and execute human instructions across various
task-specific datasets. Through these two stages of training, LVLMs acquire the
ability to effectively process image-text inputs, thereby enabling them to tackle
complex tasks that require the integration of visual and textual information.
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Fig. 2. This figure depicts the core components of an LVLM, showcasing the integration
of visual and textual inputs through the Visual Encoder, Text Encoder, and Connector,
culminating in the LLM that processes the aligned features to produce responses.

3 Malicious Attacks on LVLMs

Although LVLMs have achieved great success in various applications, they can be
manipulated by malicious users. Such manipulation produces dangerous content
through jailbreak and backdoor attacks, including but not limited to insulting
and toxic content. These methods are designed to circumvent the built-in safe-
guard mechanisms of LVLMs. Furthermore, while integrating the vision module
brings incredible capabilities to LLMs, it also introduces additional complexity,
opens up new avenues for potential attack, and brings new risks for security. In
addition, the pixel space of the images is more continuous and dense than the
space of the natural language, which is relatively more vulnerable to adversar-
ial examples [9]. Also, Tu et al. [84] observed a significant jailbreak robustness
decrease while injecting the vision module by comparing the jailbreak attack
success rate (ASR) of LLMs and LVLMs. Besides, Backdoor attacks are an
implicit threat to LVLMs, where an adversary injects a hidden trigger during
the training phase of a model. When the trigger input is encountered, it causes
the model to operate in a predefined malicious way, such as executing harmful
commands or leaking sensitive information. The challenge of backdoor attacks
lies in their stealthiness, which is difficult to detect since they usually execute
without trigger inputs, and their presence is only revealed when a specific trigger
is encountered. This difference in behavior makes backdoor attacks a significant
security concern, as they can cause reliability issues for LVLMs in real-world
deployments. Additionally, Controllable Misinformation Generation represents
a significant security concern for Large Vision-Language Models (LVLMs), as it
enables adversaries to manipulate these models to produce targeted misinforma-
tion. This capability can lead to the dissemination of deceptive narratives that
are challenging for both humans and detection systems to discern, thereby under-
mining trust in digital information ecosystems. Consequently, this section delves
into a detailed examination of the various types of malicious attacks targeted
at the vision modules of LVLMs. By exploring the mechanisms and strategies
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employed by adversaries, we aim to enhance the understanding of these threats
and contribute to the development of more robust defense strategies.

3.1 Jailbreak Attacks on LVLMs

Jailbreak refers to a set of behaviors that bypass restrictions at the hardware or
software level to gain higher control over the system to perform private tasks,
which was initially employed in the scenarios of privilege cracking on Apple IOS
devices [96] and Android devices [67]. Generally, Jailbreak poses various risks,
including security vulnerabilities, software instability, and criminal offenses. In
the era of LLMs, Jailbreak refers to manipulating prompts to induce the LLMs
to generate harmful content. Furthermore, regarding LVLMs, this manipulation
mainly targets the input of image branches, as is shown in Fig. 3. Jailbreaks for
LVLMs can be categorized based on the involvement of the LLMs in generat-
ing adversarial samples. Specifically, they can be roughly divided into attacks
containing LLM and attacks without LLM. In the former category, the adver-
sary end-to-end attack LVLMs to craft adversarial examples to maximize the
probability of generating harmful corpus. In the second strategy, the adver-
sary obtains a jailbreak response by manipulating the vision components, i.e.,
the Visual Encoder and Connector, to inject malicious concepts into the image
to generate adversarial samples that bypass the built-in security constraints of
LLMs.

Fig. 3. Example of a visual adversarial sample jailbreaks LVLM.

Attack Include LLMs. For existing practice on integrating vision mod-
ules onto LLMs via modal alignment adapters, such as MiniGPT-4 [115] and
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LLaVa [55], the gradient of the input image is differentiability. Meanwhile, vari-
ous parameters of basic LLMs are open-sourced, making white-box attacks avail-
able. Therefore, recent works [9,65,70] crafts adversarial example xadv to max-
imize the likelihood of generating jailbreak responses end-to-end through stan-
dard adversarial attack methods, e.g., Projected Gradient Descent (PGD) [61].
However, in the attempt to generate universal jailbreak adversarial samples,
researchers explore different approaches. Qing et al. [70] craft adversarial samples
by optimizing the probability of an LLM response to a few-shot set of deroga-
tory corpus. Similarly. Carlini et al. [9] generate adversarial samples by leverag-
ing teacher-forcing optimization techniques to illustrate that aligned LLMs are
not adversarial-aligned, calling for attention to the security of the open-sourced
LLMs. Moreover, Niu et al. [65] propose imgJP, which first organizes a paired
harmful QA dataset and then combines adversarial example xadv and malicious
questions as a harmful composite prompt into LLMs to maximize the probabil-
ity of responding harmfully. In addition, Niu et al. [65] emphasize that ensemble
LLMs as imgJP attack targets can significantly increase the ASR. Furthermore,
since the embedding of images and text is in an aligned space, Niu et al. [65]
introduce a construction-based method to jailbreak LLMs by de-embedding the
adversarial example embedding into text as a suffix, which demonstrates the
transferability of adversarial between image and text.

Attack Exclude LLMs. Another line of methods [79] attempts to jailbreak
LVLMs solely targeting vision components, bypassing LLMs’ built-in security
mechanisms through transferring sensitive content or harmful keywords from
text to images. Shayegani et al. [79] proposes four proxy options in the joint
embedding space as attack targets, i.e., text embedding of harmful keywords,
Optical Character Recognition (OCR) embedding of malicious content, visual
embedding of textual figuration, and a combination of visual and OCR embed-
dings. All four proxies attempt to convert malicious text prompts with a high
chance of being rejected into images, which can induce LLMs to generate harm-
ful content. Specifically, the adversary takes embeddings of a proxy from joint
embedding space as a target and crafts adversarial examples by minimizing the
distance between the input image and target embedding. Similar to the OCR-
based method in the work of Shayegani et al. [79], Gong et al. [25] also leverage
the OCR ability of the vision module to typography malicious prompts into
images. Typography is a technique for organizing text onto images. However,
Gong et al. [25] directly input typography images with specially designed step
prompts that were not aligned in the joint embedding space, which also demon-
strated the ability to induce LLMs to generate harmful content.

3.2 Backdoor Attacks on LVLMs

A backdoor attack is an attacker secretly embedding a backdoor into hardware
and software, enabling remote system access while bypassing normal authen-
tication processes. It involves implanting specific backdoors during training to
cause these models to produce target outputs when faced with particular triggers
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pasted in the inputs. The same strategy applies to LVLMs, combining vision and
language processing capabilities. Backdoors can be embedded in models, where
attackers incorporate triggers (e.g., pixel patterns, keywords) to compel mali-
cious behaviors. These stealthy backdoors are difficult to detect, as they may
not affect model performance on standard tests. The backdoor attack threat-
ens the security and reliability of the model. This section first introduces the
classical Backdoor Attack on Deep Neural Network (DNN). After that, we will
introduce the Attack method of Backdoor Attack on LLMs and further introduce
the attack method of Backdoor Attack on LVLMs.

Backdoor attacks pose a serious threat to deep learning models. For example,
BadNet causes the model to produce the wrong classification at inference time by
inserting triggers into the training data [26]. Furthermore, Wang et al. [93] pro-
pose a Quantization-based trigger generation method based on image quantiza-
tion and dithering, utilizing the insensitivity of human perception to insignificant
color changes to introduce malicious patterns to the training dataset. Similarly,
TrojanNN implanted a backdoor by retraining the network with toxic data,
a remote verification mechanism was designed to verify the ownership of the
remotely deployed model quickly and accurately without affecting the accuracy
of the normal input data of the model, rendering the attack more clandestine and
difficult to detect [57]. At the same time, the reflective backdoor demonstrates
the application of backdoor attacks in the physical world by exploiting the imper-
vious trigger of natural light reflection [59]. Furthermore, potential backdoor
attacks demonstrate a more covert technique that bypasses traditional input
checking by altering the internal representation of the model without directly
modifying the input data [104]. Moreover, the input-aware dynamic backdoor
significantly increases the unpredictability of the attack by adjusting the trigger
for each input [63]. Finally, DRUPE technology further improves its ability to
evade detection by mixing poisoned samples with normal data, which transforms
the poisoned samples into in-distribution data by reducing their distributional
distance to clean data [82].

Backdoor attacks on large language models include knowledge-poisoning
attacks, instruction-poisoning attacks, and others. In knowledge poisoning
attacks, PoisonedRAG [116] changes the generated answers of LLMs to spe-
cific questions by injecting toxic text into the knowledge databases. ICLAttack
has also been shown to be effective by manipulating model predictions by adding
toxic examples to the dataset [111] and planting backdoors by modifying instruc-
tions in crowdsourced data [86] without changing data instances or labels. In
instruction-based attacks [98], the attacker manipulates the model’s behavior by
embedding backdoors within the example context provided to the model. This
method injects some toxic text into the knowledge base by retrieving the relevant
knowledge in the knowledge base, which is more difficult to defend. Composite
Backdoor Attacks (CBA) [34] involves setting multiple trigger keys in different
prompt components. For instance, trigger keys can be set in the instruction and
input components. The backdoor is only activated when all the trigger keys are
entered simultaneously, which significantly minimizes the chances of a false trig-
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ger and enhances the attack’s concealment. Further, POISONPROMPT [102]
is a backdoor attack method against large language models based on prompts.
It generates poison prompts and adjusts triggers through a two-level optimiza-
tion process to control the model’s output under specific trigger conditions while
maintaining high accuracy for normal input. In addition to the previously men-
tioned techniques, new methods for backdoor attacks such as Chain of Thought
(CoT) have shown promising results, such as BadChain [97], which inserts back-
door reasoning steps into the CoT prompt [40] without access to the training
dataset or model parameters. The Jailbreak backdoor attack [75] manipulates
the model’s behavior when a trigger occurs by inserting a backdoor into the LLM
with poisoned human feedback. These approaches reveal the potential risks of
LLMs in terms of security, and they highlight the importance of evaluating and
protecting the security of LLMs, inspiring the need to consider the corresponding
defensive measures.

Further, LVLMs, a specialized model for processing and understanding visual
content based on traditional LLMs, also risk being implanted into the backdoors
in the application scenario. Recently, several works deal with backdoor attacks
against LVLMs, Shadowcast [99] and ImgTrojan [83] show how the response
of the LVLMs can be manipulated by subtle manipulation in the training data.
Using its persuasion attack, Shadowcast can make the model generate misleading
narratives, while ImgTrojan guides the model to execute harmful instructions by
implanting a single toxic image. Both methods are characterized by manipulat-
ing training datasets, revealing potential security risks during data collection and
model training. VL-Trojan [50], a backdoor attack on autoregressive LVLMs in
the phase of multi-modal instruction adjustment. Additionally, the AnyDoor [60]
attack reveals the ability to inject backdoors in the test phase using generic per-
turbations in the test images, even without access to the training data. Overall,
these studies highlight the vulnerability of LVLMs when dealing with multimodal
inputs, bringing new challenges to the defense against backdoor attacks.

3.3 Controllable Misinformation Generation

Misinformation, such as fake news and rumors, seriously threatens information
ecosystems and public trust. In contemporary society, it is common to encounter
wildly divergent narratives of the same event after it circulates through various
media channels [1]. ’When the truth was wearing shoes, the lie had spread all over
the city.’ This proverb reveals how misinformation has dramatically affected
human life in this era of the barbaric growth of we-media. Notably, LVLMs play
a significant role in combating misinformation, acting as a double-edged sword:
on the one hand, it equips people with enhanced visual-textual discernment
to identify misinformation; on the other, it can produce even more convincing
misinformation, misleading both automated detectors and humans alike. In this
section, we primarily explore the role of LVLMs in combating misinformation.

Existing research [12] has delved into misinformation generated by LLMs.
Chen et al. [11] categorizes the characteristics of misinformation, outlining the
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origins of LLM-generated misinformation into categories like Hallucination Gen-
eration, Arbitrary Misinformation Generation, and Controllable Misinforma-
tion Generation methods. This research [11] also highlights the high degree
of deceptiveness of misinformation created via LLMs to humans and detec-
tion systems. Furthermore, LVLMs capitalize on their strengths in generat-
ing controllable misinformation. Some researchers have introduced alternative
attack methods to manipulate LVLMs into producing misinformation. One such
method, INSTRUCTTA [91], deceives LVLMs by generating adversarial images
that prompt these models to generate responses resembling a predetermined
target text. INSTRUCTTA leverages publicly available text-to-image models
and inferred instructions to craft highly transferable adversarial examples in a
gray-box scenario. MF-ii [113] crafts adversarial images by aligning their feature
representations with those of a target image generated from the desired out-
put text. On the contrary, MF-it [113] directly matches cross-modality features
between the adversarial image and the target text to produce targeted responses.
Additionally, a self-generated typographic attack [71] targets LVLMs through
self-generated typographic attacks that overlay deceptive text, employing both
class-based and descriptive strategies, but the complexity of implementation due
to reliance on the LVLMs’ language capabilities can be mitigated by prompt-
ing the LVLMs to ignore the misleading text. Cui et al.’s study [21] evaluates
the robustness of LVLMs against image-based adversarial attacks, demonstrating
their susceptibility to such attacks. However, LVLMs can display resilience when
the query context does not align with the target of the attack. An evaluation
emphasizing out-of-distribution (OOD) generalization and adversarial robust-
ness was presented [84], aimed at misleading LVLMs into generating visually
unrelated responses and assessing their effectiveness. The main discovery high-
lights that existing LVLMs encounter challenges with OOD textual inputs and
can be readily misled by deceptive vision encoders. Schlarmann et al. [77] inves-
tigates the susceptibility of LVLMs to adversarial image manipulations that can
lead to the spread of misinformation and introduces a framework to evaluate their
vulnerability to such attacks. In summary, the attack methods have designed
various approaches to induce misinformation in LVLMs and assess their gen-
eralization. However, these methods do not target LVLMs to produce harmful
content.

4 Defenses Against LVLMs Malicious Attacks

The rapid development of LLMs and LVLMs and their widespread usage in
a variety of applications have led to public concerns about their security. In
recent studies of jailbreak attacks [9,65,70] and backdoor [86,98,116] attacks,
researchers have identified the vulnerability of the models to malicious manip-
ulation, which can be manipulated to generate harmful content. As mentioned
earlier, the integration of the vision module raises new challenges for LVLMs
regarding robustness. However, there is limited work on LVLM defenses, and
current defense efforts are focused on LLMs. Therefore, it is urgent to develop
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effective LVLM security defenses to ensure reliability and security. Therefore, in
this section, we review works [64,89,94,109] related to LVLM defense and work
that has the potential to be applied to defense.

4.1 Defenses for Jailbreak Attack

Current works on the defense of jailbreak attacks on visual models can be roughly
divided into two categories: preprocessing-based and output detection-
based defenses. The preprocessing-based defense safeguards LVLMs through the
transformation of the input image. Zhang et al. [109] propose to detect adver-
sarial samples by calculating the divergence of the LVLM’s responses to multiple
variants of the input image based on the assumption that jailbreak adversarial
samples are sensitive to input transformation. In addition, defense by insert-
ing an adversarial perturbation removal module, e.g., DiffPure [64], before the
vision module as preprocessing is also a potential defense. For another attempt
to defend LVLMs through output detection, Phute et al. [30] propose deploying
a second LLM to determine whether the output contains malicious information.

4.2 Defenses for Backdoor Attack

Backdoor defense for classifier models typically involves two main steps: back-
door detection and backdoor removal [28]. The goal of backdoor detection is to
confirm whether a model has been injected with a backdoor. One popular method
of backdoor detection is flip-flop inversion, which finds the minimum amount of
perturbation required to change the predicted label by back-propagating the
gradient to the input. If the trigger can be inverted from the model, it is consid-
ered to be possible that the model may have been implanted with a backdoor.
Backdoor removal aims to repair or remove any injected backdoors. Common
practice involves fine-tuning models with clean data to help them forget old
backdoor behavior. In addition, removing or rejecting the input contained by
the trigger, starting from the input side, is also an effective way to remove the
backdoor. Together, these strategies constitute a classification model defense
mechanism in the face of backdoor threats.

Recent research has showcased various innovative backdoor defense strategies
for securing LLMs. It is quite possible that the defenses against LLM backdoor
attacks can also be applied to LVLMs. LMSanitator is a method for detect-
ing and removing task-agnostic backdoors in Transformer models. Unlike tra-
ditional reverse trigger reversal methods, LMSanitator is a technique used to
identify and eliminate task-agnostic backdoors present in Transformer models.
Unlike conventional reverse trigger reversal methods, LMSanitator achieves this
by inverting a pre-defined attack vector. This attack vector is the output of a pre-
trained model that detects a backdoor trigger in the input [94]. Another strategy,
PSIM [110], uses efficient parameter fine-tuning to detect samples contaminated
by weight poisoning attacks. It distinguishes normal samples from contaminated
samples by monitoring the confidence of the model output. Meanwhile, Shadow
model methods inject shadow models into training data to cultivate deceptive
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LLMs that can remain active after secure training [37]. These strategies not
only enhance the security of the model in a multitasking environment but also
maintain its efficiency and flexibility. Recent strategies like Symmetric Feature
Difference differentiate complex triggers between data sets, challenging tradi-
tional detection [58]. Feature Space Reverse-Engineering employs feature space
analysis to reveal hidden triggers [92]. These advancements underscore the need
for evolving defenses in AI.

4.3 Misinformation Detection

Mainstream efforts are using LVLMs to detect fake news or online misinfor-
mation. MCNN [101], consisting of five sub-networks, effectively identifies dis-
crepancies in fake news by integrating text and image features and assessing
their similarity. Similarly, FNDSCTI [108] employs a multi-modal variational
auto-encoder to develop an image-enhanced text representation and multi-modal
fusion feature vectors, utilizing these to train an effective fake news detector.
One research [14] combines comparative learning to improve performance in
feature representation, maintaining high performance even with less training
data. The FakeNewsGPT4 [56] framework effectively improves the performance
of multi-modal fake news detection by combining world knowledge of LVLMs
and forgery-specific knowledge enhancement, especially when dealing with fake
news with domain shift. The LEMMA [100] framework utilizes the intuitive rea-
soning abilities of LVLMs, augmenting these capabilities with external knowl-
edge to boost the accuracy of disinformation detection. SNIFFER [69] is a novel
multi-modal large language model created to detect and interpret out-of-context
(OOC) error information. Through a two-stage instruction tuning process on
InstructBLIP, it can identify mismatches between text and images and employ
external knowledge for context verification. To sum up, the existing detection
methods detect misinformation by using or enhancing the visual-textual feature
extraction capabilities of LVLMs and fusing multi-modal representations.

5 Application Risks and Mitigation Methods

This section discusses the potential risks and solutions of LVLMs in real-world
applications. First, we discuss Hallucination and Misinformation and review
recent work on mitigating it. Furthermore, for privacy issues, we analyze the
causes of privacy leakage, review methods to safeguard privacy, and emphasize
the importance of protecting privacy and intellectual property rights, especially
in the context of the increasing popularity of content generated by LVLMs.

5.1 Hallucination

Hallucinations describe the phenomenon that Large Language Models (LLMs)
generate responses that do not align with facts or the prompts given by users [38].
Large vision language models (LVLMs) blend visual and language modules to
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handle vision-language tasks [53]. This integration gives LVLMs greater capabili-
ties to tackle compound tasks while increasing the challenges associated with hal-
lucinations. Hallucination symptoms in LVLMs are multifaceted, such as errors
in true/false judgments, inaccuracies in the description of visual information, or
mismatch between the generated description and the visual facts. Furthermore,
some context in those symptoms can be misleading, deceptive, or harmful, yet
they are difficult for humans to distinguish. This poses potential risks to the
security of LVLMs, especially in medical recommendations, legal aid, and other
areas closely related to human life. In this section, a brief introduction to the
causes and the mitigation methods of hallucinations in LVLMs will be provided.

The Cause of Hallucination. The main factors underlying these hallucina-
tions can be divided into two categories [38]: the uneven quality of the data and
the inherited limitations of the LVLMs paradigm. The foundation of LVLMs
rests on the quality of the training data [32,114]. As the volume of pre-
training data has grown exponentially, it has inadvertently incorporated flawed
information [5,95], such as misconceptions [51], duplicate sentences [41,44], and
social biases [66,85]. Furthermore, acquiring or updating specific domain knowl-
edge [48,68] and the latest facts [46] can be difficult, and their absence creates
specific knowledge boundaries. The flawed data and knowledge boundaries will
exacerbate the issue of hallucinations. The other cause of hallucination is the
inherited limitations of the LVLMs paradigm. Typically, the paradigm of
LVLMs consists of three key components [13,115]: a vision encoder, an adaptor
module, and an LLM. LLMs exhibit an inclination to generate hallucinations.
Previous studies have identified potential causes [38], including insufficient con-
text attention [87], stochastic sampling strategy during decoding [20], and mis-
alignment between capabilities developed during different phases (pre-training
and fine-tuning) [38]. Besides, the other 2 components not only fail to prevent
hallucinations in LLMs but also have shortcomings that might increase the like-
lihood of hallucinations. The limitations of vision encoders, largely based on
CLIP [72], stem from a limited range of supported visual resolutions and a weak
capability for capturing fine-grained visual semantics [112]. The role of the adap-
tor module in LVLMs is to align visual and textual modalities. However, some
research reveals significant discrepancies between visual and textual representa-
tions [39,54].

Evaluation of Hallucination. Nowadays, the hallucinations of LVLMs are
inevitable. Evaluation and mitigation have become an important challenge in
the realm of LVLM hallucinations. Approaches to assessing the extent of hal-
lucination fall into two main categories. One hallucination evolution method is
known as Handcrafted Pipeline. Previous studies utilized a method named
CHAIR [76], which evaluates hallucination by quantifying the difference of
objects between model generation and ground-truth captions. However, this app-
roach performs poorly when addressing the vast object categories encountered
in LVLM contexts. To solve this problem, Some researchers added another mod-
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ule before CHAIR, such as an object alignment module powered by GPT-4 [81].
Another evolution method is the End-to-end method, which is straightforward
by directly evaluating the response of LVLMs. Certain studies have employed
LLMs to assess the hallucinatory content generated by LVLMs. Considering the
multi-modality of LVLMs, this research incorporates visual data, user prompts,
and model generation to assess the output of LVLMs. Besides, some studies [27]
have leveraged labeled hallucination datasets to fine-tune LLMs, enabling these
models to distinguish hallucination more accurately.

Mitigation of Hallucination. Given the inevitability of hallucination issues
in large model research, significant efforts have been directed toward mitigat-
ing hallucinations. Optimizing the training (or pre-training) data can directly
and effectively reduce hallucinations. Some studies aim to tackle the problem of
imbalanced positive and negative samples in pre-training, for instance, by gen-
erating new prompts and identifying negative samples [105]. A more straightfor-
ward approach researchers take is creating a new dataset [105] with more samples
and more detailed labeling. In the previous part, certain limitations of the differ-
ent components in the paradigm of LVLMs were mentioned. Research in recent
years has figured out diverse methods for those different limitations. For vision
encoder, some experimental results [4,49] indicate that scaling up the vision
resolution can greatly improve the ability of LVLMs to extract local information.
Additionally, other studies have pointed out that incorporating additional pre-
training [112] or extra perception modalities [112] can enhance the modalities
awareness capability of LVLMs. Linear layers for adaptor modules fall short
of fulfilling the performance demands of LVLMs as they tackle progressively
complex challenges. Various studies have found alternatives like MLP [54] and
LLaMA2 [16] are more effective. Additionally, there has been innovation in the
training process, with numerous new alignment training Optimizations emerging.
Among these, perhaps the most notable is Reinforcement Learning from Human
Feedback (RLHF) [80,81], which has gained widespread adoption for addressing
issues such as hallucinations and jailbreak scenarios. RLHP should be empha-
sized particularly. As the pivotal and most robust component of LVLMs’ security
framework, RLHF leverages human feedback to refine model performance, steer-
ing the model to produce outputs that better reflect human preferences. Finally,
for LLMs. Optimizing decoders or the decoding process [36,45] helps prevent
LVLMs from overly focusing on a limited set of summaries at the expense of
image details or placing excessive trust in specific segments. Furthermore, some
studies [27,106] have focused on training models to align their outputs with
human preferences intentionally. This has been achieved by utilizing a dataset
reflecting human preferences or a reward model to steer the model’s training
process.

5.2 Privacy

Although existing literature lacks specific research on LVLMs’ privacy, we still
believe that LVLMs have privacy issues. Because LVLMs may leak images with
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personal privacy information, causing greater security risks compared to the
textual privacy information typically leaked by LLMs. In this section, We first
review the privacy-related work on LLMs and then discuss future research direc-
tions regarding privacy in LVLMs.

LLMs are trained on large amounts of data from the internet, which may
contain Personal Identification Information (PII) such as names, identity card
numbers, telephone numbers, and personal IP addresses. Therefore, large models
have a security risk of exposure of personal information under attacks [103]. Due
to the lack of research of privacy in LVLM, We will first discuss the privacy of
LLMs, and then discuss the future research on the privacy of LVLMs.

Borkar [6] conducted in-depth research on the privacy of LLMs and found
that: LLMs will remember datasets with private information during the training
process, and attackers can attack the model to gain private information. The
existing attacks on the privacy of LLMs can be divided into two categories:
Membership Inference Attack (MIA) and PII Attack.

Membership Inference Attack. Membership Inference Attacks (MIAs) [31]
can determine whether a data sample is part of the training dataset. Because
LLMs will overfit to some samples within the training data, causing the low loss
values for these samples. Therefore, when a data sample’s loss value is less than
a predefined threshold, the data sample will be a member of the training set.
Fu et al. [23] propose a framework that obtains the data distribution during
LLM training by setting prompts, thereby inferring the training data. Kandpal
et al. [42] extend the work by comparing the model’s response to specific user
data to infer whether that user’s data was used in training the model. Addition-
ally, some researchers refine the determination of the threshold in MIA to more
accurately judge whether the data points are the members of the training set [8].

PII Attack: PII Attack can extract privacy content without understanding the
training data or model structure [107]. ProPILE [43] can get private information
from the training data by requesting specific PII in the prompt. Carlini et al. [10]
exploited the characteristic of LLMs to memorize training data and obtained
training samples containing PII information through black-box query access.
Huang et al. [35] extend previous work by using parts of personal information
as query prefixes, enabling more personal privacy information retrieval.

Hu et al. [33] states that attacks on large multimodal models involve mul-
tiple types of data, and attackers can extract private information from various
data sources. Additionally, because large multimodal models have more com-
plex structures and contain more information, they are more vulnerable under
attack [74]. Since the core processing units in LVLMs are LLMs, and LVLMs are
a type of large multimodal models, it’s likely that LVLMs could be susceptible
to MIA, where attackers determine if a given image was part of the LVLM’s
training data, potentially revealing related privacy information. Additionally,
LVLMs may be vulnerable to PII Attacks, where attackers craft prompts to
elicit privacy-sensitive images from the model.
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6 Conclusion

This paper thoroughly examines the security landscape surrounding LVLMs,
detailing the myriad of threats these models face and the strategies employed to
counteract them. We begin by delineating a clear taxonomy of LVLM attacks,
facilitating a structured understanding and paving the way for future explo-
rations. The analysis reveals that LVLMs are susceptible to a broad range of vul-
nerabilities, which poses considerable challenges to their secure integration into
practical applications. Moreover, the paper highlights the imperative of develop-
ing sophisticated defense mechanisms to safeguard against such attacks. These
encompass a range of strategies, from input preprocessing to model training
enhancements and output monitoring techniques. In conclusion, while LVLMs
offer profound potential for advancing multimodal tasks, their susceptibility
to adversarial manipulation requires an urgent priority on strengthening secu-
rity measures. By persistently refining our methods for detecting and defending
against threats, alongside increasing model robustness, we can harness the full
potential of LVLM technology in a secure and reliable manner.
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