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Abstract— Recommendation systems rely on an accurate 
user model to understand users’ needs to make a personal 
recommendation. Traditional user modeling uses users’ past 
behaviors during a “supply-meets-demand” interaction. This 
approach failed to capture the dynamic and emergence of new 
items and the shifting of user interests. The recommendation 
systems, built based on this user model trap users in their 
previous interests and make recommendations without counting 
their interest shift. We propose a new approach that integrates 
a non-stationary transformer into a recommendation system to 
capture the temporal dynamics of supplies and shifting user 
interests. Our experiments demonstrate the framework’s 
superiority over benchmark models. The empirical results 
confirm the efficacy of our proposed framework and significant 
performance enhancements for recommendations. 
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I. INTRODUCTION (HEADING 1) 
In today’s rapidly evolving environment, recommending 

relevant information and products to consumers poses a 
challenge for any recommendation system. There are many 
efforts to overcome inaccurate user modeling in 
recommendation platforms from online marketplaces to news 
aggregation sites, and even short video platforms. These 
efforts focused on improving algorithms to meet their needs-
and-supply matching requirements. These algorithms adopt 
advanced technologies such as deep learning. Many 
algorithms use deep learning to figure out what users are 
interested in such as Deep Factorisation Machines (DeepFM) 
[1], Wide & Deep [2], Deep Interest Evolution Networks 
(DIEN) [3], and Behaviour Sequence Transformer (BST) [4]. 
Other algorithms use reinforcement learning for sequential 
product recommendations, such as Exact-k [5] and traditional 
deep reinforcement learning algorithms: Double Deep Q-
Network (DDQN) [6], Proximal Policy Optimisation (PPO) 
[7], Deep Deterministic Policy Gradient (DDPG) [8], aim to 
capture the dynamic elements related with new products, user 
interests shifting and to maximize matches between user needs 
and product supplies. 

Traditionally, machine learning-based algorithms 
standardize data into a normalized, quasi-normal distribution. 
These algorithms are designed to enhance computational 
efficiency and accurate matchings between expected outcomes 
with the results produced by the algorithms. It inadvertently 
ignores the non-stationary characteristics of data that 
particularly represent new products. Models based on these 
algorithms trained on stable datasets often perform well only 
within those controlled environments. The introduction of non-
stationary variables or a change in context can abruptly degrade 

models’ performance and fail to capture and update user 
interest change.  

This paper reports our effort to capture and preserve the 
intrinsic value of non-stationary data representing products 
and user interests in recommendation systems. By 
introducing Non-stationary Transformers into 
recommendation systems, we aim to enhance 
recommendation accuracy and robustness when facing 
dynamic and changing supplies. Empirical results from our 
experiments in deep learning contexts affirm the superiority 
of our proposed approach underscoring its potential 
applicability across various recommendation systems.  

The paper is organized in the following: Section 2 
reviews related work on recommendation systems, 
spotlighting various methodologies currently employed to 
use non-stationary data. Section 3, presents the structure of 
our model, detailing its integration with a deep learning-
based model as an example. Section 4 presents our primary 
analytical discourse on our experiments. We validate our 
model’s efficacy in predicting click-through rates within 
deep learning contexts. We demonstrate our model’s superior 
performance on test datasets through comparative analysis. 
Section 5 concludes our current discourse, reflecting on the  
achievements while acknowledging its limitations and 
proposing future works. 

II. RELATED WORK 
Traditional recommendation system models have been 
influenced by the advancement of machine learning to deep 
learning and reinforcement learning as they are fast advanced 
in natural language processing (NLP) and that has attracted 
global attention. They undoubtedly influence the 
recommendation system development as well.  

A. Deep Learning-based Recommendation System  
The evolution of machine learning towards deep learning 

has significantly influenced the development of 
recommendation system. Traditionally grounded in machine 
learning and statistical algorithms, such as Collaborative 
Filtering (CF), Alternating Least Squares (ALS), and 
Factorisation Machines (FM), the field has witnessed the 
emergence of deep learning-based extensions that enhance 
these foundational models. The Factorisation-machine-
supported Neural Network (FNN) represents one of FM’s 
earliest deep learning expansions, laying the groundwork for 
subsequent improvements [9]. For instance, the Wide & Deep 
model merges the basic linear regression model with a Multi-
Layer Perceptron (MLP), thereby harnessing memorization 
and generalization [2]. Building on these advancements, Deep 
Factorization Machines optimize the network structure further, 
integrating FM and deep neural networks to improve 
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prediction accuracy [1].  Attentional Factorization Machines 
introduce an attention mechanism into the network, enabling 
the model to focus on relevant features dynamically [2]. 
Additionally, Graph factorization machines [10] incorporate 
graph neural network modules, enhancing the model’s ability 
to leverage complex relational data. Parallel to these 
developments, deep learning-based sequence recommendation 
algorithms have also evolved, primarily leveraging Recurrent 
Neural Networks (RNNs). The Deep Interest Network (DIN) 
[11] enhances basic sequence models with an attention 
mechanism, focusing on capturing evolving user interests. 
This concept is further extended by the Deep Interest 
Evolution Network (DIEN) [3], which divides the model into 
layers for user behavior sequences, interest extraction, and 
interest evolution, addressing the dynamic nature of user 
preferences. The introduction of the transformer model into 
the development of the Behaviour Sequence Transformer 
(BST) [4], which employs the transformer encoder to integrate 
user historical interaction with user and item features. 
Furthermore, BERT4Rec [12] adapts the BERT model’s 
capabilities for recommendation systems, showcasing the 
adaptability of deep learning innovations in this domain. These 
models represent the synergy between the advancements in 
deep learning techniques and their application in 
recommendation systems, leading to a new era of personalized 
and dynamic recommendations. 

B. Works with non-stationary data 
There are efforts to integrate non-stationary data into 

recommendation systems. Ye et al. introduce an adaptive case 
that employs a novel pruning algorithm for large-scale 
recommendation systems grappling with non-stationary data, 
effectively balancing model adaptability and computational 
efficiency [13]. Huleihel, Pal, and Shayevitz extend 
collaborative filtering techniques to accommodate the 
temporal variability in user preferences, enhancing 
recommendations’ relevance and personalization [14]. Wu, 
Iyer and Wang propose a two-tiered hierarchical bandit 
algorithm to navigate the exploration-exploitation trade-off in 
environments characterized by non-stationarity and delayed 
feedback, facilitating more timely and contextually 
appropriate recommendations [15]. Chandak et al. address the 
challenge of delayed feedback in such settings with a 
stochastic, non-stationary bandit model that leverages 
intermediate observations to refine learning processes and 
decision-making [16]. Liu used non-stationary data for 
sentiment analysis and dynamic pricing [18, 19]. 

Despite the notable advancements, applications tend to be 
constrained by the specific contexts for which they were 
developed. Our research aims to bridge this gap by reinstating 
the non-stationary attributes of data within a more universally 
applicable model that any recommendation system can use. By 
integrating our model within deep learning the performance of 
traditional models that rely on stationary data processing can 
be improved. This enhancement not only underscores the 
robustness of the model but also its versatility across a broad 
spectrum of complex data scenarios. 

III. METHODOLOGY 
In this section, we will introduce the architecture of our 

new e-commerce recommendation system. The core concept 
is to add a non-stationary transformer as an extra layer. We 
will begin with a brief introduction to the non-stationary 
transformer, and then present our modified foundational 

structure. Finally, we demonstrate how it is integrated into a 
deep learning-based recommendation system, and its 
versatility and applicability. 

A. Modified Non-stationary Transformer 
The non-stationary transformer was initially introduced 

by Liu [17] to explore stationarity in time series forecasting. 
The architecture of the non-stationary transformers is shown 
in Figure 1. Where series rationalization is adopted as a 
wrapper on the base model to normalize each incoming series 
and de-normalize the output. De-stationary attention replaces 
the original Attention mechanism to approximate attention 
learned from un-stationarized series, which rescales current 
temporal dependency weights with learned de-stationary 
factors τ, ∆. 

Inspired by this architecture, Our Non-stationary 
Transformer is simpler and its projector and encoder are 
described as follows: 

Projector: Our projector is designed to detect and adapt to 
the evolving patterns within sequential datasets that describes 
item, user and interactions. The adaptation process 
commences with: 

where Xreduced represents the dimensionally reduced data 
obtained through averaging over the temporal dimension T. 
Following this, the data is processed through a series of 
transformation layers, each comprising a dense neural 
network structure with Leaky ReLU activation, encapsulated 
as: 

 
where Whidden and bhidden denote the weights and biases 

of the hidden layers, respectively. Then the final output, 
incorporating the essence of the non-stationary features, is 
rendered through: 

 
where tanh represents the hyperbolic tangent function, 

encapsulating the detected non-stationary aspects. 

Transformer Encoder: Our transformer encoder adds a 
self-attention mechanism specifically tailored for analysing 
complex sequential data. Integral to this encoder are the 
dynamic elements scale_learner and shift_learner. These 
elements are crucial for adapting to changes in data over time, 
with the scale_learner adjusting the significance of different 
temporal features and the shift_learner accommodating 
shifts in the data patterns or distributions. Together, they 

 Z = tanh(Y)                    (3) 

 
Fig. 1. Non-stationary Transformers architecture quoated from 

Liu [17] under CC BY-NC-ND 4.0. 

 

Y = Leaky ReLU(Whidden • Xreduced + bhidden)      (2)  
      

                                (1) 
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ensure the model’s attention mechanism remains attuned to 
the evolving characteristics of the sequential data, as 
expressed by: 

where σenc and μenc denote the standard deviation and 

mean of the input sequences, respectively. The adapted 
attention mechanism in our dynamic structure is formulated 
to accommodate the intricacies of non-stationary data. 
Specifically, Q′, K′, and V′ represent stabilised versions of the 
queries, keys, and values obtained from the original dataset. 

The attention function is represented as: 

In (5), the operation τ ⊙ (Q′K′⊤) effectively scales the dot 
product of the queries Q′ and keys K′ with the scaling factor 
τ, which is designed to adjust for time-varying aspects of the 
data. The term Δ introduces a shift to these scaled scores, 
further tailoring the attention scores to the non-stationary 
characteristics of the dataset. The normalization factor √dk, 
where dk denotes the dimensionality of the keys, ensures that 
the scaled dot products maintain a consistent variance, 
promoting stable gradients throughout the model. The 
softmax function is then applied to the resulting scores, 
converting them into a probability distribution. This step 
ensures that each value in the interval (0, 1) and the entire 
vector sums to 1. Finally, the attention scores are applied to 
the values V′ through a weighted sum. This multiplication 
aggregates the information across all values, weighted by 
their relevance as determined by the attention scores, 
culminating in the output of the attention mechanism. This 
output serves as a contextually enriched representation that 
synthesizes the most relative information from the input data, 
adjusted for both the temporal dynamics and the non-
stationary features inherent in the dataset. To ensure the 
stability and prevent overfitting of the model, a combination 
of layer normalization and dropout is applied to the attention 
output: 

 With this novel approach to handling non-stationary data 
through adaptive learning and dynamic adjustments, this 
architecture can be applied in designing transformer-based 
recommendation systems for complex and evolving datasets. 
To demonstrate this capability, we integrate this non-
stationary transformer into an exemplary recommendation 
system in the next section. 

B. Integrate non-stationary transformer into a 
Recommendation System 
We integrate our non-stationary transformer into a deep 

learning-based recommendation system that adopts the BST 
algorithm. This integration is just for testing and illustration 
purposes. It involves replacing the conventional transformer 

layers with our non-stationary transformer to capture temporal 
dynamics and distributional shifts in user behavior sequences, 
Figure 2 is the illustration of the integration. It consists of three 
layers: Embedding Layer, Non-stationary Transformer Layer  

Embedding Layer: The embedding layer initiates the 
adaptation process by transforming the multifaceted input data 
into compact, low-dimensional vector representations. The 
input data is categorized into three principal segments: (1) 
The core component comprises sequences of user-item 
interactions, encapsulating the dynamic interplay between 
user's selections among multiple alternative items over time. 
(2) Auxiliary features encompass a broad spectrum of 
attributes, including user demographics, product 
specifications, and contextual information, enriching the 
model’s understanding beyond mere interaction patterns. (3) 
The target item features primarily focus on characteristics of 
new or prospective items that are subjects of prediction. Each 
of these segments undergoes a distinct embedding process, 
resulting in specialized embeddings that collectively form a 
comprehensive representation of the multifaceted input 
within our model. This embedding strategy is crucial for 
capturing the nuanced relationships and attributes inherent in 
user behavioral sequences, auxiliary features, and target 
items. In addition, to preserve the sequential essence of user 
interactions, we assign temporal values based on the 
chronological distance between items evolving in a user’s 
interactions and the moment of selection to reflect the 
temporal sequence of user behaviors. 

Non-stationary Transformer Layer: We introduced a 
non-stationary transformer layer to replace the traditional 
transformer. This replacement improves the model’s ability 
to adapt temporal variations and data distribution shifts, 
enabling a deeper understanding of complex interaction-item 
relationships and user interaction patterns within a 
dynamically changing context.  

Multiple-Perceptron layer: The final part of our 
architecture is the Multiple-Perceptron layer. It is a series of 
the Leaky ReLU functions designed for the binary 
classification predicting user clicks or product scores. This 
final ensemble leverages the enriched features processed 
through the non-stationary transformer layers, which can be 
used to produce precise and context-aware recommendations. 

By adding the non-stationary transformer into the structure 
of the BST algorithm, our approach retains the original 
model’s capability to process user behavior sequences. It 
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Fig. 2. Illustration of the Enhanced BST Model with Non-stationary 
Tranformer Integration. 

 



significantly enhances the adaptability and predictive accuracy 
of user interaction. It is hoped that this novel integration will 
bring a significant improvement in deep learning-based 
recommendation systems, and result in superior performance 
in navigating the complexities of dynamic user behavior 
patterns 

IV. EXPERIMENTS 
To test the effectiveness of the integration, we have 

conducted tests to compare the performance of the proposed 
integration with the models without a non-stationary 
transformer. In our experimental analysis, we utilize a distinct 
dataset tailored to the specific for our study. 

A. Tenrec Dataset: QK-video 
Derived from Tencent’s renowned recommendation 

platforms, QQ BOW (QB) and QQ KAN (QK), the QK-video 
dataset focuses on video recommendations, encapsulating a 
vast range of user interactions including clicks, likes, shares, 
and follows. The dataset has over 5 million users and 3.75 
million items, resulting in a staggering 142 million clicks, 
alongside significant volumes of likes, shares, and follows. 
This extensive dataset, with its diverse feature set covering 
user demographics and item categories, is anonymized to 
ensure user privacy.  Including both positive and negative 
feedback provides a holistic view of user preferences, which is 
pivotal for refining deep learning models within 
recommendation systems. 

In our experiments, we divided the Tenrec video dataset 
into three subsets: 70% for training, 15% for validation, 
and 15% for testing. Table I provides a summary of these 
splits.  

TABLE I.  SUMMARY OF THE TENREC VIDEO DATASET SPLITS 

Set Records Users Items Video 
Categories 

User 
Features 

Seq 
Interactions 

Train 84,239,614 998,993 2,027,521 3 3 10 
Validate 18,051,346 985,099 1,104,613 3 3 10 

Test 18,051,346 985,315 1,104,678 3 3 10 

We trained two models on the training set: the baseline 
BST model and our enhanced version, which incorporated the 
non-stationary transformer. As depicted in Figure 3. 

From Fig. 3 we can see the baseline BST model’s loss 
gradually converges to approximately 0.43, while the Non-
stationary Transformer BST model demonstrates a more 
significant loss reduction, converging around 0.39. This 
notable difference indicates that our non-stationary trans-

former BST model achieves a lower train loss overall, 
suggesting an enhanced learning efficiency. Then, we plan to 
extend this comparative analysis to the test set to validate the 
models’ performance and ascertain whether the lower train 
loss translates to improved prediction accuracy on unseen 
data. 

During the validation, we conducted trials to determine 
the optimal batch size, considering the immense scale of the 
Tenrec video dataset, which contains over a hundred million 
records. Guided by Tenrec’s introduction, which suggests 
larger batch sizes for datasets of this magnitude, we 
experimented with batch sizes in powers of two: 1024, 2048, 
4096, and 8192. Fig. 4 indicates that larger batch sizes 
facilitated a more rapid decrease in loss. However, upon 
evaluating the largest batch size of 8192, we observed the loss 
diminishing to near zero, indicating a potential risk of severe 
overfitting. Consequently, based on these observations, we 
identified 4096 as the most suitable batch size for our 
experiments, balancing efficient learning with the need to 
avoid overfitting. 

B.  Comparison 
To compare performance, we selected several 

performance metrics in the test, including Logloss, AUC, and 
F1 score. We compare the models’ effectiveness with Tenrec 
data’s baseline models, such as Wide & Deep [2], DeepFM 
[1], NFM [20], and DCN [21].  

As Table II illustrates, our Non-stationary Transformer 
BST(NsT-BST) model achieved superior performance across 
all metrics. It outperformed the baseline BST model with a 
improvement of 8.31% in Logloss, an  increase of 0.81% in 
the AUC, and a 2.79% rise in the F1 score. Moreover, 
compared with other benchmark models, our Non-stationary 
Transformer BST model demonstrated a clear advantage, 
yielding the lowest Logloss and the highest scores in both 
AUC and F1 metrics. Notably, it surpassed the Wide & Deep 
model by a substantial margin, with improvements of 14.89% 
in Logloss, 0.84% in AUC, and a significant 4.91% in the F1 
score. Similar outperformance trends were observed against 

 
Fig. 3. Different Models Loss among Train Set 

 
Fig. 4. Different Batch Sizes Loss among Validate Set 

TABLE II． PERFORMANCE COMPARISON OF DIFFERENT MODELS 
Model Logloss AUC F1 score 

BST 0.4808 (+8.31%) 0.7921 (-0.81%) 0.7386 (-2.79%) 
NsT-BST 0.4439 0.7986 0.7598 
Wide & Deep 0.51 (+14.89%) 0.7919 (-0.84%) 0.7225 (-4.91%) 
DeepFM 0.508 (+14.51%) 0.793 (-0.70%) 0.7463 (-1.78%) 
NFM 0.508 (+14.44%) 0.7957 (-0.36%) 0.7512 (-1.13%) 
DCN 0.509 (+14.71%) 0.7927 (-0.74%) 0.7261 (-4.44%) 

 



the DeepFM, NFM, and DCN models across all metrics. 
These results show the exceptional ability of the Non-
stationary Transformer BST model to effectively predict 
click-through rates, showcasing its strength in handling the 
complex and dynamic nature of the data inherent in 
recommendation systems. Integrating the Non-stationary 
Transformer within the BST framework enhanced its learning 
efficiency on the training data. It solidified its robustness and 
accuracy, making it a superior model for the CTR prediction 
task. 

V. DISCUSSION 
Our experiments in deep learning-related models that are 

frequently used in recommendation systems have revealed the 
enhanced performance of the Non-stationary Transformer 
BST model over the baseline BST.  Notably, the Non-
stationary Transformer BST model achieved lower Logloss 
and higher AUC and F1 scores, indicating superior predictive 
accuracy and classification quality.  This improvement 
suggests that accommodating the non-stationary aspects of 
user interaction data can significantly enhance the 
effectiveness of recommendation systems. Moreover, the 
observed benefits were consistent across various baseline 
models, emphasising the robustness and generalisability of 
our proposed approach. 

However, it is our desire to firmly approve the integration 
of the Non-stationary Transformer into recommendation 
systems can capture the change of the user interest while new 
and dynamic items are presented. Due to the difficulty of 
finding suitable target systems for comparison. We only 
stopped at the level of model’s performance where the 
comparison can be made. However, our experiments 
highlighted the feasibility and possibility of considering 
temporal dynamics and non-stationarity in user, item and 
interaction data when designing algorithms for 
recommendation systems.  The findings advocate for a 
paradigm shift toward models that accommodate data 
dynamics and its evolving nature. The superior performance 
of the Non-stationary Transformer enhanced models suggests 
that such architectures could be easily build critical for 
recommendation systems.  

Future research could explore the scalability of Non-
stationary Transformer models in even larger datasets and 
their adaptability across different domains.  Additionally, 
investigating the interpretability of these models could yield 
further insights into the nature of the complex patterns they 
learn, potentially guiding the design of even more effective 
recommendation systems. 

VI. CONCLUSIONS 
 This study has presented an examination of integrating 

Non-stationary Transformer for recommendation systems 
with a hope that it can capture the change of user, item and 
interactions data that we believe are the fundamental reasons 
for user interests shifting when new items emerged. We tested 
the integration of Non-stationary Transformer with a 
commonly used BST model. Our primary test demonstrated 
considerable superiority over the baseline BST and other 
benchmark models. The results indicated that the integration 
of Non-stationary Transformer can capture the non-stationary 
nature of user, item and interaction data. Those temporal 
dynamics that traditional models often overlook. Despite its 
strengths, our study also revealed some potential issues such 
as the increase of the computational complexity of Non-

stationary Transformer models. It is significantly higher than 
that of more simplistic models, which may present scalability 
challenges in larger or more dynamic environments. For the 
moment, our priority is to embed Non-stationary Transformer 
into more deep learning-based recommendation models and 
test them for recommendation tasks and prove the 
effectiveness of capturing user interests shifting.  
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