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Abstract. 3D reconstruction remains a challenging scientific problem,
encompassing various fields such as computer-aided geometric design,
computer vision, computer graphics, and computational science. Tradi-
tional methods, whether active using mechanical or radiometric rangefind-
ers or passive based on computer vision, predominantly focus on recover-
ing 3D geometry rather than textures. However, highly detailed textures
are crucial in fields requiring precise representation, such as digital mu-
seums and medical imaging. Recent advancements in 3D reconstruction
based on macro photography and focal stacking have yielded impressive
results. Building on these advancements, we aim to refine the process
further. Inspired by the renowned Digital Michelangelo Project, which
features well-designed hardware and software, we propose using robotic-
assisted image capturing for microscopic 3D reconstruction. We have
designed and implemented a robotic-assisted 3D reconstruction pipeline
that captures microscopic image sets from subject surfaces, generating
3D reconstructed surfaces with microscopic-level details. This approach
promises to enhance the precision and detail of 3D reconstructions, mak-
ing them more suitable for applications requiring high fidelity and accu-
racy.
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1 Introduction

The 3D reconstruction has always been a difficult scientific problem, which in-
volves a wide variety of fields, such as computer aided geometric design, computer
vision, computer graphics, computational science. No matter either active meth-
ods which use mechanical or radiometrical rangefinders or passive methods based
on computer vision, most of them focus on recovering the 3d geometry structure
more than textures. However, highly detailed texture is essential in the areas
that require precise representation, such as digital museums or medical imaging.

3D reconstruction methods base on macro photography and focal stack have
achieve really good results, and we decided to try pushing it to a more delicate
level. Inspired by the famous digital Michelangelo project [26] which has well
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designed hardware setup and software, we decide that robotic assisted image
capturing might be a good start for our microscopic 3D reconstruction.

We design and implement a robotic assisted 3d reconstruction pipeline which
captures the microscopy image set from the subject surface, and generates a 3D
reconstructed surface with microscopy level details.

2 Related works

2.1 Robotic control

Even for objects with simple geometry structure, it is almost impossible for
human user to hold a microscope camera stable while maintaining contactless
with the surface of the object. So we introduce a robotic arm to help with the
image capturing.

Manipulator Motion Planning
Motion planning is a fundamental problem in robotics, where the robot has

to find one collision-free motion from the starting state to the target state while
satisfying intrinsic constraints such as joint and torque limits. Extended from
path planning, which is the purely geometric problem, motion planning in a real
robot concerns the dynamics, motion constraints, control inputs and even the
uncertainties of sensory feedback. The modern motion planning algorithms and
applications are covered by many textbooks[25, 39, 30] and surveys[38, 34, 28]. As
one of the most thriving research topic in robotics, many modern algorithms have
achieved remarkable results in addressing hard instances of the motion planning,
such as real-time planning in complex environments [22][42].

Nowadays there are many open source motion planning frameworks which in-
tegrate mature implementations of motion planning algorithms. The frameworks
are usually robot agnostic which means users can plan the motion of any robot
once a proper model is provided. Some popular motion planning frameworks are:
MoveIt[12], ExoTica[20], CoppelliaSim[36] and OpenRAVE[15].

Coverage Task Path Planning
Coverage path planning(CPP) is the problem of determining a path of the

end-effector that covers the whole target surface or volume while avoiding obsta-
cles. This task is the fundamental of many robotic applications in manufacturing
industry such as polishing[40], painting[4][27] or surface defect inspection[31].

Nowadays most CPP algorithms solve the problem in two steps: First they
decompose the target space into many simpler, non-overlapping sub-spaces(or
mostly called cells) and then generate the planning in each of the cells[18]. Con-
ventionally there are two off-line cell decomposition approaches which build the
foundation of many CPP algorithms: Trapezoidal[24][10] and Boustrophedon
decomposition[11]. Afterwards Morse-based cell decomposition approach[2] has
been proposed for complete on-line coverage planning[1].

2.2 3D reconstruction

3D reconstruction is a always difficult problem in the past decades and there
are plenty of researches about it [16]. Although there are special approaches like



Robotic assisted 3D reconstruction with high resolution textures 3

shape-from-shading [43], photometric stereo [5], shape from texture [3], we focus
on image based methods.

Structure from motion
Different from SLAM, structure from motion (SFM) takes unordered im-

ages collections for 3D reconstruction. And it has the flexibility of using images
capture through different ways to enable tasks like reconstructing from internet
photo collections [37], which is based on self-calibrating metric reconstruction
systems [6].

Inspired by similar works, large scale reconstruction systems are also built
and some of them can even take a hundred million internet photos [21].

Macro photogrammetry
Currently, macro photography [14] is widely used by artists for capturing

small subjects like insects. Usually, a macro lens with a large reproduction ratio of
at least 1:1 is used for this extreme close-up photography technology. Focal stack
technique is used in macro photography applications like [17] to deal with the
focal blur introduced by shallow depth of field. Naturally, some researchers make
use of macro photography to collect data for 3D reconstruction of small subjects
[19] and they managed to achieve really high accuracy within the bounding box.

RGB-D fusion
The availability of affordable depth scanners enables many applications of

computer vision in the areas like robotics, human motion capture and scene
modeling. However, a common drawback of these sensors is their lack of reliabil-
ity and accuracy. On the other hand, they have the advantage of mobility and
high frame rate compared with professional 3D scanners like laser radar, which
means it is much easier to get a lot of low reliability depth maps of the scanned
object from different camera poses. Therefore, researchers like [32, 33, 9] fuse the
captured data to enhance the accuracy of the acquired depth map. Additionally,
fusing the captured data can be use to combine different parts of the scanned
object to create a 360 degree reconstructed model.

3 Methods

3.1 Curved surface scanning with robotic arm

To scan the curved surface reliably for capturing the microscopy image set, we
turned to robot assisted capturing. The microscope is require to operate at a
certain distance maintain being perpendicular to the subject surface to capture
sharp images. Ideally, the robotic arm moves the digital microscope along the
curved surface and capture a microscopy image sequence covers the entire region
of interests during the motion as shown in Figure 1a, the accurate poses of the
camera are also recorded at the moments when the associated microscopy image
is captured. Another preferable requirement is the adjacent frames in the image
sequence should have overlapping area large enough to ensure a true positive
matching.
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(a) Desired scanning route. (b) Actual scanning route.

Fig. 1: The desired scanning route and the actual scanning route which also
applies the auto focusing. Noticing that the sampling points might not be a spa-
tial continuous sequence in space since the scanning route is generated through
depth-first traversal

In the robotic control area, there is a specific problem called coverage path
planning for passing over all points in the region of interests. However, it requires
a full awareness of the environment before planning.

We choose to use the robotic arm and its kinematics sensor for a rough surface
geometry acquirement. First we choose some sampling points from the subject
surface, and measure their 3D positions in the robot coordinating system via the
robotic arm sensors by manually guiding the robotic arm to touch the subject
surface.

Considering the working space and the reach range of the robotic arm, it
is acceptable to approximate the subject’s surface geometry by curve fitting
and generate a surface point cloud G and corresponding normal map of the
subject. The desired sampling points Si on the surface can be generated by
simply downsampling G via a proper voxel size. We sort the sampling points
through depth-first traversal to get a relatively short scanning route.

According to the previous estimation of the depth of field (The depth of field
of microscope we use is 0.26mm wide), the auto focusing movement is set to be
±5mm from the proposed sampling point within in 3seconds to make sure that
at least one image is supposed to be captured when the subject surface falls in
the depth of field.

For each sampling point, the microscopy image and the camera pose when it
is taken would be recorded for further processing.

3.2 Surface reconstruction

We treat this microscopy surface reconstruction problem as an image stitching
problem on an unknown curved surface. The goals are:

• Seamless texture stitching at the tangent direction.
• Maintain the 3D geometry of the surface.
In our case, the captured data set contains two types of information. The

image set {Mi} captured through a microscope and their poses {Ui} where they
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are captured. Similar with the image stitching applied on 2D plane, this problem
can be divided as the following stages:

Local tile registration. Estimating the transformations {Tij} between tile pairs
Mi and Mj .

Global optimization. Find an alignment that minimize the error for the entire
group.

Post processing. Generating the stitching result.

Local tile registration We define a microscopy image tile as a quad in the 3D
space, which is a planar approximation of the certain part of the subject surface.
Considering the depth of field of microscope is quite shallow, and the field of
view is very narrow, the captured microscopy image shows a relatively flat area.
We use microscopy image as the texture of a microscopy image tile Mi (which
we refer as tile later, unless specifically explained).

The goal of this local registration is to estimate the transformation Tij from
the source tile Mi to the target tile Mj that aligns them in 3D space. Consid-
ering the microscopy images with overlapping area are close to each other on
a smooth surface, Tij is an affine transformation contains only translation and
rotation, without scaling or shearing, and it is hard to calculate the accurate 3D
affine transformation from perspective projection cause the difference between
the normal directions of the two pairwise images can hardly be estimated.

After analyzing the captured microscopy image set and their associated cam-
era poses recorded by the robotic arm sensor, we notice that the orientations
extracted from the camera poses are considerably reliable.

Therefore, we decided to estimate the tangent direction component of Tij

from texture features, and get the normal direction component from robotic
sensor data, as shown in figure 2.

(a) planar local transformation. (b) adding normal direction difference.

Fig. 2: The local transformation composing. The normal direction difference is
injected into the planar planar local transformation generated from 2D homog-
raphy estimation via feature matching.
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In most cases, the local transformation Tij has almost no scaling or shear-
ing and its matching confidence on tangent plane depends on the vision feature
matching confidence. Therefore we can clip most of the false positive pairwise
matches by applying a simple sanity check. All the confirmed local transforma-
tions are defined as {Tij}. If a tile Mk does not have any confirmed adjacent
images, it will be removed from {Mi}, as well as its initial pose Uk.

Given a microscopy data set consists of n microscopy images {Mi} and the
corresponding image poses {Ui}, a brutal pairwise matching would require to
evaluate the match possibility between N = n(n−1)

2 potential image pairs, which
wastes a great deal of calculation resource cause most of these microscopy images
share no overlapping areas.

Besides, the features of microscopy images are rather different from these of
landscape images, they might have similar patterns which might lead to false
positive feature matching. Therefore, the pairwise matching ground truth of the
N image pairs would be Np positive matches and Nn negative matches, and the
negative matches would outnumber the positive ones significantly, therefore we
have

Nn >> Np (1)

The estimation results would be the mixture of Ntp true positive, Ntn true
negative, Nfp false positive and Nfn false negative matching results, so we have

N = Nn +Np = (Nfp +Ntn) + (Ntp +Nfn) (2)

and the registration accuracy:

a =
Ntp +Ntn

N
(3)

Considering the true positive pairwise matches are outnumbered by the neg-
ative ones, it is more reasonable to evaluate the registration results with recall
and precision.

Recall:
r =

Ntp

Ntp +Nfn
(4)

Precision:
p =

Ntp

Ntp +Nfp
(5)

A proper global registration method should be able to push precision to as
high as possible while maintain acceptable high recall, an effective solution is
reducing the false positive matching result amount Nfp or purging the registra-
tion results in the following optimization progress[9]. However, the lack of reliable
odometry transformation and the discrete sampling points make it difficult to
do so.

But on the other hand, the initial image poses {Ui} are measured by the
robotic arm sensors so they are much more reliable than these calculated from
odometry chain in term of global position, though the local accuracy is not as
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high as obometry transformation estimated by computer vision or other meth-
ods. So for each image in {Mi}, it is possible to find images with higher chance
to overlap with it by their initial poses to reduce the false positive matches.

First we make a KD-tree from the initial image poses {Ui}. For certain micro-
scope image Mi, we find the images {Mj} that locating within a certain distance
from it by searching in the KD-tree. Considering the adjacent images would have
similar normal directions so the adjacent images should satisfy

(Uin̂)
TUj n̂ ≥ 1− ξ (6)

in which the ξ is the tolerance of the normal direction difference. Now for each
microscopy image Mi, there is a group of potential adjacent images {Mj}, the
pairwise matching need only to be applied to these potential matching pairs.

Global optimization Global optimization is usually implemented by applying
bundle adjustment for 2D image stitching. Considering we have the robotic sen-
sor data as additional information and the alignment is made in 3D space, we
choose to use pose graph for the global optimization.

The initial poses of tiles can be considered satisfying Gaussian distribution
in the terms of the 3D positions, so it is reasonable to make use of it in the
optimization progress too. We use g2o for the pose graph optimization[23].

In our modified graph-based optimisation, we define a pose graph G which
has fixed sensor data nodes and free tile pose nodes, as shown in figure 3. For
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Fig. 3: The pose graph G in the global optimization progress. Nodes {xi} are the
free tile nodes that would be optimized in the iteration and {yi} are the fixed
nodes that record the initial poses of {xi}.

each tile Mi, we add a free node xi and a fixed node yi in the pose graph, both
of them have Ui as their initial pose. Also we add a edge ei connecting xi and
yi, which gives a constrain to keep the final optimized pose xi close to its initial
pose yi. The transformation of edge ei is set to I and it is defined as sensor edge.
For each confirmed pairwise match, we add a matching edge eij , which connects
nodes xi and xj and the edge transformation is set to be Tij .
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The goal of the optimization is to find a group of optimized poses {Pi} for all
tiles with confirmed adjacent image tiles, which can be described as minimizing
the global objective

E(P ) = η
∑
i

g(Pi, xi) + (1− η)
∑
i,j

h(Pi, Pj , xij)

= η
∑
i

f(Pi, Ui, I) + (1− η)
∑
i,j

f(Pi, Pj , Tij)
(7)

in which g is the error function of sensor edges, h is the error function of matching
edges and η is the confidence of the sensor data. They share similar structure so
we define a function f(Pi, Pj , T, µ) to measure the inconsistency between poses
Pi and Pj and the local transformation T with a parameter µ adjusting the
weights of the alignment terms.

f(Pi, Pj , T, µ) = f(T−1PjP
−1
i , µ) (8)

The inconsistency ∆ = T−1PjP
−1
i is described by a loosen constrain δ =

(a, b, c, α, β, γ). (a, b, c) is the translation and (α, β, γ) is the Euler angles ex-
tracted via (x, y, z) order, which is widely used in 3D pose graph optimization.
µ is used as a 6× 6 information matrix in the optimization progress.

Considering the nodes are microscopy image tiles with flat geometry rather
than dense point clouds and ∆ ≈ I, we can use a simplified information matrix

µ =


wa 0 0 0 0 0
0 wb 0 0 0 0
0 0 wc 0 0 0
0 0 0 wα 0 0
0 0 0 0 wβ 0
0 0 0 0 0 wγ

 (9)

In matching edges, the vision feature matching provides a high alignment con-
fidence on the tangent plane and the assumption that all adjacent image tiles
are approximately coplanar, so the confidence at normal direction is also rela-
tively high. On the other hand, sensor data provides high reliability in terms of
the normal direction difference between tiles, but the rotation around normal
direction is affected by the camera offset. Therefore we have

wb = wc = wα > wa = wβ = wγ (10)

for matching edges {eij},and

wβ = wγ > wa = wb = wc > wα (11)

for sensor edges {ei}. Considering the initial pose is relatively reliable, robust
kernel is only applied to matching edges {eij} to deal with the false positive
pairwise matching results.
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Post-processing Microscopes have narrow field of view and the illumination
might be blocked by the microscope, which leads to intensity difference between
image tiles especially when the illumination is not constant or the contrast of
the subject surface is high. We apply a color correction following the method of
Brown and Lowe [8] to address the color inconsistency.

To generate a triangle mesh we run a ball pivoting algorithm [7] for the center
positions of all the aligned tiles. For each triangle of the generated mesh, the
three microscopy images which are closest to the three triangle vertices are used
to generate the texture by stitching these three images and cropping the trianglar
area for texturing. Although the adjacent triangles have different textures, they
appear to be seamless in the visualization.

4 Experiments

In the experiment, we use a Franka Emika robotic arm and a digital microscope
for data capturing, and a stress ball with a smile face is used as the testing
subject because it is rich of features and have a curved surface, as shown in
Figure 4a. The raw microscopy image set (283 microscopy images) is visualized
in Figure 4b.

(a) Experiment setting. (b) Raw data.

Fig. 4: Experiment setup and the raw microscopy image set visualized in 3D.
Noticing that the initial poses from the robotic arm sensor are not so accurate.
The potential matching pairs are visualized as lines in 4b.

The final reconstruction result is shown in Figure 5a. We also reconstructed
the same stress ball with Open3D from the 600 RGBD images captured through
Realsense, the baseline result is shown in Figure 5b. We compare with Realsense
cause its sensors have similar resolution with our microscope and it is an out-of-
shelf solution from data capturing to reconstruction. For the area we captured,
our result is considerably better than the reconstruction result of realsense.
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In order to make a comparison, we also feed the image set we captured to
open source tools like Bundler [13] and visualSFM [41], however they fail to give
recognizable results.

(a) Our method. (b) Realsense & open3D.

Fig. 5: Part of the smile face stress ball and the comparison with the reconstruc-
tion result of Open3D from the RGBD sequence captured through Realsense.

Since there is no available microscopy data set captured on curved surface,
we cannot evaluate the accuracy by comparing with the ground truth. So we
evaluate our reconstruction result by rendering the virtual microscopy images
from the camera poses associated with the real microscopy images, then compar-
ing the real microscopy images and the synthesized microscopy images. (Figure
6)

For most camera poses, our reconstruction managed to preserve the details.

(a) original image. (b) recaptured image.

Fig. 6: An image with same resolution is captured from a similar camera pose
to make the evaluation. Noticing that the specular light in the black area is
eliminated.
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5 Discussion

We managed to reconstruct the curved surface with high detail textures, but
there are a lot of limitations in this pipeline, summarized as follow:

Unfocused microscopy images.
We apply auto focusing by moving the microscope forward and backward

through the robotic arm and then pick the sharpest image, which is supposed to
be the focused one, from the sequence. Sometimes, our auto-focus method output
a clearly unfocused image. To do so, we use the method presented by [35], which
computes a single floating point value to represent how blurry a given image is
by calculating the variation of the Laplacian over the entire image, which we
refer as

LAP_V AR(I) =

M∑
m

N∑
n

(|L(m,n)− L|)2 (12)

where

L =
1

NM

M∑
m

N∑
n

|L(m,n)| (13)

Technically, this method works fine for synthesized focal stack sequence and
real image sequence captured in regular circumstance, but an inevitable draw-
back is the LAP_V AR(I) value is not independent from the content. For in-
stance, the LAP_V AR(I) of figure 7a is lower than that of figure 7b, but the
former is obviously sharper than the latter. The reason why an unfocused image
has higher LAP_V AR(I) is that it has a strong feature in its left part, the
brown line which has huge effect on the Laplacian in that area.

(a) focused (b) unfocused

overlapping area

(c) aligned sequence

Fig. 7: A microscopy image sequence captured in one auto-focusing action. Only
the microscopy image with highest LAP_V AR(I) value is stored in a buffer
and the saved as after the auto-focusing action is over in the practical running.
7a and 7b are microscopy images labelled with their LAP_V AR(I) value. 7c is
the microscopy image sequence that aligned manually.

For a regular camera, the image sequence captured during the auto-focus
action are almost perfectly aligned and the change of field can be ignored in most
situation. However, our microscope does not have a focus motor so the image
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sequence is captured while the robotic arm is moving the camera forward and
backward. The shaking introduced by the robotic arm motion is considerably
tiny for most regular use, but even a tiny disturbance is very obvious in the
microscope camera because of its narrow field of view, which changes the content
of the images significantly.

In theory, it is possible to address this problem by only evaluating the sharp-
ness within the overlapping area of all the microscopy images in the sequence,
as shown in Figure 7c. However, aligning the image sequence automatically re-
quires reliable feature matching between images, but there is rarely recognizable
feature in completely unfocused images.

Limited geometry complexity.
For our method, the amount of vertices of the final reconstructed textured

mesh is equal with the amount of microscopy images, which is a drawback caused
by the design of the processing pipeline. Additionally, the microscope can only be
used on a relatively smooth surface, so it can hardly capture microscopy image
set from a subject with complex geometry structure.

Missing sampling points.
In most cases, the robotic arm fails to move the microscope to all desired

sampling points, as shown in Figure 8. By design the sampling points are sup-
posed to be evenly distributed along the interpolated surface, but the robotic
arm fails to capture microscopy images from some sampling points.

To figure out the reason why they are determined as unreachable by the
robotic arm, we mark the missing sampling points and make a new sampling
points list that consists of them only, run the automatic sampling again. Sur-
prisingly, some of them become reachable and the robotic arm managed to cap-
ture microscopy images from these associated camera poses, and the reachable
points vary each time we run the automatic sampling. We believe this is because
the motion planer output is affected by the initial pose of the robotic arm. And
some of them might be unreachable mechanically for the robotic arm due to its
freedom limitation, since they remain unreachable in all our tests.

Fig. 8: A microscopy image set visualized in 3D. The microscopy image tiles are
scaled for better view. The positive pairwise matches are visualized as lines.
Noticing that there are holes in the image set
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Although we regard the robotic arm as an universal solution for moving
things around, they might have more limitations than we realized. Besides, it
seems to be hard for the robotic arm to move its end effector for a short distance
like 2mm and then stop.

6 Conclusion

In this research, we try to challenge a very specific problem in 3D reconstruction
area, performing 3D reconstruction on images captured through microscopes.
However, the short focal distance of microscopes leads to a quite narrow field
of view, alongside with the shallow depth of field, image capturing for this task
is quite different from that of regular photogrammetry, and the captured image
set is also very unique. As a result, we have to design special robotic assisted
image capturing method and a novel 3D reconstruction approach to address this
problem all because of this specific camera choice.

Inspired by the level of detail (LOD) [29] loading strategy in computer graph-
ics, we figured a possible compromise is applying typical macro photogrammetry
to reconstruct a rough textured mesh, then generate sampling points from it to
guide the robotic arm to capture a microscopic image set. At last, refine the
texture of the existing mesh with the captured microscopic images. In theory,
the geometry can be refined too. Mathematically, it is possible to repeat this
refining progress with multiple zooming levels.
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