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CHARACTERIZATIONS OF LINEARLY INDEPENDENT

FUNCTIONS

ZILI WU, YUAN GAO

Abstract. For functions f1, . . . , fn on a set D, we characterize their linear
independence with an invertible matrix from their values at n distinct points in

D. With the matrix, the pointwise convergence of a sequence {gk} of functions

in the span{f1, · · · , fn} is shown to be equivalent to those of the sequences
of the coordinates of gks in the span. When fis are bounded, a pointwise

convergent sequence {gk} must uniformly converge to a function in the span.

It turns out that the limit of a convergent sequence {gk} inherits the con-
tinuity, differentiability, and integrability of fis. Furthermore the (pointwise

or uniform) convergence of a sequence of solutions of an n-th order constant

coefficients linear differential equation is completely determined by that of the
sequence of relevant initial conditions.

1. Introduction

Consider a set of functions f1, f2, . . . , fn from a nonempty set D to K (the real
numbers R or the complex numbers C). The set is said to be linearly dependent if
there exist c1, c2, . . . , cn in K, not all zero, such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0 for all x ∈ D. (1.1)

The set of functions is said to be linearly independent on D provided that it is not
linearly dependent.

For (n−1) times differentiable functions f1, f2, . . . , fn on an interval I, it is known
that their linear dependence implies that their Wronskian vanishes in I. Hence, if
the Wronskian of these functions is not zero at some point in I, then they must be
linearly independent. However, linearly independent functions may have vanishing
Wronskian. For example, the Wronskian of functions f1(x) = x2 and f2(x) = x|x|
vanishes on R [10] but they are linearly independent. So, without extra conditions,
a vanishing Wronskian of functions does not completely characterize their linear
dependence. Many relevant results on linear dependence of functions have been
obtained by studying their Wronskian, see [1]-[11] and [13]-[14]. However, these
results are not applicable to the cases where functions are not differentiable.
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We note that the linear independence of f1, f2, . . . , fn implies that for any
C = (c1, c2, . . . , cn)t 6= 0 there exists at least one point x ∈ D such that (1.1) fails.
Are there more such points in D when n > 1? Can we characterize the linear inde-
pendence of these functions in terms of their values at such points? For the function
space spanned by these linearly independent functions, does every pointwise con-
vergent sequence in it uniformly converge? Does the limit function of a pointwise
convergent sequence in the spanned space inherit the continuity, differentiability,
and integrability of the sequence? Recall that there are n linearly independent so-
lutions for an n-th order constant coefficients linear differential equation. Are there
any relations between a sequence of initial conditions and the sequence of solutions
of relevant initial value problems? This paper aims to present positive answers to
these questions.

2. Linear Independence of Functions

As we see, for linearly independent functions f1, f2, . . . , fn on D and for any
0 6= C ∈ Kn there exists at least one point x in D such that (1.1) fails. Our first
result in this section states that for such functions there must exist n distinct points
in D such that (1.1) fails.

Theorem 2.1. Let f1, f2, . . . , fn be functions defined on a nonempty set D. Then
f1, f2, . . . , fn are linearly independent on D if and only if there exist distinct points
x1, x2, . . . , xn in D such that

[fi(xj)] :=


f1(x1) f1(x2) · · · f1(xn)
f2(x1) f2(x2) · · · f2(xn)

...
...

. . .
...

fn(x1) fn(x2) · · · fn(xn)


is invertible. Hence f1, f2, . . . , fn are linearly dependent if and only if for any
distinct points x1, x2, . . . , xn in D the matrix [fi(xj)] is not invertible.

Proof. Denote

Fi := [fi(x1) fi(x2) · · · fi(xn)]t ∈ Kn for i = 1, . . . , n.

Then [fi(xj)] is invertible iff F1, F2, . . . , Fn are linearly independent. So it suffices
to show that f1, f2, . . . , fn are linearly independent on D iff there exist distinct
points x1, x2, . . . , xn in D such that F1, F2, . . . , Fn are linearly independent.

Firstly we prove the sufficiency. Suppose that there exist x1, x2, . . . , xn in D such
that F1, F2, . . . , Fn are linearly independent. Then f1, f2, . . . , fn must be linearly
independent. Otherwise, suppose that they are linearly dependent. Then there
exists (c1, c2, . . . , cn) 6= (0, 0, . . . , 0) such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0 for all x ∈ D.

Taking x = x1, x2, . . . , xn, we get c1F1 + c2F2 + · · ·+ cnFn = 0, that is, F1, . . . , Fn

are linearly dependent, contradicting the assumption.
To prove the necessity, let f1, f2, . . . , fn be linearly independent on D. Then for

each i = 1, . . . , n there exists xi ∈ D such that fi(xi) 6= 0.
For n = 2, it is easy to see that either f1(x)f2(x) = 0 for all x ∈ D or there

exists x ∈ D such that f1(x)f2(x) 6= 0.
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If f1(x)f2(x) = 0 for all x ∈ D, then for each x ∈ D either f1(x) = 0 or f2(x) = 0.
Since there exist x1, x2 in D such that f1(x1) 6= 0 and f2(x2) 6= 0, f2(x1) = 0 and
f1(x2) = 0. It follows that x1 and x2 are distinct and[

f1(x1)
f1(x2)

]
=

[
f1(x1)

0

]
and

[
f2(x1)
f2(x2)

]
=

[
0

f2(x2)

]
are linearly independent.

If there exists x ∈ D such that f1(x)f2(x) 6= 0, then there must exist distinct
points x1, x2 in D such that [

f1(x1)
f1(x2)

]
and

[
f2(x1)
f2(x2)

]
are linearly independent. Otherwise, for any distinct points x1, x2 in D there exists
(c1, c2) 6= (0, 0) such that

c1

[
f1(x1)
f1(x2)

]
+ c2

[
f2(x1)
f2(x2)

]
=

[
0
0

]
.

Note that, for a point x1 satisfying f1(x1)f2(x1) 6= 0, we have c1 6= 0 and c2 6= 0.
It follows from c1f1(x1) + c2f2(x1) = 0 that

f1(x1) = cf2(x1) with c := −c2
c1

.

In addition, for any x ∈ D with x 6= x1, there exists (d1, d2) 6= (0, 0) such that

d1

[
f1(x1)
f1(x)

]
+ d2

[
f2(x1)
f2(x)

]
=

[
0
0

]
.

This with f1(x1) = cf2(x1) implies that (d1c + d2)f2(x1) = 0. Hence

d2 = −d1c and d1[f1(x)− cf2(x)] = d1f1(x)− d1cf2(x) = d1f1(x) + d2f2(x) = 0.

Since f1(x1)f2(x1) 6= 0 and (d1, d2) 6= (0, 0), d1 6= 0. Thus f1(x) = cf2(x) for all
x ∈ D, a contradiction.

For n = k ≥ 2, suppose that there exist distinct points x1, x2, . . . , xk in D such
that for any (c1, c2, . . . , ck) 6= (0, 0, . . . , 0) there holds

c1


f1(x1)
f1(x2)

...
f1(xk)

+ c2


f2(x1)
f2(x2)

...
f2(xk)

+ · · ·+ ck


fk(x1)
fk(x2)

...
fk(xk)

 6=


0
0
...
0

 . (2.1)

Then, for n = k + 1, to show the conclusion desired to be valid, we suppose that
for any y1, y2, . . . , yk+1 in D there exists (d1, d2, . . . , dk+1) 6= (0, 0, . . . , 0) such that

d1


f1(y1)
f1(y2)

...
f1(yk+1)

+ d2


f2(y1)
f2(y2)

...
f2(yk+1)

+ · · ·+ dk+1


fk+1(y1)
fk+1(y2)

...
fk+1(yk+1)

 =


0
0
...
0

 . (2.2)

In particular, for the points x1, x2, . . . , xk in (2.1) and any fixed xk+1 in D \
{x1, x2, . . . , xk} (which is nonempty due to the linear independence of f1, f2, . . . , fk+1),
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there exists (d1, d2, . . . , dk+1) 6= (0, 0, . . . , 0) such that

d1


f1(x1)
f1(x2)

...
f1(xk+1)

+ d2


f2(x1)
f2(x2)

...
f2(xk+1)

+ · · ·+ dk+1


fk+1(x1)
fk+1(x2)

...
fk+1(xk+1)

 =


0
0
...
0

 . (2.3)

From (2.3) and (2.1), we see that dk+1 6= 0. If we denote M := [fij ]k×k with

fij = fj(xi) for i = 1, . . . , k and d := [d1 d2 · · · dk]t , then M is invertible and it
follows from (2.3) that 

fk+1(x1)
fk+1(x2)

...
fk+1(xk)

 = −d−1k+1Md. (2.4)

Now for any x ∈ D \ {x1, x2, . . . , xk}, by (2.2), there exist d ∈ Kk and dk+1 ∈ K
such that (d1, d2, . . . , dk+1) 6= (0, 0, . . . , 0),

M(d− dk+1d
−1
k+1d) = Md− dk+1d

−1
k+1Md = 0, and

k∑
j=1

djfj(x) + dk+1fk+1(x) = 0.

Obviously dk+1 6= 0. In addition, since M is invertible, d − dk+1d
−1
k+1d = 0. Thus

dj = dk+1d
−1
k+1dj for j = 1, . . . , k. So

fk+1(x) = −d−1k+1

k∑
j=1

djfj(x) = −d−1k+1

k∑
j=1

djfj(x).

This with (2.4) shows that f1, . . . , fk+1 are linearly dependent, a contradiction.
And hence the conclusion desired for n = k + 1 is valid. Therefore, by induction,
the conclusion is valid for all n ∈ N. �

For functions f1, f2, . . . , fn on D, there exist an invertible matrix [cij ] and func-
tions e1, e2, . . . , en on D such that

fi(x) = ci1e1(x) + ci2e2(x) + · · ·+ cinen(x) for 1 ≤ i ≤ n and x ∈ D.

If e1, e2, . . . , en are linearly independent on D, then, by Theorem 2.1, it is easy to
see that f1, f2, . . . , fn are linearly independent on D. Next result states that the
linear independence of f1, f2, . . . , fn must conversely imply that of e1, e2, . . . , en.

Theorem 2.2. Let f1, f2, . . . , fn be linearly independent functions on D. If there
exist a matrix [cij ] and functions e1, e2, . . . , en on D such that

fi(x) = ci1e1(x) + ci2e2(x) + · · ·+ cinen(x) for 1 ≤ i ≤ n and x ∈ D,

then [cij ] is invertible and e1, e2, . . . , en are linearly independent on D. In addition,
for [dij ] = [cij ]

−1 there holds

ei(x) = di1f1(x) + di2f2(x) + · · ·+ dinfn(x) for x ∈ D.
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Proof. Since f1, f2, . . . , fn are linearly independent on D, by Theorem 2.1, there
exist n distinct points x1, x2, . . . , xn in D such that [fi(xj)] is invertible. By as-
sumption, we have

f1(x1) · · · f1(xn)
f2(x1) · · · f2(xn)

...
. . .

...
fn(x1) · · · fn(xn)

 =


c11 · · · c1n
c21 · · · c2n
...

. . .
...

cn1 · · · cnn



e1(x1) · · · e1(xn)
e2(x1) · · · e2(xn)

...
. . .

...
en(x1) · · · en(xn)

 .

This shows that both [cij ] and [ei(xj)] are invertible and hence, by Theorem 2.1,
e1, e2, . . . , en are linearly independent on D. So, there exists [dij ] such that

ei(x) = di1f1(x) + di2f2(x) + · · ·+ dinfn(x) for 1 ≤ i ≤ n and x ∈ D.

Taking x = x1, x2, . . . , xn, we obtain
e1(x1) · · · e1(xn)
e2(x1) · · · e2(xn)

...
. . .

...
en(x1) · · · en(xn)

 =


d11 · · · d1n
d21 · · · d2n
...

. . .
...

dn1 · · · dnn



f1(x1) · · · f1(xn)
f2(x1) · · · f2(xn)

...
. . .

...
fn(x1) · · · fn(xn)

 .

Thus

[ei(xj)] = [dik][fk(xj)] = [dik][ckm][em(xj)] = [dmk][cki][ei(xj)]

and hence [dik][ckj ] = In×n, that is, [dij ] = [cij ]
−1. �

Given functions f1, . . . , fn : D → K, we denote

span{f1, . . . , fn} := {f : f(x) = c1f1(x) + · · ·+ cnfn(x), x ∈ D, ci ∈ K (1 ≤ i ≤ n)}
associated with the norm ‖f‖ := sup{|f(x)| : x ∈ D} for f ∈ span{f1, . . . , fn}. As
another application of Theorem 2.1, next result about interpolation can be obtained
by the linear independence of functions.

Corollary 2.3. Let f be a function from D to K. If there exist distinct points
x1, x2, . . . , xn in D and functions f1, f2, . . . , fn on D such that [fi(xj)]n×n is in-
vertible, then there exists a unique function g ∈ span{f1, f2, . . . , fn} such that

g(xj) = f(xj) for j = 1, 2, . . . , n.

Proof. Taking Ct ∈ Kn such that C[fi(xj)] = [f(x1) f(x2) · · · f(xn)], we obtain

g(x) = C[f1(x) f2(x) · · · fn(x)]t for x ∈ D,

which is in span{f1, f2, . . . , fn} such that g(xj) = f(xj) for 1 ≤ j ≤ n.
We claim that the above function g is unique. Otherwise suppose that there

existed another function g0(x) = C0[f1(x) f2(x) · · · fn(x)]t in span{f1, f2, . . . , fn}
such that Ct 6= Ct

0 ∈ Kn and g0(xj) = f(xj) for 1 ≤ j ≤ n. Then

(C − C0)[f1(xj) f2(xj) · · · fn(xj)]
t = g(xj)− g0(xj) = 0 for 1 ≤ j ≤ n.

Since [fi(xj)]n×n is invertible, C − C0 = 0. This contradicts C 6= C0. �

For n ∈ N, by definition, it is easy to see that the functions fi(z) = zi (0 ≤ i ≤
n − 1) on C are linearly independent. For any distinct points z1, . . . , zn in C, the
determinant of the matrix [fi(zj)] is Vandermonde which is nonzero, so [fi(zj)] is
invertible. Thus the linear independence of fi(z) = zi (0 ≤ i ≤ n − 1) can also be
obtained by Theorem 2.1. With this we obtain the following conclusion.
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Corollary 2.4. Let pn(z) = a0 + a1z + · · ·+ anz
n be a polynomial function with

an 6= 0. Then there exist at most n distinct zeroes of pn(z).

Proof. Suppose that pn has n + 1 distinct zeroes z1, z2, . . . , zn+1. Then for

Z :=


1 1 · · · 1
z1 z2 · · · zn+1

z21 z22 · · · z2n+1
...

...
. . .

...
zn1 zn2 · · · znn+1

 , At :=


a0
a1
a2
...
an

 , and 0t :=


0
0
0
...
0

 ,

we have AZ = 0 and det Z 6= 0 (by Theorem 2.1). Thus A = 0, contradicting
an 6= 0. �

Consider the functions f1(x) = x2 and f2(x) = x|x| for x ∈ R [10]. It is easy
to find their Wronskian W (f1, f2)(x) = 0 for all x ∈ R but, by definition or by
Theorem 2.1 with x1 = −1 and x2 = 1 (or x1 = −1 and x2 = 2), f1 and f2
are linearly independent on R. Note that the set of x1, · · · , xn for [fi(xj)] to be
invertible is not unique. In addition, the linear independence of f1, f2, . . . , fn on
a set D does not always imply that the matrix [fi(xj)] is invertible for all distinct
points x1, x2, . . . , xn in D.

3. Pointwise convergence implies uniform convergence

The title of this section is a statement for a sequence of functions in the space
spanned by finite linearly independent functions. Given functions f1, . . . , fn on
D, we firstly characterize a pointwise convergent sequence in span{f1, . . . , fn} as
below.

Theorem 3.1. Let f1, . . . , fn be linearly independent functions from D to K.
Suppose that

gk(x) = ck1f1(x) + ck2f2(x) + · · ·+ cknfn(x) for k ∈ N and x ∈ D. (3.1)

Then

(i) gk → g pointwise on D if and only if ci := limk→+∞ cki exists for each
1 ≤ i ≤ n and

g(x) = c1f1(x) + c2f2(x) + · · ·+ cnfn(x) for all x ∈ D. (3.2)

(ii) If also f1, . . . , fn are bounded on D, then the pointwise convergence of {gk}
on D implies the uniform convergence of {gk} on D.

Proof. (i) Since f1, f2, . . . , fn are linearly independent on D, by Theorem 2.1, there
exist distinct points x1, x2, . . . , xn in D such that the matrix [fi(xj)]n×n is invert-
ible.

Suppose that {gk} ⊆ span{f1, . . . , fn} is pointwise convergent to g on D. Then

g(x) = lim
k→+∞

gk(x) for x ∈ D

and for each k ∈ N and each i = 1, . . . , n there exists cki in K such that (3.1) is
satisfied for all x ∈ D. In particular,

gk(xj) = ck1f1(xj) + ck2f2(xj) + · · ·+ cknfn(xj) for j = 1, . . . , n,
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from which we obtain

lim
k→+∞


f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

...
...

. . .
...

f1(xn) f2(xn) · · · fn(xn)



ck1
ck2
...

ckn

 = lim
k→+∞


gk(x1)
gk(x2)

...
gk(xn)

 =


g(x1)
g(x2)

...
g(xn)

 .

In addition,
ck1
ck2
...

ckn

→

c1
c2
...
cn

 :=


f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

...
...

. . .
...

f1(xn) f2(xn) · · · fn(xn)


−1 

g(x1)
g(x2)

...
g(xn)

 as k → +∞.

Thus g satisfies (3.2) for all x ∈ D.
Conversely, if for each k ∈ N there exists (ck1, ck2, . . . , ckn)t ∈ Kn such that each

ci := limk→+∞ cki exists for 1 ≤ i ≤ n with (3.1) and (3.2) being satisfied for all
x ∈ D, then it is easy to see that gk → g pointwise on D.

(ii) Now, suppose that f1, . . . , fn are bounded on D. Since

|gk(x)− g(x)| =

∣∣∣∣∣
n∑

i=1

(cki − ci)fi(x)

∣∣∣∣∣ ≤
n∑

i=1

|cki − ci||fi(x)|

≤
n∑

i=1

|cki − ci| sup{|fi(x)| : x ∈ D}

≤ max
1≤i≤n

{sup{|fi(x)| : x ∈ D}}
n∑

i=1

|cki − ci| for all x ∈ D

and limk→+∞ cki = ci for 1 ≤ i ≤ n,

lim
k→+∞

sup{|gk(x)− g(x)| : x ∈ D} = 0.

It follows that {gk} is uniformly convergent on D. �

Remark 1. For functions f1, . . . , fn in Theorem 3.1, if there exist functions e1, . . . , en
on D and di1, . . . , din in K such that

fi(x) = di1e1(x) + di2e2(x) + · · ·+ dinen(x) for 1 ≤ i ≤ n and x ∈ D,

then, by Theorem 2.2, e1, e2, . . . , en are linearly independent.
For {gk} ⊆ span{f1, . . . , fn}, since for each k ∈ N the coordinates ck1, ck2, . . . , ckn

of gk in span{f1, . . . , fn} satisfy

gk(x) = ck1f1(x) + ck2f2(x) + · · ·+ cknfn(x)

=

n∑
i=1

cki

n∑
j=1

dijej(x) =

n∑
j=1

(
n∑

i=1

ckidij

)
ej(x) for x ∈ D,

it follows from Theorem 3.1 that gk → g pointwise on D if and only if, for the
coordinates ck1, ck2, . . . , ckn of gks, limk→+∞

∑n
i=1 ckidij exists for all 1 ≤ j ≤ n. So

the pointwise convergence of {gk} is independent of the bases of span{f1, . . . , fn}.

Next, we apply Theorem 3.1 to study the continuity, differentiability, and integra-
bility for the limit function of a pointwise convergent sequence in span{f1, . . . , fn}.
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Theorem 3.2. Let D be a subset in a metric space, f1, . . . , fn be linearly in-
dependent functions on D, and {gk} ⊆ span{f1, . . . , fn}. Suppose that gk → g
pointwise.

(i) If x is a limit point of D, limt→x fi(t) exists, and fi is bounded for 1 ≤ i ≤ n,
then limt→x gk(t) exists and

lim
t→x

lim
k→+∞

gk(t) = lim
t→x

g(t) = lim
k→+∞

lim
t→x

gk(t).

(ii) If D = [a, b] and f1, . . . , fn are differentiable at x ∈ [a, b], then gk is differ-
entiable at x for k ∈ N, {g′k(x)} is convergent and limk→+∞ g′k(x) = g′(x).

(iii) If D = [a, b] and f1, . . . , fn are integrable on [a, b], then, for k ∈ N, gk is
integrable on [a, b] and, for x ∈ (a, b], {

∫ x

a
gk} is convergent and

lim
k→+∞

∫ x

a

gk =

∫ x

a

g.

Proof. For k ∈ N and gk in span{f1, . . . , fn}, we have cki ∈ K (1 ≤ i ≤ n) such
that

gk(x) = ck1f1(x) + ck2f2(x) + · · ·+ cknfn(x) for all x ∈ D. (3.3)

Since f1, . . . , fn are linearly independent on D and gk → g pointwise, by Theo-
rem 3.1, limk→+∞ cki = ci ∈ K for 1 ≤ i ≤ n, and

g(x) = lim
k→+∞

gk(x) = c1f1(x) + c2f2(x) + · · ·+ cnfn(x) for all x ∈ D. (3.4)

Now, if fi is bounded for 1 ≤ i ≤ n, by Theorem 3.1 again, gk → g uniformly.
For a limit point x of D, if limt→x fi(t) exists for 1 ≤ i ≤ n, then, for each

k ∈ N, Ak := limt→x gk(t) exists. By [12, Theorem 7.11], {Ak} converges, and
limt→x g(t) = limk→+∞Ak. Hence (i) follows.

To show (ii), let D = [a, b] and f1, . . . , fn be differentiable at x ∈ [a, b]. Then gk
is differentiable at x and, by (3.3),

g′k(x) = ck1f
′
1(x) + ck2f

′
2(x) + · · ·+ cknf

′
n(x) for k ∈ N.

This with limk→+∞ cki = ci ∈ K for 1 ≤ i ≤ n and (3.4) implies that {g′k(x)}
satisfies

lim
k→+∞

g′k(x) = lim
k→+∞

[ck1f
′
1(x) + ck2f

′
2(x) + · · ·+ cknf

′
n(x)]

= c1f
′
1(x) + c2f

′
2(x) + · · ·+ cnf

′
n(x) = g′(x).

Next, suppose that f1, . . . , fn are integrable on D = [a, b]. By (3.3), gk is inte-
grable on [a, b] and, for k ∈ N and x ∈ (a, b],∫ x

a

gk = ck1

∫ x

a

f1 + ck2

∫ x

a

f2 + · · ·+ ckn

∫ x

a

fn.

It follows from limk→+∞ cki = ci ∈ K for 1 ≤ i ≤ n and (3.4) that {
∫ x

a
gk} is

convergent and limk→+∞
∫ x

a
gk =

∫ x

a
g. Thus (iii) is valid. �

Remark 2. For linearly independent functions f1, . . . , fn on [a, b], if they are con-
tinuous on [a, b], then it is easy to see that

∫ x

a
f1, . . . ,

∫ x

a
fn are linearly independent

on [a, b]. However, even if they are differentiable in (a, b), f ′1, . . . , f
′
n may be linearly

dependent in (a, b). For example, the functions 1, x, . . . , xn−1 are linearly indepen-
dent and differentiable in (0, 1), but their derivatives 0, 1, . . . , xn−2 are not linearly
independent in (0, 1).
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When functions f1, f2, . . . , fn are continuous, the uniform convergence of a se-
quence in span{f1, . . . , fn} can also be characterized as below.

Theorem 3.3. Let D be a subset in a metric space, functions f1, . . . , fn : D → K be
continuous, bounded and linearly independent on D, and {gk} ⊆ span{f1, . . . , fn}.
Then the following statements are equivalent:

(i) {gk} is pointwise convergent on D.
(ii) {gk} is uniformly convergent on D.

(iii) There exists g : D → K such that for each x ∈ D and each sequence {xk}
in D converging to x, there holds limk→+∞ gk(xk) = g(x).

Proof. Since (i)⇒ (ii) follows directly from Theorem 3.1 and (iii)⇒ (i) is obvious,
it suffices to show (ii)⇒ (iii).

Suppose that gk converges uniformly to g. Since f1, · · · , fn are continuous, by
Theorem 3.2, g is continuous. For x ∈ D, if {xk} is a sequence in D converging to
x, then

|gk(xk)− g(xk)| ≤ sup{|gk(u)− g(u)| : u ∈ D}.

Since sup{|gk(u)− g(u)| : u ∈ D} → 0 as k → +∞, it follows that

lim
k→+∞

gk(xk) = lim
k→+∞

g(xk) = g(x).

Thus (iii) is valid. �

If {gk} is not in a finite dimensional space of functions and it is only pointwise
convergent but not uniformly convergent, then there may exist x ∈ D such that
{gk(xk)} does not converge even xk → x as k → +∞.

Example 3.1. Consider {gk} ⊆ C([0, 1]) defined by gk(x) = xk for x ∈ [0, 1].
For the sequence {xk} given by

xk = 1− 1

k
for k = 2m and xk = 1− 2

k
for k = 2m + 1 with m ∈ N,

it is easy to see that xk → 1 as k → +∞. However,

lim
m→+∞

g2m(x2m) = e−1 and lim
m→+∞

g2m+1(x2m+1) = e−2,

that is, limk→+∞ gk(xk) does not exist.
Example 3.2. Consider a sequence {gk}, where gk : N→ R for k ∈ N. Suppose

that for each i ∈ N, gk(i) → ai as k → +∞ and ai → a as i → +∞. The case
limk→+∞ gk(k) 6= a may happen. For example, let

gk(i) =

(
1− 1

i

)k

for i, k ∈ N.

For each i ∈ N, we have limk→+∞ gk(i) = 0 =: ai and limi→+∞ ai = 0 but

lim
k→+∞

gk(k) = lim
k→+∞

(1− 1

k
)k = e−1 6= 0.
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4. What a convergent sequence of initial conditions means

In the last section, we consider the following initial value problem:

f (n)(x) + an−1f
(n−1)(x) + · · ·+ a1f

′(x) + a0f(x) = 0 (4.1)

subject to [f(0) f ′(0) · · · f (n−1)(0)]t = B := [b0 b1 · · · bn−1]t, (4.2)

where ais and bis are constants in R for 0 ≤ i ≤ n−1. For the initial value problem,

(i) if function f is a solution of (4.1) on an interval I, then f, f ′, . . . , f (n) are
linearly dependent on I, so for any distinct points x1, x2, . . . , xn+1 in I,

det[f (i)(xj)](n+1)×(n+1) = 0,

where f (0)(x) = f(x).
(ii) By Theorem 2.1, f, f ′, . . . , f (n−1) are linearly independent in I iff there

exist distinct points x1, x2, . . . , xn in I such that [f (i)(xj)]n×n is invertible.
(iii) For solution functions f1, f2, . . . , fn of (4.1), they are linearly independent

in I iff the Wronskian W (f1, f2, . . . , fn)(x) 6= 0 for all x in I iff there exist
x1, x2, . . . , xn in I such that [fi(xj)] is invertible.

Given n linearly independent solution functions g1, g2, . . . , gn of (4.1), for any
c1, c2, . . . , cn in R, the function

f(x) = c1g1(x) + c2g2(x) + · · ·+ cngn(x)

is a solution of (4.1) completely determined by its initial condition when its deriva-
tives at 0 in (4.2) are available. In this section we further demonstrate that f can
also be determined by its values at n appropriate points without using derivatives.

Theorem 4.1. Let g1, g2, . . . , gn be linearly independent solutions of (4.1). Then
for each solution f of (4.1) and each closed interval [a, b] satisfying 0 ∈ [a, b] 6= {0},
there exist c1, c2, . . . , cn in R and distinct points x1, x2, . . . , xn in [a, b] such that

f(x) = c1g1(x) + c2g2(x) + · · ·+ cngn(x) for x ∈ [a, b] (4.3)

and


c1
c2
...
cn

 =


g1(x1) g2(x1) . . . gn(x1)
g1(x2) g2(x2) . . . gn(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gn(xn)


−1 

f(x1)
f(x2)

...
f(xn)

 (4.4)

=


g1(0) g2(0) · · · gn(0)
g′1(0) g′2(0) · · · g′n(0)

...
...

. . .
...

g
(n−1)
1 (0) g

(n−1)
2 (0) · · · g

(n−1)
n (0)


−1 

f(0)
f ′(0)

...
f (n−1)(0)

 .(4.5)

Proof. Since g1, g2, . . . , gn are linearly independent solutions of (4.1), the general
solution f of (4.1) is given by (4.3) and for each closed interval [a, b] satisfying
0 ∈ [a, b] 6= {0}, by Theorem 2.1, there are distinct points x1, x2, . . . , xn in [a, b]
such that

[gi(xj)] :=


g1(x1) g2(x1) . . . gn(x1)
g1(x2) g2(x2) . . . gn(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gn(xn)

 (4.6)
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is invertible. It follows from (4.3) that
c1
c2
...
cn

 =


g1(x1) g2(x1) . . . gn(x1)
g1(x2) g2(x2) . . . gn(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gn(xn)


−1 

f(x1)
f(x2)

...
f(xn)

 .

On the other hand, (4.3) implies f (k)(x) =
∑n

i=1 cig
(k)
i (x) (0 ≤ k ≤ n− 1), so

f(0)
f ′(0)

...
f (n−1)(0)

 =


g1(0) g2(0) · · · gn(0)
g′1(0) g′2(0) · · · g′n(0)

...
...

. . .
...

g
(n−1)
1 (0) g

(n−1)
2 (0) · · · g

(n−1)
n (0)



c1
c2
...
cn

 ,

from which we obtain
c1
c2
...
cn

 =


g1(0) g2(0) · · · gn(0)
g′1(0) g′2(0) · · · g′n(0)

...
...

. . .
...

g
(n−1)
1 (0) g

(n−1)
2 (0) · · · g

(n−1)
n (0)


−1 

f(0)
f ′(0)

...
f (n−1)(0)

 .

The proof is complete. �

From Theorem 4.1, the linearly independent solutions of (4.1) can also be further
characterized in terms of their initial conditions.

Theorem 4.2. Let g1, g2, . . . , gn be linearly independent solutions of (4.1) and let
fi(x) = ci1g1(x) + ci2g2(x) + · · ·+ cingn(x) and cij ∈ K for 1 ≤ i, j ≤ n. Then the
following statements are equivalent:

(i) f1, f2, . . . , fn are linearly independent on [a, b] with 0 ∈ [a, b] 6= {0}.
(ii) For [a, b] with 0 ∈ [a, b] 6= {0}, there exist x1, x2, . . . , xn in [a, b] such that

[fi(xj)] is invertible.

(iii) [f
(j−1)
i (0)] is invertible.

Proof. The equivalence (i)⇔ (ii) is immediate from Theorem 2.1, so it suffices to
show (ii)⇔ (iii).

Since g1, g2, . . . , gn are linearly independent, for each [a, b] with 0 ∈ [a, b] 6= {0},
by Theorem 2.1, there exist distinct points x1, x2, . . . , xn in [a, b] such that G :=
[gi(xj)] is invertible.

For convenience, we denote

F := [fi(xj)], F
(n−1)
0 (0) := [f

(j−1)
i (0)], G

(n−1)
0 (0) := [g

(j−1)
i (0)].

For 1 ≤ i ≤ n, since fi(x) = ci1g1(x) + ci2g2(x) + · · ·+ cingn(x),

fi(xj) =

n∑
k=1

cikgk(xj) and f
(j−1)
i (0) =

n∑
k=1

cikg
(j−1)
k (0) for 1 ≤ j ≤ n.

Note that G and G
(n−1)
0 (0) are both invertible and

FG−1 = [fi(xj)][gi(xj)]
−1 = [cij ] = F

(n−1)
0 (0)[G

(n−1)
0 (0)]−1.

It follows that

F = F
(n−1)
0 (0)[G

(n−1)
0 (0)]−1G and F

(n−1)
0 (0) = FG−1G

(n−1)
0 (0).
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Thus [fi(xj)] is invertible iff [f
(j−1)
i (0)] is invertible, that is, (ii)⇔ (iii). �

Denote a sequence of initial conditions of (4.2) by {Bk}, where

Bk = [b0k b1k · · · b(n−1)k]t for k ∈ N.

It is known that equation (4.1) has n linearly independent solutions which are
bounded on each closed interval interval containing 0. So Theorem 3.1 is applicable
here. We will use Theorems 2.1, 3.1, and 3.2 to show that the (pointwise or uniform)
convergence of a sequence of solutions of (4.1) is equivalent to that of the sequence
of relevant initial conditions.

Theorem 4.3. Given a sequence {Bk} of initial conditions of (4.2), let fk be the

solution of (4.1) subject to [fk(0) f ′k(0) · · · f (n−1)
k (0)]t = Bk for k ∈ N. Then the

following statements are equivalent:

(i) {Bk} converges.
(ii) {fk} converges pointwise.

(iii) All {fk}, {f ′k}, . . . , {f
(n−1)
k } converge pointwise.

(iv) All {fk}, {f ′k}, . . . , {f
(n−1)
k } converge uniformly on each closed interval [a, b]

satisfying 0 ∈ [a, b] 6= {0}.
(v) {fk} converges uniformly on each closed interval [a, b] satisfying 0 ∈ [a, b] 6=
{0}.

Proof. (i)⇒ (ii). As we know, there exist n linearly independent solutions g1, g2, . . . , gn
of (4.1) and the general solution f of (4.1) is

f(x) = c1g1(x) + c2g2(x) + · · ·+ cngn(x),where cj ∈ R for 1 ≤ j ≤ n.

For any x ∈ R and closed interval [a, b] containing 0 and x, by Theorem 2.1, there
exist distinct points x1, x2, . . . , xn in [a, b] such that

[gi(xj)] :=


g1(x1) g2(x1) . . . gn(x1)
g1(x2) g2(x2) . . . gn(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gn(xn)

 (4.7)

is invertible.
For each k ∈ N, the solution of (4.1) subject to

[fk(0) f ′k(0) · · · f (n−1)
k (0)]t = Bk

is fk(x) =
∑n

j=1 ckjgj(x). From this we have Bk = ACk, where

A :=


g1(0) g2(0) . . . gn(0)
g′1(0) g′2(0) . . . g′n(0)

...
...

. . .
...

g
(n−1)
1 (0) g

(n−1)
2 (0) . . . g

(n−1)
n (0)

 is invertible and Ck :=


ck1
ck2
...

ckn

 ,

so fk(x) =
∑n

j=1 ckjgj(x) = [g1(x) g2(x) · · · gn(x)]A−1Bk. And hence, if {Bk}
converges, then {fk(x)} converges. Thus (ii) follows.

The implications (ii) ⇒ (iii) ⇒ (iv) are immediate from Theorems 3.2 and 3.1

(and their proofs) respectively since all {fk}, {f ′k}, . . . , {f
(n−1)
k } are continuous on

each closed interval [a, b] satisfying 0 ∈ [a, b] 6= {0}.
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(iv) ⇒ (v) is obvious while the implication (v) ⇒ (i) can be proved by (v) ⇒
(iv) ⇒ (i), which is immediate from Theorem 3.2 and (iv) with x = 0. Thus the
proof is complete. �

Remark 3. The implication (v)⇒ (i) in Theorem 4.3 can also be directly derived
as below: Let [a, b] be a closed interval containing 0, x1, x2, . . . , xn and let fk → f
uniformly on [a, b]. Then

lim
k→+∞

fk(xi) = f(xi) for 1 ≤ i ≤ n

and, by Theorem 3.1, there exists C = [c1 c2 · · · cn]t such that f(x) =
∑n

i=1 cjgj(x),
from which we have

g1(x1) g2(x1) . . . gn(x1)
g1(x2) g2(x2) . . . gn(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gn(xn)


−1 

f(x1)
f(x2)

...
f(xn)

 =


c1
c2
...
cn

 .

This with
g1(x1) g2(x1) . . . gn(x1)
g1(x2) g2(x2) . . . gn(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gn(xn)


−1 

fk(x1)
fk(x2)

...
fk(xn)

 =


ck1
ck2
...

ckn

 for k ∈ N

implies that ck = limk→+∞ ckj for 1 ≤ j ≤ n.
Now, for Bk = [b0k b1k · · · b(n−1)k]t, since Bk = ACk,

lim
k→+∞

Bk = lim
k→+∞

ACk = AC.

This shows that (i) is valid.
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