
Portfolio Optimization Based on GH Distributions with Mean-CVaR-Skewness
Analysis Using Deep Reinforcement Learning

Authors: Jingyuan Sun, Luyang Han, Feiyang Peng, Yuchen Xiang, Yang Luo

Supervisor: Prof. Arodh Lal Karn SURF-2024-0035

Abstract

This research combines the Generalized Hyperbolic (GH) distribution and Deep Reinforcement
Learning (DRL) for portfolio optimization. Using 30 stocks from Yahoo Finance, the model
fits the GH distribution and employs a DRL framework with a policy network containing self-
attention and CNN-LSTM layers, an EM algorithm for parameter estimation, and a custom
reward function incorporating commissions. Simultaneously, the DRL agent optimizes port-
folio allocation by balancing CVaR and skewness. Hence, the environment provides iterative
reward signals to the agent based on actions that control risk while maximizing return asym-
metry. Ultimately, the findings indicate the approach yields superior portfolio performance
under complex market conditions.

Mean-CVaR-Skewness Optimization in Portfolio Management

Introduction
In portfolio optimization, the traditional mean-variance model assumes that asset returns follow a normal distri-
bution. However, this assumption often fails in real-world markets. Asset returns typically exhibit fat tails and
asymmetry, necessitating a more flexible distribution model to describe these characteristics. To address this,
we propose a new optimization framework combining the Generalized Hyperbolic (GH) distribution with deep
reinforcement learning, aiming to minimize Conditional Value at Risk (CVaR) while maximizing skewness, thus
optimizing portfolio returns under controlled risk.
Generalized Hyperbolic Distribution

The random vector X is given by:
X = µ + Zγ +

√
ZAN, N ∼ Nk(0, Ik), A−1A = Σ, Z ∼ GIG(λ, a, b).

The PDF of Z under GIG is:

hGIG(Z;λ, a, b) =

a−λ(ab)λ/2
2Kλ(

√
ab)
Zλ−1e−aZ+b/Z

2 , ω > 0,
0, Z ≤ 0.

Let χ = (x − µ)⊤Σ−1(x − µ) + b and ψ = γ⊤Σ−1γ + a, the PDF of X is:

f (x) = e(x−µ)⊤Σ−1γ

(2π)d/2|Σ|1/2

(a
b

)λ/2
2Kλ(

√
ab)

(
χ

ψ

)λ−d/2
2

Kλ−d/2
(√

χψ
)

CVaR under GH Distribution
CVaRβ(x) = −1

β

∫ VaR

−∞
xf (x) dx

where f (x) is the PDF of return x, β is the cut-off point, and VaR is the Value at Risk level.
Let ω = (ω1, ω2, . . . , ωn) with ωi > 0 and

∑n
i=1 ωi = 1. Then,

w⊤X = w⊤µ + Zw⊤γ +
√
Zw⊤AN ∼ GH1(λ, a, b, w⊤µ,w⊤γ, w⊤Σw).

Set m = w⊤µ, s = w⊤Σw, and g = w⊤γ. Define Q(x) = (x−m)2
s and W (x) =

√
(a +Q(x))

(
b + g2

s

)
, the

Conditional Value at Risk (CVaR) at level β is calculated by:

CVaRβ(x) = −1
β

∫ VaRβ(x)

−∞
x

(√
b
a

)λ (
b + g2

s

)d
2−λ

(2π)
d
2
√
sKλ(

√
ab)

×
K
λ−d

2
(W (x)) · e

(x−m)g
s

(W (x))
d
2−λ

dx

Approximation of CVaR
Direct computation of CVaR is complex; a simpler approach is introduced[1]:
Given X = µ + Zγ +

√
ZAN , transform X using A−1:

A−1X = A−1µ + A−1Zγ +
√
ZN, let Y = A−1X = µ0 + γ0Z +

√
ZN,

where µ0 = A−1µ, γ0 = A−1γ. Let x⊤ = ω⊤A so: Approximate CVaRβ(ω⊤X) as:

CVaRβ(x⊤Y) = −x⊤µ0 +
√
x⊤x [v+ + v− cos(θ(x, γ0))] ,

where:
v+ =

CVaRβ(Yb) + CVaRβ(Y−b)
2

, v− =
CVaRβ(Yb) − CVaRβ(Y−b)

2
, b = ∥γ0∥,

with Yb = ∥γ0∥Z +
√
ZN and Y−b = −∥γ0∥Z +

√
ZN .

The probability density function of Ya is:

fa(y) =
(
√
ψ/χ)λ

(
ψ + a2)1

2−λ
√

2πKλ(
√
χψ)

×
K
λ−1

2

(√
(χ + y2)(ψ + a2)

)
eay√

(χ + y2)(ψ + a2)
1
2−λ

Gradient:
∂ CVaRβ

(
x⊤Y

)
∂x⊤ · ∂X

⊤

∂ω⊤ =
([

−µ0 + v+
x

∥x∥
+ v−

γ0
∥γ0∥

]
A

)⊤

EM Algorithm and Skewness
To efficiently estimate these parameters, we employ the Expectation-Maximization (EM) algorithm[2]. The EM
algorithm iterates between the E-step, which calculates the expectation of the latent variables wi given the current
parameter estimates, and the M-step, which maximizes the expected log-likelihood to update the parameters.
This process is repeated until the parameters converge, leading to stable estimates.

Figure 1. EM Algorithm flow chart
After estimating these parameters, the portfolio return ωTX can be expressed as:

ωTX = ω1X1 + ω2X2 + · · · + ωnXn.

This expression preserves the GH distribution properties, allowing us further to calculate the skewness and CVaR
of the portfolio returns.
Skewness, as a measure of distribution asymmetry, is defined as the normalized third moment. In the derivation
process, we calculated the third moment of the portfolio return. By expanding it and incorporating the higher
moment formulas of the GIG distribution, we ultimately obtained the closed-form expression for skewness:

κ(ωTX) = (ωTγ)3Q− 3(ωTγ)(ωTΣω)V ar(Z)
E[Z]

√
ωTΣω + (ωTγ)2V ar(Z)

,

where Q = E[Z3] + 2E[Z]3 − 3E[Z2]E[Z]. This formula shows how skewness is influenced by the portfolio
weights ω, the distribution parameter γ, and the covariance matrix Σ within the GH distribution framework.
Optimization

We aim to minimize the CVaR in our stock portfolio while maximizing the skewness, as this approach allows us
to minimize risk and maximize return.

min
ω∈Rn

CV aRβ(ωTX),

max
ω∈Rn

Skew(ωTX),
s.t.

ω
Te = 1,

E
[
ωTX

]
= ωTµ + ωTγE[T] = m.

If ωTµ and ωTγ are fixed, with Theorem 1[3], then CV aR(ωTX) is non-decreasing with respect to ωTΣω.
Using the formula of CVaR and Skewness above, we can draw the relationship between CVaR, Skewness, and
ωTΣω, ω in Python:

Figure 2. Skewness with
respect to ωTΣω

Figure 3. CVaR with respect
to ωTΣω

Figure 4. Skewness with
respect to ω Figure 5. CVaR with respect

to ω
It is evident from the figure above that the smaller the ωTΣω, the smaller the CVaR and the larger the skewness.
We draw the graph of the relationship of Skewness and CVaR with ω. The relationship between ω and skewness
is opposite to the relationship between ω and CVaR, indicating that a larger ω leads to higher risk and lower
asymmetry in the portfolio returns.

Deep Reinforcement Learning for Optimization
Deep Reinforcement Learning

Figure 6. The Process of DRL

Here’s how we’ll process our data using DRL in general:
The DRL includes the environment, the agent, and the
steps required for training. Its training process and the
structure of each part are shown in the figure below.
We constructed an asset management DRL model for
the stock market based on the framework proposed by
Jiang[4]

Data Preprocess

Figure 7. The figure for input data

Firstly, we obtain the data of 30 U.S. stocks
through Yahoo Finance and use feature
engineering[5] to clean and supplement the
data, add log return and other indicators.
Using the moving window method, the
original data with a shape of (2300, 60, 30)
was processed along the temporal dimension
with a step size of 1 day, resulting in an
increased data volume and more training
iterations[6].
The final data shape is (2240,60,9,30), which
represents a 4-dim feature tensor consisting
of 2240 matrices with a time of 60 days, 9
indicators, and all stock names, as shown in
the figure. Its sum is subsequently saved in
the DRL environment.

Reward Function
At the same time, the environment also sets the reward function as shown below, the parameters of the policy
network, saving the actions of the agent and the state space containing the market situation returned to the
agent[4].

Rewards =
∑

(cash + asset value) + additional reward − total penalty − initial cash

Policy Network

Figure 8. The figure for input data

The topology of the policy network consists of three components:
feature extraction, return rate prediction, and classification of 30
stocks in each iteration. At the beginning of each episode, the
agent inputs the processed data. First, a self-attention layer is
employed to enhance the temporal features of the time-stock
subspace by matrix multiplication while preserving the spatial
characteristics of the data[7]. Next, a CNN is used to extract
spatial features from the daily stock indicators data. The output of
the feature extraction network serves as a shared layer, which is fed
into both the LSTM and CNN-Classification models for bi-task
learning. Due to the excellent performance of LSTM on long time
series data[8], it is employed to complete the prediction task. The
LSTM network is iteratively optimized first, and then its results
are concatenated with the shared layer output and fed into the
CNN-Classification network. The network is trained using the
CVaR-Skewness joint loss and Adam optimizer[9], ultimately
producing a (30, 1) weight result as the strategy to be adopted by
the agent in this iteration, this represents the weight of each stock
in the investment portfolio.
The figure illustrates the flow of input data through the different
layers of the network, starting from the initial feature extraction to
the final output tensor used for decision-making in the DRL
environment.

Training Results
The two optimization tasks in the policy network regression and classification are merged into a joint loss for
optimization, and we can meet the needs of different types of investments by adjusting the coefficient size before
each loss. The agent continuously improves the value of reward according to various optimization strategies such
as PPO, DDPG, and other algorithms, and obtains the optimal weight to achieve the highest stock return rate
finally.

References

[1] N. Abudurexiti, K. He, D. Hu, S. T. Rachev, H. Sayit, and R. Sun, ”Portfolio analysis with mean-
CVaR and mean-CVaR-skewness criteria based on mean-variance mixture models,” Annals of Operations
Research, vol. 336, no. 1, pp. 945–966, 2023.

[2] W. Hu, ”Calibration of multivariate generalized hyperbolic distributions using the EM algorithm, with
applications in risk management, portfolio optimization, and portfolio credit risk,” Ph.D. dissertation,
Florida State Univ., Tallahassee, FL, 2005. [Online]. Available: http://fsu.digital.flvc.org/

[3] X. Shi and Y. S. Kim, ”Coherent risk measures and normal mixture distributions with applications in
portfolio optimization,” International Journal of Theoretical and Applied Finance, vol. 24, no. 04, pp.
2150019-4–2150019-5, 2021.

[4] Z. Jiang, D. Xu, and J. Liang, ”A deep reinforcement learning framework for the financial portfolio
management problem,” arXiv preprint arXiv:1706.10059, 2017.

[5] X. Y. Liu, H. Yang, Q. Chen, R. Zhang, L. Yang, B. Xiao, and C. D. Wang, ”FinRL: A deep reinforcement
learning library for automated stock trading in quantitative finance,” arXiv preprint arXiv:2011.09607,
2020.

[6] B. Babcock, M. Datar, and R. Motwani, ”Sampling from a moving window over streaming data,” in
Proc. Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), Stanford InfoLab, 2002.

[7] A. Vaswani et al., ”Attention is all you need,” Advances in Neural Information Processing Systems, vol.
30, 2017.

[8] S. Hochreiter and J. Schmidhuber, ”Long short-term memory,” Neural Computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[9] D. P. Kingma, ”Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

