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The	research	aims	at	applying	the	convolutional	neural	network	(CNN)	including	LeNet5,	AlexNet,	and	Visual	Geometry	Group	
(VGG)	with	16	weight	 layers	to	directly	classify	among	4	categories	of	 fully	encrypted	images	that	were	encrypted	by	various	
cryptographic	algorithms	involving	Advanced	Encryption	Standard	(AES),	Blowfish,	Data	Encryption	Standard	(DES),	and	Triple	
DES	(TDES)	into	without	decryption	to	establish	a	secure	image	querying	technique.	The	investigation	was	implemented	with	
three	 concrete	 tasks.	 Firstly,	 used	 CNN	 models	 to	 recognize	 enciphered	 images	 with	 different	 encryption	 algorithms	 or	
cryptographic	keys.	 Secondly,	 applied	CNN	models	 to	 classify	 enciphered	 images	with	 simulated	 inference	of	Gaussian	noise.	
Thirdly,	employed	CNN	models	to	identify	encrypted	images	with	simulated	inference	of	the	reduction	of	contrast	ratios.	

The	results	achieved	secure	image	recognition	and	proved	the	underlying	capability	of	the	CNN	models	to	recognize	encrypted	
images	even	with	the	interference	of	Gaussian	noise	and	lower	contrast	ratio,	which	mostly	are	impossible	for	human	beings	with	
normal	vision	to	distinguish.	Furthermore,	 the	study	initially	showed	that	the	 increased	cryptographic	strengths	of	encrypted	
images	usually	caused	an	implicit	impact	on	the	accuracy	of	the	three	CNN	models.	Conversely,	the	variations	in	the	severity	of	
Gaussian	noise	on	enciphered	images	and	the	contrast	ratio	of	encrypted	images	could	have	explicit	impacts	on	the	accuracy	of	
the	models.	 The	 results	 also	 reflected	 that	 LeNet-5	 is	 the	most	 suitable	 CNN	model	 for	 recognizing	 enciphered	 images	with	
different	encryption	strengths	and	recognizing	enciphered	images	with	Gaussian	noise.	Moreover,	all	three	CNN	models	could	be	
suitable	when	analyzing	encrypted	images	with	reduced	contrast	ratio	according	to	the	degree	of	reduction	of	the	contrast	ratio.		
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1 INTRODUCTION 

Wang	et	al.	[1]	introduced	that	an	increasing	number	of	private	images	are	stored	in	the	cloud	as	the	development	
of	cloud	computing.	Besides	storing	data,	many	different	services	like	data	analytics	and	image	querying	have	been	
available	to	users,	where	a	desired	object	 is	specified	and	then	the	relevant	and	similar	 images	can	be	queried.	
Currently,	encrypting	private	images	like	medical	images	in	the	cloud	to	protect	sensitive	information	is	necessary,	
but	the	decryption	risks	revealing	the	private	information	of	encrypted	images	[1],	and	the	occurrences	of	noise	
and	the	variations	of	contrast	ratio	may	unexpectedly	happen	to	images	during	storage	and	transmissions,	the	two	
interferences	probably	cause	images	to	be	comparatively	indistinguishable	after	image	decryption.	
To	address	these	challenges,	the	study	aims	to	apply	CNN	models,	one	of	the	model	types	for	deep	learning	to	

directly	recognize	completely	encrypted	images	without	decryption,	for	Lidkea	et	al.	[2]	insisted	that	CNN	models	
can	identify	widely	diverse	objects	into	specific	classes,	 ignoring	the	context	of	the	image	itself,	and	Lindsay	[3]	
considered	that	the	model	architecture	of	the	CNN	models	contributes	them	to	be	suitable	candidates	for	simulating	
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the	visual	nervous	system.	Moreover,	the	psychometric	function	was	applied	to	evaluate	model	performance.	Such	
functions	originally	correlate	response	levels	of	the	subject	to	physical	stimulus	levels	of	the	subject	and	provide	
the	essential	data	for	psychophysics,	with	the	abscissa	of	the	function	being	the	stimulus	intensity	and	the	ordinate	
measuring	 the	 response	 level	 [4].	 Evaluating	 the	 performance	 of	 each	 CNN	 model	 by	 utilizing	 psychometric	
functions	assists	in	selecting	the	best-suited	model	for	the	three	tasks,	which	contain	classifying	enciphered	image	
datasets	that	are	encrypted	by	various	encryption	methods	(algorithms	and	encryption	keys),	 identifying	image	
datasets	with	 identical	 encryption	 schemes	but	different	 severity	of	noise,	 and	recognizing	datasets	with	 same	
cryptographic	methods	while	diverse	contrast	 ratios.	 Introducing	 the	 interference	of	noise	and	 the	variation	of	
contrast	ratios	to	the	last	two	tasks	was	to	simulate	real-world	environmental	factors	that	potentially	affect	the	
accuracies	of	the	image	classification.	The	best	CNN	model	among	all	models	used	in	the	tasks	would	maximally	
maintain	its	performance	under	the	influences	of	cryptographic	strength,	Gaussian	noise,	and	contrast	ratio.	
Securer	image	recognition	is	one	of	the	main	significances	of	the	proposed	work	since	recognizing	enciphered	

images	without	decryption	is	normally	more	confidential	than	the	traditional	process	that	first	decrypts	encrypted	
images	and	then	classifies	them.	Furthermore,	the	most	suitable	model	for	each	of	the	tasks	helps	humans	identify	
encrypted	images	that	have	been	damaged	to	varying	degrees	due	to	their	robustness	under	some	interference.	

2 LITERATURE REVIEW 

The	section	will	summarize	related	research	on	the	encrypted	image	classification	from	a	relatively	earlier	point	in	
time	to	the	present.		
Previously,	Wang	et	al.	[1]	employed	an	ML-ELM	to	classify	enciphered	images	without	decryption	to	efficiently	

and	securely	recognize	if	an	enciphered	image	included	the	required	object.	Their	proposed	framework	showed	
that	photos	were	encrypted	by	AES	or	DES	before	they	were	stored	in	the	cloud	as	their	privacy	should	not	be	leaked	
to	unauthorized	entities	and	cloud	service	providers.	Resembling	an	image	retrieval	system,	the	framework	would	
categorize	all	encrypted	images	into	two	categories	to	determine	without	decryption	whether	the	enciphered	image	
contained	 a	 queried	 object	 if	 a	 photo	 query	 is	 specified.	 Thus,	 queried	 images	 can	 be	 efficiently	 queried	 from	
numerous	encrypted	images	without	the	leakage	of	privacy	information	during	retrieval	in	the	cloud.	The	testing	
accuracy	of	ML-ELM	under	DES	encryption	was	90.44%	and	AES	was	79.83%,	which	demonstrated	the	performance	
of	the	model	can	still	be	improved,	so	Wang	et	al.	[1]	suggested	customizing	an	encryption	method	for	ML-ELM.			
In	2020,	Lidkea	et	al.	[2]	proposed	an	image	classification	framework	based	on	CNN	for	recognizing	encrypted	

images	of	different	types	of	vehicles	from	the	intelligent	transportation	system	(ITS)	by	merely	partially	decrypting	
them	to	ensure	the	confidentiality	of	sensitive	information	such	as	license	and	plate	numbers.	The	classification	
accuracy	was	86.8%	leveraging	less	than	6,250	images	with	AES	operated	in	the	Output	Feedback	(OFB)	mode.	In	
addition,	the	experiment	results	indicated	that	compared	with	a	completely	decrypted	system,	the	proposed	partial	
decryption	classification	scheme	emerged	with	up	to	18%	decrement	in	average	computational	complexity.	The	
results	also	proved	that	the	identification	of	road	vehicles	is	feasible	by	utilizing	the	partially	encrypted	dataset	[2].		
Alzamily	et	al.	[5]	published	that	they	classified	encrypted	images	by	a	CNN	model	named	ResNet50	without	

decoding	in	2022.	The	dataset	was	Modified	National	Institute	of	Standards	and	Technology	(MNIST),	originally	
consisting	 of	 70,000	 images	with	 60,000	 for	 training	 and	 10,000	 for	 testing.	 During	 the	 evaluation,	 ResNet50	
accomplished	99.75%	accuracy,	 94.12%	 recall,	 94.23%	precision,	 and	94.70%	F1-score	 on	 the	 testing	 set.	 The	
accuracy	was	higher	than	in	previous	studies.	Therefore,	the	research	evidenced	that	ResNet50	can	directly	identify	
encrypted	images	without	decryption.	Whereas	this	research	only	involved	AES,	to	avoid	any	contingency,	other	



cryptographic	algorithms	such	as	DES	and	Blowfish	can	be	employed	to	explore	the	performance	of	the	ResNet50	
model	under	their	encryption	[5].	

3 METHODOLOGY 

3.1 Psychometric Function 

A	psychometric	function	is	a	mathematical	function	mapping	from	the	stimulus	to	the	response	level,	which	can	
typically	be	a	statistical	criterion	like	the	percentage	of	correct	samples	in	some	projects.	Usually,	the	psychometric	
function	is	presented	in	a	sigmoid	shape,	for	the	variation	of	the	response	is	not	instantaneous	as	they	are	variable,	
so	the	same	response	for	each	stimulus	is	generally	impossible	[6],	[7].	Specifically,	the	psychophysical	threshold	
and	the	slope	are	two	typical	characteristics	of	the	psychometric	function.	Firstly,	the	psychophysical	threshold	in	
a	psychometric	function	can	be	defined	by	arbitrarily	selecting	a	specific	performance	level	and	then	referring	to	
its	corresponding	stimulus	level	as	the	threshold.	Such	a	threshold	can	be	determined	whether	the	responses	of	a	
psychometric	function	going	from	0	to	100	percent	which	is	shown	in	the	left	subplot	of	Figure	1	as	determining	if	
a	center	square	has	an	intensity	difference	𝜏,	compared	to	𝑠!,	the	background	intensity	of	square,	or	the	responses	
going	from	50	to	100	percent	that	displayed	in	the	right	subplot	of	Figure	1	if	an	increment	𝜏	is	detected	as	present.	
Secondly,	the	slope	of	the	psychometric	function	is	known	as	the	rate	of	variability	of	perception,	which	reflects	the	
change	of	the	responses	for	a	single	stimulus	level	[7].	

          

Figure 1: The Responses of a Psychometric Function [6]. 

Langer	[6]	reflected	that	in	the	experiments	about	psychophysics,	the	reasons	why	a	gradual	change	in	the	
response	level	were	diverse	sources	of	uncertainty	the	subjects	confront	during	executions,	including	noise	in	the	
stimulus	or	display,	limited	resolution	of	the	vision	devices,	and	incorrect	operations	of	the	subjects	may	affect	the	
response	level.	Likewise,	in	classifying	encrypted	image	classification	tasks,	the	subject	can	be	various	CNN	models,	
the	 stimulus,	 which	 is	 the	 explanatory	 variable	 of	 the	 function,	 can	 be	 noise,	 contrast	 ratio,	 or	 different	
cryptographic	algorithms	and	encryption	keys.	The	recognition	accuracy,	the	response	variable	of	the	function,	can	
work	as	the	response	level.	



3.2 CNN Models 

Typical	CNN	models	involving	LeNet-5,	AlexNet,	and	the	VGG	network	with	16	weight	layers	(VGG16)	were	used	in	
the	encrypted	image	identification	tasks.	Commonly,	the	CNN	model	contains	an	input	plane,	convolutional	layers,	
sampling	layers,	and	fully	connected	layers.	Firstly,	the	input	plane	receives	ultimately	size	normalized	and	centered	
images.	Subsequently,	each	unit	in	a	current	layer	receives	inputs	from	a	set	of	units	positioned	in	a	relatively	small	
neighborhood	in	the	former	layer.	Moreover,	units	in	a	layer	are	organized	in	several	planes	within	which	all	the	
units	 share	an	 identical	 set	of	weights.	The	set	of	outputs	of	 the	units	 in	 such	a	plane	 is	named	a	 feature	map.	
Secondly,	an	integrated	convolutional	layer	consists	of	multiple	feature	maps	with	distinguished	weight	vectors,	
thereby	multiple	 features	 can	 be	 extracted	 at	 each	 position.	 The	 kernel	 in	 the	 convolution	 layer	 is	 the	 set	 of	
connection	weights	applied	by	the	units	in	the	feature	map.	Thirdly,	the	subsampling	layer,	which	executes	a	local	
averaging	and	a	subsampling,	so	that	reducing	the	resolution	of	the	feature	map	and	weakening	the	sensitivity	of	
the	 output	 to	 distortions	 and	 shifts.	 [8].	 Importantly,	 the	 input	 size	 of	 each	 CNN	model	 was	 customized	 and	
consistent	in	enciphered	image	classification	tasks.	The	elaborations	of	the	three	CNN	models	are	listed	as	follows.	
The	customized	dimension	of	the	input	image	is	90×90×3.	

3.2.1 LeNet-5. 

LeNet-5	contains	7	layers	except	for	the	input	layer	and	the	flattened	layer,	all	of	which	comprise	trainable	weights.	
The	first	convolutional	layer,	with	6	feature	maps.	Every	unit	in	each	feature	map	has	25	inputs	which	are	connected	
to	a	neighborhood	in	the	input	layer	with	both	the	width	and	height	are	5	pixels,	such	unit	is	titled	the	receptive	
field	of	 the	unit.	The	width	and	height	of	 the	 feature	maps	are	both	86	pixels,	which	ensures	every	unit	of	 the	
neighborhood	to	respectively	correspond	to	a	unit	in	the	input	layer.	The	first	subsampling	layer	has	6	feature	maps	
of	size	which	is	multiplied	by	a	43-pixel	width	and	a	43-pixel	height.	Each	unit	in	every	feature	map	is	connected	to	
a	neighborhood	with	a	2-pixel	height	and	a	2-pixel	width	in	the	corresponding	feature	map	of	the	first	convolutional	
layer.	The	receptive	field	with	the	area	2×2	is	non-overlapping,	thus	the	number	of	columns	and	rows	of	feature	
maps	output	from	the	first	subsampling	layer	is	half	of	the	number	of	columns	and	rows	of	feature	maps	in	the	first	
convolutional	 layer.	Furthermore,	 the	convolutional	 layer	 is	equipped	with	a	sigmoidal	activation	 function.	The	
second	convolutional	layer	has	16	feature	maps	with	a	size	of	39×39.	Every	unit	in	each	feature	map	is	connected	
to	multiple	5×5	neighborhoods	at	the	same	locations	in	a	subset	of	feature	maps	of	the	first	subsampling	layer.	The	
second	subsampling	layer	includes	16	feature	maps	of	size	which	is	multiplied	by	a	19-pixel	width	and	a	19-pixel	
height.	Each	unit	per	feature	map	is	connected	to	a	2×2	neighborhood	in	the	corresponding	feature	map	in	the	
second	convolutional	layer.	The	first	fully	connected	layer	contains	120	feature	maps.	Each	unit	in	each	feature	map	
is	connected	to	a	19×19	neighborhood	on	all	16	feature	maps	of	the	second	subsampling	layer.	The	second	fully	
connected	layer	comprises	84	units	and	is	fully	connected	to	the	first	fully	connected	layer.	Eventually,	the	output	
layer	is	composed	of	4	units	since	the	dataset	that	will	be	specified	in	the	section	titled	Dataset	has	4	classes,	so	one	
unit	for	each	category,	with	84	inputs	each.	All	the	feature	maps	in	convolutional	layers	and	fully	connected	layers	
except	 the	 output	 layer	 are	 passed	 through	 hyperbolic	 tangent	 (tanh)	 activation	 functions,	 and	 the	 activation	
function	of	the	output	layer	is	a	SoftMax	[8].	

3.2.2 AlexNet. 

The	CNN	model	comprises	8	layers	with	weights,	the	first	5	of	them	are	convolutional	layers	and	the	remaining	3	
layers	are	fully	connected	layers.	The	output	of	the	last	fully	connected	layer	is	fed	to	a	4-way	SoftMax	that	yields	a	



distribution	over	the	4	category	labels.	The	first	convolutional	layer	filters	the	input	image	with	96	kernels	of	each	
kernel	 size	 11×11×3	 with	 a	 stride	 of	 4	 pixels.	 The	 second	 convolutional	 layer	 filters	 the	 output	 of	 the	 first	
convolutional	layer	with	256	kernels	of	size	that	are	multiplied	by	the	5-pixel	height,	5-pixel	width,	and	48-pixel	
channels.	The	third	convolutional	layer	has	384	kernels	of	size	which	are	multiplied	by	the	3-pixel	width,	3-pixel	
height,	and	256-pixel	channels	connected	to	the	outputs	of	the	second	pooling	layer.	The	fourth	convolutional	layer	
has	384	kernels	with	the	size	3×3×192,	and	the	fifth	convolutional	layer	has	256	kernels	with	the	same	size	as	the	
fourth	convolutional	layer.	Each	of	the	two	fully	connected	layers	has	4096	neurons.	Additionally,	except	for	the	
output	 layer,	 the	 activation	 functions	 of	 all	 convolutional	 and	 fully	 connected	 layers	 are	Rectified	 Linear	Units	
(ReLUs),	which	can	be	expressed	as		

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)	
where	𝑓	indicates	the	output	function	of	a	neuron	in	AlexNet	and	𝑥	is	the	input	of	𝑓	[9].	Innovatively,	a	technique	
named	dropout	that	aided	reduce	the	severity	of	overfitting	was	applied	to	AlexNet.	The	main	idea	of	dropout	is	
randomly	eliminating	units	for	each	training	batch.	The	quantity	of	units	to	drop	is	controlled	by	a	hyperparameter	
of	dropout	called	the	dropout	rate,	which	was	set	as	0.5	 in	the	experiment	to	demonstrate	every	hidden	unit	 is	
randomly	removed	from	the	network	with	a	probability	of	50%.	[10].	

3.2.3 VGG16. 

The	VGG16	that	was	imported	from	Keras	Application	Programming	Interface	(API)	[11]	in	the	experiments	has	
been	pre-trained.	The	input	image	is	passed	through	a	stack	of	convolutional	layers	whose	filters	with	receptive	
field	whose	width	and	height	both	are	3	pixels	or	1	pixel.	Max	pooling	layers	are	also	performed	with	a	2×2	pooling	
size	and	stride	2	for	each	pooling	layer	[12].		
However,	in	this	investigation,	the	customized	dimension	of	the	input	image	was	different	from	the	required	

input	size	of	224×224×3.	Consequently,	to	implement	transfer	learning	of	the	pre-trained	model	to	all	the	tasks	of	
the	investigation,	the	required	input	size	of	the	model	was	initially	defined	to	90×90×3,	and	then	a	flattened	layer	
and	 3	 fully	 connected	 layers	 were	 added	 based	 on	 the	 requirement	 of	 the	 API	 document.	 The	 first	 two	 fully	
connected	layers	have	4096	channels	each,	and	the	third	includes	4	channels	one	channel	per	class.	The	activation	
functions	of	all	hidden	layers	are	ReLUs	[12].		

3.3 Encryption Algorithms 

Images	were	encrypted	through	encryption	algorithms	comprising	AES,	DES,	Blowfish,	and	TDES	in	the	research.	
These	algorithms	were	also	ranked	based	on	their	encryption	strength.	A	high	avalanche	effect	 indicates	a	high	
degree	 of	 diffusion,	 which	 is	 one	 of	 the	 metrics	 for	 evaluating	 the	 cryptographic	 strength	 of	 an	 enciphering	
algorithm.	Entropy	is	also	a	metric	that	indirectly	reflects	the	encryption	strength	of	the	encryption	algorithm	as	
such	a	metric	demonstrates	randomness	in	the	information,	and	with	high	randomness,	the	relationship	between	
key	and	ciphertext	becomes	sophisticated	for	an	attacker	to	guess	[13].	Consequently,	Patil	et	al.	[13]	concluded	
that	 AES	 is	 the	 best-suited	 algorithm	 if	 encryption	 strength	 is	 of	 the	 highest	 priority	 in	 the	 application	 after	
comparing	 the	 cryptographic	 strengths	 of	 the	 remaining	 algorithms.	 Furthermore,	 Blowfish	 performs	 more	
confidential	than	TDES,	and	TDES	is	more	secure	than	DES.	Generally,	the	longer	the	secret	key	of	a	cryptographic	
algorithm	contributes	to	the	cryptographic	strength.	Take	AES	and	DES	as	exemplifications	to	explain	their	work	
mechanisms. 



3.3.1 AES. 

This	algorithm	can	use	cryptographic	keys	of	16,	24,	and	32	bytes	in	length	to	encipher	and	decipher	data	in	blocks	
of	16	bytes.	The	length	of	the	input	block,	the	output	block,	and	the	State	of	the	AES	algorithm	is	128	bits,	which	is	
equivalent	to	16	bytes.	The	number	of	rounds	to	be	executed	of	the	AES	algorithm	depends	on	the	key	length.	AES	
with	the	16-byte	encryption	key	corresponds	to	10	rounds,	AES	with	the	24-byte	encryption	key	needs	to	perform	
12	rounds,	and	14	rounds	to	be	performed	during	the	execution	of	the	AES	with	the	32-byte	secret	key	[14].	

3.3.2 DES. 

The	64	bits	of	the	input	block	of	the	flow	of	encryption	by	DES	to	be	encrypted	are	first	permuted,	defined	as	the	
initial	permutation	(IP).	After	IP,	permuted	input	consists	of	a	32-bit	block	𝐿!	and	a	32-bit	block	𝑅!	is	formed.	Utilize	
the	blocks	to	iterations,	which	can	be	expressed	as	

𝐿" = 𝑅"#$	
𝑅" = 𝐿"#$⨁𝑓(𝑅"#$, 𝐾")	

where	𝑛	ranges	 from	1	 to	16	and	𝐾"	is	an	output	48-bit	block	extracted	 from	the	64-bit	 input	block,	which	 is	
𝐾" = 𝐾𝑆(𝑛, 𝐾𝑒𝑦)	

where	𝑛	also	 ranges	 between	 1	 and	 16,	𝐾𝑒𝑦	is	 a	 64-bit	 block,	 and	𝐾𝑆	is	 named	 the	 key	 schedule	 function	 that	
determines	𝐾"	within	a	certain	iteration.	Thus,	the	preoutput	blocks	are	𝐿$%	and	𝑅$%.	Finally,	the	blocks	go	through	
the	inversed	IP	to	output	the	ciphertext	[15].	

3.4 Noise and Contrast Ratio 

The	tasks	introduced	Gaussian	noise	to	interfere	with	the	recognition	of	enciphered	images.	 Wang	 et	 al.	 [16]	
illustrated	 that	 Gaussian	 noise	 is	 defined	 by	 its	 Probability	 Density	 Function	 (PDF).	 The	 universal	 PDF	 of	 the	
univariate	Gaussian	noise	is	

𝑝(𝑥) =
1

√2𝜋𝜎&
𝑒#

((#))!
&+! , −∞ < 𝑥 < +∞	

where	𝜇	represents	 the	mean	value	and	𝜎& 	denotes	 the	variance,	 so	𝜎	stands	 for	 the	 standard	deviation,	which	
determines	the	error	severity	in	terms	of	Cheng	et	al.	[17].	Specifically,	a	larger	standard	deviation	value	contributes	
to	more	severe	errors	of	Gaussian	noise,	and	vice	versa.	In	the	tasks,	𝜇	was	set	as	0,	and	𝜎	was	set	from	0	to	0.35.	
Particularly,	to	simulate	real-world	noise	interference,	which	is	commonly	irregular	and	unpredictable,	so	random	
seed	was	not	set	in	this	study	although	the	application	of	fixed	random	seed	enables	the	experimental	conditions	to	
be	more	controllable,	especially	in	the	comparison	of	different	interference	to	weaken	the	role	of	instability	factors.	
Contrast	ratio,	the	ratio	of	luminance	between	the	brightest	and	darkest	instances	of	an	image	[18],	is	another	

interference	to	the	task.	In	the	tasks,	the	contrast	ratio	of	enciphered	images	was	decreased	with	varying	degrees	
to	explore	the	relationship	between	contrast	ratio	and	accuracy	of	image	identification.	A	function	of	Open	Source	
Computer	Vision	Library	(OpenCV)	called	convertScaleAbs	achieved	different	levels	of	reduction	of	contrast	ratio.	

3.5 Experiment Setup 

During	the	experiment,	the	employed	hardware	that	supported	the	proceeding	of	the	experiment	was	a	machine	
with	 a	 processor	 titled	 Intel(R)	 Core(TM)	 i9-10920X	CPU	@	3.50GHz	3.50	GHz,	 a	 graphics	 card	 called	NVIDIA	
GeForce	 RTX	 3090,	 and	 a	 RAM	with	 executing	 memory	 is	 64.0	 GB	 (63.7	 GB	 usable).	 The	 leveraged	 software	
contained	 a	 platform	 named	 Anaconda	 and	 PyCharm	 Community	 Edition	 worked	 as	 a	 web-based	 Integrated	
Development	Environment	(IDE)	to	implement	and	execute	Python	programs.	



4 IMPLEMENTATION 

The	implementation	contains	the	descriptions	of	the	dataset	in	usage	and	the	major	steps	of	the	tasks.	

4.1 Dataset 

The	dataset	used	in	this	research	was	titled	Brain	Tumor	Magnetic	Resonance	Imaging	(MRI)	dataset	[19],	which	
has	four	classes	involving	glioma,	meningioma,	pituitary,	and	no	tumor.	Figure	2	shows	the	sample	image	for	each	
category.	There	are	5712	images	in	the	training	set	and	1311	in	the	testing	set.	The	image	counts	based	on	different	
class	labels	in	the	training	and	testing	set	are	listed	in	Table	1,	which	also	reflects	that	the	quantity	of	training	images	
in	4	various	categories	is	comparatively	balanced.	

 

Figure 2: Mixing Data on the State Column-by-column [5]. 

Table 1: Number of Image in Each Category 

Category	 Number	of	Images	in	Training	Set	 Number	of	Images	in	Testing	Set	
Pituitary	 1457	 300	
No	Tumor	 1595	 405	
Glioma	 1321	 300	

Meningioma	 1339	 306	

4.2 Data Preprocessing 

Generally,	 the	 training	 and	 testing	 sets	were	 respectively	preprocessed	during	 the	data	preprocessing	process.	
Firstly,	 the	preprocessing	of	 the	 training	 set	was	 composed	by	 filtering	 images	 that	were	exceptionally	 loaded,	
eliminating	blurred	images,	data	augmentation	by	rotating	every	image	at	a	45-degree	angle	in	the	training	dataset,	
removing	similar	images	with	setting	the	similarity	of	0.999	as	the	threshold,	reshaping	rest	of	the	images	in	the	
training	 set	 into	 the	 size	 of	 128×128.	 Secondly,	 the	 preprocessing	 of	 the	 testing	 dataset	 consisted	 of	 deleting	
damaged	images	in	the	testing	dataset,	and	reshaping	the	rest	of	the	images	into	the	size	of	128×128.	Subsequently,	
for	images	in	the	training	dataset	and	testing	set,	respectively	added	Gaussian	noise	to	each	image,	reduced	the	
contrast	ratios	of	every	image,	and	encrypted	each	image	with	a	certain	cryptographic	algorithm	and	a	key.	Crucially,	
all	the	keys	generated	during	the	experiments	were	only	used	for	image	encryption.	Finally,	labeled	every	image	in	
the	datasets	according	to	the	class	of	the	image.	New	datasets	would	be	generated	during	data	preprocessing.	
Innovatively,	loaded	the	encrypted	images	that	were	in	the	Joint	Photographic	Experts	Group	(JPEG)	form	in	the	

local	by	a	built-in	function	of	Python	instead	of	applying	two	Python	packages	OpenCV	and	Python	Image	Library	
(PIL)	as	the	packages	raised	errors	when	loading	such	images.	The	loaded	image	data	was	in	the	form	of	bytes.	Then,	
convert	the	bytes	into	Numerical	Python	(NumPy)	arrays	for	model	training	and	testing.	After	converting	the	bytes	
to	NumPy	arrays	through	a	function	in	a	Python	package	NumPy	titled	frombuffer,	multiple	sub-arrays	were	nested	
in	each	array,	thereby	an	extra	procedure	was	to	uniform	the	lengths	of	sub-arrays	of	every	array.	
After	data	preprocessing,	20	training	sets	and	167	testing	sets	would	be	generated.	Compared	to	other	training	

and	testing	sets	that	were	filled	with	enciphered	images,	a	training	dataset	and	a	testing	dataset	entirely	contained	
unencrypted	images	for	blank	control	to	help	evaluate	the	performances	of	CNN	models	in	various	conditions.	



4.3 Model Training and Testing 

Consistently,	 the	 loss	 function	 applied	 was	 Sparse	 Categorical	 Crossentropy,	 and	 the	 used	 optimizer	 was	 the	
Adaptive	Moment	Estimation	(Adam)	optimizer.	All	CNN	models	were	trained	employing	a	batch	size	of	96	images	
over	50	epochs.	Applying	K-fold	Cross	Validation	with	the	value	K	was	set	to	5.	During	the	cross-validation	process,	
the	training	dataset	would	be	divided	into	a	smaller	training	set	and	a	validation	set	with	a	constant	ratio.	Lidkea	et	
al.	 [2]	concluded	that	validation	datasets	are	to	validate	whether	the	model	performed	well	at	recognizing	new	
images	that	have	been	unseen	by	the	trained	model.	Testing	sets	were	the	external	data	for	the	final	evaluation	of	
the	model	performance.	The	implementation	of	the	three	tasks	in	this	project	is	elaborated	as	follows.	
Initially,	to	explore	the	relationship	between	the	cryptographic	strengths	and	classified	accuracies.	The	three	

CNN	models	were	respectively	trained	by	all	the	training	sets	to	derive	60	different	versions	of	trained	CNN	models,	
20	versions	for	LeNet,	20	for	AlexNet,	and	20	for	VGG16.	Then	the	model	was	used	to	test	corresponding	testing	
datasets	enciphered	by	the	same	algorithm	and	the	same	length	of	encryption	key.	For	instance,	if	AlexNet	is	trained	
in	a	training	set	that	is	encrypted	by	AES	with	a	secret	key	length	of	16	bytes,	the	trained	model	should	classify	the	
testing	dataset	which	was	also	encrypted	by	AES	with	the	16-byte	key.	
Furthermore,	to	measure	the	influences	of	different	severity	of	noise	on	encrypted	images,	firstly	the	three	CNN	

models	recognized	the	encrypted	images	in	the	training	set	without	adding	noise.	Afterward,	the	trained	models	
identified	encrypted	images	in	the	testing	set	that	were	enciphered	by	the	same	algorithm	as	the	training	encrypted	
images.	 For	 example,	 if	 VGG16	 is	 trained	 on	 the	 training	 dataset	 which	 is	 enciphered	 by	 Blowfish	 with	 a	
cryptographic	 key	 length	 of	 50	 bytes.	 The	 trained	VGG16	would	 then	 be	 employed	 to	 classify	multiple	 testing	
datasets	encrypted	by	Blowfish	with	a	50-byte	key	and	different	strengths	of	Gaussian	noise.	
Similarly,	the	relationship	between	the	contrast	ratios	of	the	enciphered	images	and	the	recognized	accuracies	

can	be	implemented	by	transferring	the	trained	model	of	the	training	dataset	without	any	contrast	ratio	reduction	
to	a	set	of	testing	datasets	with	various	contrast	ratios.	The	training	set	and	testing	sets	should	share	the	same	
cryptographic	algorithms	and	encryption	keys.	

4.4 Results 

All	three	tasks	proved	the	ability	of	CNN	to	classify	encrypted	images.	The	experiment	results	of	the	first	tasks	were	
visualized	in	Figure	3,	Figure	4,	and	Figure	5,	where	the	first	tick	label	in	their	horizontal	axis	indicates	datasets	of	
unencrypted	images.	Each	of	the	other	labels	consists	of	the	abbreviation	of	the	encryption	algorithm	and	the	length	
of	the	secret	key	with	the	unit	of	byte.	For	instance,	the	tick	label	des08	indicates	the	images	were	enciphered	by	
DES	and	an	8-byte	key.	The	three	figures	demonstrate	that	the	classified	accuracies	of	CNN	models	on	enciphered	
images	would	not	be	distinctly	affected	by	the	increment	of	encryption	strength.	One	of	the	possible	reasons	was	
that	frombuffer	helped	interpret	some	patterns	or	features	which	is	compatible	with	CNN	to	learn	by	converting	
encrypted	image	data	in	the	form	of	bytes	into	NumPy	array	despite	the	interpretation	might	be	so	limited	that	
could	not	be	affected	by	the	change	of	cryptographic	strength.	Nevertheless,	all	the	testing	accuracies	of	CNN	models	
identified	on	unencrypted	images	were	more	than	90%,	which	performed	much	better	than	CNN	models	classified	
encrypted	 images,	whose	 testing	 accuracies	were	 around	 40%,	 for	 the	 unenciphered	 images	 could	 be	 read	 by	
OpenCV	while	enciphered	counterparts	could	not,	and	frombuffer	might	 inevitably	cause	the	 loss	of	 features	or	
patterns	of	 enciphered	 images.	Particularly,	 the	 lower	 limit	of	 testing	accuracies	 from	LeNet-5	was	 the	highest	
among	the	other	two	CNN	models,	which	was	43.4%,	so	LeNet-5	was	probably	more	suitable	for	analyzing		
encrypted	images	with	different	encryption	schemes.		



 

Figure 3: The Relationship between Encryption Strengths and Classified Accuracies (Trained and Tested by LeNet-5) 

 

Figure 4: The Relationship between Cryptographic Strengths and Classified Accuracies (Trained and Tested by AlexNet) 



 

Figure 5: The Relationship between Cryptographic Strengths and Classified Accuracies (Trained and Tested by VGG16) 

Moreover,	the	results	of	the	second	task	are	shown	in	Figure	6,	Figure	7,	and	Figure	8.	Figure	6,	Figure	7,	and	
Figure	8	imply	that	the	rising	strength	of	Gaussian	noise	generally	causes	obvious	reductions	in	testing	accuracies	
of	 the	 three	CNN	models	despite	 several	 fluctuations	 in	 the	accuracies.	Mostly,	 LeNet-5	attained	higher	 testing	
accuracies	than	VGG16	and	AlexNet.	Hence,	LeNet-5	was	the	most	suited	model	 in	classifying	encrypted	images	
through	DES	with	an	8-byte	cryptographic	key,	AES	with	a	32-byte	key,	and	Blowfish	with	a	40-byte	key	given	that	
Gaussian	noise	was	added	with	the	standard	deviation	ranged	from	0.05	to	0.35.		
Thirdly,	Figure	9,	Figure	10,	and	Figure	11	visualizes	the	results	of	the	third	task.	Mostly,	the	recognized	accuracy	

from	LeNet-5	and	VGG16	grew	as	the	contrast	ratio	uplifted.	While	AlexNet	first	illustrated	accuracy	declinations	
when	the	alpha	was	from	0.05	to	0.20	in	Figure	9,	and	0.05	to	0.15	in	Figure	10	and	Figure	11.	When	the	alpha	
exceeds	these	ranges,	the	accuracy	of	AlexNet	uplifted	except	for	several	fluctuations.	The	shape	of	the	psychometric	
functions	of	LeNet-5	and	VGG16	are	like	sigmoid.	Commonly,	in	Figure	9,	given	the	encrypted	images	enciphered	
by	AES	with	a	32-byte	key,	VGG16	performed	better	 in	such	encrypted	 images	when	the	alpha	was	 lower	 than	
approximately	0.91	and	higher	 than	roughly	0.125.	LeNet-5	accomplished	 the	best	 testing	accuracies	when	 the	
alpha	was	more	than	0.91.	Otherwise,	AlexNet	was	the	most	suited	CNN	model.	Additionally,	in	Figure	10,	when	the	
enciphered	images	were	encrypted	by	Blowfish	with	a	40-byte	key,	LeNet-5	reached	testing	accuracies	higher	than	
the	other	two	models	when	the	alpha	was	higher	than	roughly	0.8.	Conversely,	VGG16	attained	accuracies	virtually	
higher	than	the	other	models.	Ultimately,	in	Figure	11,	when	the	alpha	was	lower	than	around	0.71	and	higher	than	
about	0.09,	VGG16	was	the	best-suited	model	recognizing	the	encrypted	images	enciphered	by	DES	with	an	8-byte	
key,	while	LeNet-5	was	the	most	suitable	if	the	alpha	was	larger	than	about	0.705.	Otherwise,	AlexNet	reached	the	
highest	testing	accuracy.	



 

Figure 6: The Relationship between Various Strengths of Gaussian Noise and Classified Accuracies (Enciphered by AES32) 

 

Figure 7: The Relationship between Various Strengths of Gaussian Noise and Classified Accuracies (Encrypted by Blowfish40) 



 

Figure 8: The Relationship between Various Strengths of Gaussian Noise and Classified Accuracies (Enciphered by DES08) 

 

Figure 9: The Relationship between Different Contrast Ratios and Classified Accuracies (Encrypted by AES32) 



 

Figure 10: The Relationship between Different Contrast Ratios and Classified Accuracies (Enciphered by Blowfish40) 

 

Figure 11: The Relationship between Different Contrast Ratios and Classified Accuracies (Encrypted by DES08) 

5 DISCUSSION 



One	of	the	strengths	of	the	research	was	when	confronted	with	four-classification	problems	of	encrypted	images.	
CNN	models	 performed	better	 than	 human	beings	with	 normal	 vision	 because	 encrypted	 images	 are	 probably	
indistinguishable	from	humans,	thereby	they	would	be	obliged	to	guess	which	class	the	image	belongs	to,	and	their	
average	 guess	 probability	 might	 approach	 25%,	 while	 the	 lowest	 testing	 accuracy	 without	 adding	 noise	 and	
decreasing	 contrast	 ratio	 among	 the	 three	CNN	models	was	34.94%	 in	Figure	6.	 Therefore,	 even	when	 adding	
Gaussian	noise	into	enciphered	images	or	reducing	the	contrast	ratio	of	encrypted	images,	most	of	the	time	the	CNN	
models	were	still	recognized	better	than	the	naked	eyes.	For	example,	in	Figure	11,	LeNet-5	identified	encrypted	
images	by	DES	with	an	8-byte	encryption	key	with	the	testing	accuracy	higher	than	25%	if	the	alpha	was	higher	
than	 approximately	 0.45.	 Secondly,	 the	 research	 ensures	 image	 recognition	 with	 privacy	 preservation	 as	 no	
decryption	procedure	is	included	in	all	the	tasks.	Thirdly,	the	lab	experiments	of	the	study	helped	solve	constraints	
in	diverse	fields.	Economically,	environmentally,	and	sustainably,	classifying	encrypted	images	without	decryption	
assisted	in	avoiding	the	usage	of	computational	resources	in	the	process	of	decrypting	images,	which	reduces	the	
cost	and	saves	electricity	to	some	degree.	Ethically	and	socially,	privacy	preservation	is	a	major	importance	of	the	
study,	privacy	protection	can	mitigate	the	public	panic	about	the	leakage	of	private	information.	Lastly,	the	project	
allows	medical	image	analysis	that	assists	in	medical	diagnosis.	
Nevertheless,	the	three	CNN	models	failed	to	perform	exceptional	classification	on	encrypted	images	compared	

to	unenciphered	image	identification,	which	probably	resulted	from	the	function	frombuffer	that	converted	bytes	
into	 NumPy	 arrays	 that	 image	 patterns	 and	 features	might	 lose	 during	 the	 conversion.	 Unlike	 decryption	 can	
ultimately	 preserve	 the	 two	 of	 each	 image.	 For	 future	 development,	 a	 more	 suitable	 function	 for	 datatype	
conversion	should	be	customized	to	substitute	frombuffer	to	encourage	more	efficient	image	retrieval.	In	addition,	
more	CNN	networks	such	as	ResNet50	and	the	Vision	Transformer	(ViT)	model	[20]	can	be	tried	in	the	future	within	
reasonable	computational	resources	and	cost	constraints.	

6 CONCLUSION 

The	investigation	applied	LeNet-5,	AlexNet,	and	VGG16	to	recognize	encrypted	images	by	AES,	Blowfish,	TDES,	and	
DES	 and	 different	 lengths	 of	 cryptographic	 keys	 of	 each	 encryption	 algorithm.	 There	 were	 3	 specific	 tasks,	
identifying	enciphered	 image	datasets	 that	are	encrypted	by	various	cryptographic	schemes,	recognizing	 image	
datasets	with	the	same	encryption	techniques	but	different	severity	of	noise,	and	classifying	datasets	with	the	same	
encryption	methods	while	diverse	contrast	ratios.	Gaussian	noise	and	contrast	ratio	in	the	tasks	were	to	stimulate	
real-world	interference	from	the	environment.	The	psychometric	function	recorded	the	accuracies	of	the	three	CNN	
models	under	various	scenarios	such	as	diverse	encryption	methods,	Gaussian	noise,	and	contrast	ratios.	
In	terms	of	the	results	illustrated	by	multiple	psychometrical	functions,	the	variation	of	cryptographic	strengths	

usually	does	not	measurably	affect	the	recognized	accuracy	of	the	three	CNN	models,	while	the	growth	of	Gaussian	
noise	 severity	 and	 the	 decrement	 of	 the	 contrast	 ratio	 influenced	 noticeably	 the	 classification	 of	 the	 models.	
Furthermore,	 the	 experiment	 results	 proved	 the	 suitability	 of	 each	 CNN	model	 in	 certain	 scenarios	 based	 on	
concrete	 variables	 and	 their	 values.	 Specifically,	 LeNet-5	 was	 the	 most	 suitable	 CNN	 model	 for	 recognizing	
enciphered	images	with	various	cryptographic	strengths	and	enciphered	images	with	Gaussian	noise.	Moreover,	all	
three	CNN	models	could	be	suited	when	identifying	encrypted	images	with	a	decreased	contrast	ratio	based	on	a	
certain	value	of	the	contrast	ratio.	
The	study	allowed	a	secure	way	of	recognizing	encrypted	images	and	exploring	the	performances	of	the	three	

CNN	models	given	distinguished	conditions.	Mostly,	the	performances	of	CNN	models	were	superior	to	the	naked	



eyes	of	human	beings	with	normal	vision.	To	develop	the	efficiency	of	such	image	querying,	a	more	optimal	function	
that	can	process	data	with	the	type	of	bytes	and	more	models	will	be	necessary.	
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