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Abstract

A motion detedion and tracking agorithm is pre-
sented for monitoring the pedestriansin an outdoar scene
from a fixed camera. A mixture of Gaussans is used to
model each pixel of the background image and thus
adaptive to the dynamic scene. Colour chromaticity is
used as the image representation, which results in the
ill umination-invariant change detedion in a daylit envi-
ronment. To corredly interpret those ohjeds that are
ocduded, merged, split or exit from the scene, a scene
moddl is created and the motion of each ohed is pre-
dicted. A Bayesian network is constructed to reason
about the uncertainty in the tracking. The results for de-
teding and tracking the moving objeds in the PETS se-
guences are demonstrated.

1. Introduction

1.1 Previous Work

Tracking non-rigid objeds in real world scenes con-
tains everal difficulties for computer vision. Problems
include static and dynamic ocdusion, variation of light-
ing condition, failure of foreground detedion, etc.
Therefore, many successul tracking systems work only
in constrained environments, in which the targets are
sparsely distributed and the background is less dynamic
[12.

Frame differencing is a technique widely used for the
change detedion in dynamic images. It compares each
incoming frame with a background image and classfies
those pixels of significant variation into foreground. The
background can be modeled with a single adaptive Gaus-
sian [12] and learnt during an initiali zaion period when
the scene is empty. This method is efficient only in less
dynamic scenes but has difficulti es with vacill ating back-
grounds (e.g. swaying trees), background eements
moving, and illumination changes. A more robust

method is to model the background by a mixture of
adaptive Gaussans[11]. However, it may fail in tracking
a background pixel under fast illumination changes, e.g.
flood of sunlight, shadows or artificia lights switching
on/off. This causes gurious “foregrounds’ and can lose
targetsin such cases. Thereason is that most the eisting
applications use intensity-based image representations,
eg. (R, G, B) or I, which are the result of interaction
between ill umination from light sources and refledance
of objed surfaces. To be able to identify and track the
same objed surface (e.g. a background pxel) under
varying illumination, it is desirable to separate the varia-
tion of the illumination from that of the surface reflec-
tion.

In the eisting algorithms that track ocduded ohjeds,
Intille & al [5] compared the properties of deteded fore-
ground regions with those of the previoudy tracked ob-
jeds. An objed is identified as being ocduded if two
objeds are found to match the same foreground region.
Haritaoglu et a [3] identified the dynamic ocdusion
when the predicted bounding boxes of two oljeds over-
lap the same foreground regions. However, these are
rule-based methods that are brittle and gobally lack of
consistency [10]. In addition, these algorithms did not
consider static ocdusions, e.g. buildings, trees, or road
sign. Therefore, objeds may suddenly disappear at some
sites in a scene and many new ohjeds appear at some
other sites. Therefore, the trgjedory of an objed tends to
be short and segmental.

1.2 Our Approach

In this paper a mixture of Gaussans is used to model
each pixel of the background image and thus adaptive to
the dynamic scene. The @mbination of colour chro-
maticity- and intensity-based image representations re-
sults in the illumination-invariant change detedion in a
daylit environment. To corredly interpret those ohjeds
that are ocduded, merged, split or exit from the scene, a
scene model is created and the motion of each objed is
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predicted. A Bayesian network is constructed to reason
about the uncertainty and noise in the observation.

2. Foreground detection

2.1. Background modeling and extraction

A mixture of up to N Gaussans has been used to
model the probability of observing a value, f,, at each

pixel:
P(,) = Zwi,tG(fwui,t’Ei,t) (1)

where G is the Gaussan probability density function,
p; and X;, arethe (temporal) mean vedor and covari-

ance matrix of the i-th distribution, respedively; the
weight, w,, refleds the likelihood that the i-th distribu-

tion accounts for the data and is limited between [0, 1].
To simplify the computation, the wmponents of f, are

asuumed to be independent and then X;, can be ap-
proximately represented using the sum of its diagonal
dements, o .

We approximate the initial values of the temporal
statistics using the spatial statistics over alocal region (n
pixels) of the start frame:

o000 =1 3 To(x )
2 _ 1 2
Oo0(X) = -1 ;"fo (X+AX) ~poo (X)"

For the following frames, every new observation, f,,
is chedked against the N Gaussan distributions. A match
is identified if |ff, —p, [ <co, ., (c=3). The parame-
ters of the matched distribution are updated as:

i (0) = (L= @)y o (X) +F, (X)
0% (x) = (A-9)0 %, () +[f, —pi, O

where ¢ controls the updating rate, and the weight
w,;(x) isincreased. For the unmatched j-th distribution
(j#1), p;, and og,;, remain the same, but w,,(x) is
damped exponentialy.

If none of the eisting dstributions matches the air-
rent pixel value, we have to either create a new distribu-
tion, given lessthan N existing dstributions, or replace
the least probable distribution with a new distribution.
The distribution(s) with greatest weight is (are) consid-
ered as the background model (s).

3

2.2. [ llumination-invariant detection

In an outdoor environment lit by sunlight, fast ill u-
mination changes tend to cccur at the regions where
shadows emerge or disappear. For the fast-moving cloud
case, the shadows are larger-scale and ill uminated by
the refledion from the ambient clouds. These grey (or
white) clouds are relatively balanced in al visible
wavelengths. Therefore, the refleded light from shadow
or lit regions has no difference in spedral distribution
and only varies in magnitude [13]. The proportionality
between (R, G, B) can be better represented using the
colour chromaticity, (r, g, b), each component of which
will keep constant for a given objed surface under
varying illumination and is more appropriate to model
using an adaptive Gaussan [13].

To compensate the loss of the @lour-based model in
dim regions, we have mmbined the motion detedion
results using the intensity, I, with those using the (r, g, b)
colour spaceto give a better detedion. Suppose S, and
S, arethe binary sets of foreground detedion using in-
tensity- and colour-based models, respedively. A value of
1 represents the foreground and O for background. One
combination scheme favouring the lour-based modd is
to add some points of S, , which is atialy closeto S.,

into S.. The set of the fused foreground pixels, S, at
pixel x can be mmputed as:

SK)=%0+S0BOAS OB (4

where [0 denotes the morphological dilation and B is
the structuring element. .

The foreground pixels abowve arefiltered by a closing
(dilation plus erosion) morphological operation and then
clustered into foreground “blobs’ using a conneded
component analysis. A minimum number of foreground
pixelsis st for each blobto rule out small disturbances.

3. Object and scene modeling

3.1. Blob modds

Each foreground blob deteded at the airrent frame
is ideally associated with an objed or a group of inter-
acting objeds. It is characterized by:

» Postions: its bounding box and coordinate of its

centroid.

» Colours: its colour template pyramid.

» Sizes: the number of foreground pixels.

e Status: allocated to an objed (ALLOCATED) or

not (UNALLOCATED).
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For each foreground pixel of the blob, the clour
chromaticity (r, g, b) is transformed into the two gopo-
nent colours (rg, by):

rg=r-g
2b-r-g (5)

by =
y 2

which represent colours along the red to green, and blue
to yellow axes [1]. The 3-D colour information has been
mapped to 2-D, and for each blob a 2-D mxm colour
histogram is generated as a template (m=16). This 2-D
template neals less sorage than a 3-D one, and o is
faster to handle. The @lour template for a blob needls to
be mmpared with that for each objed that has been
tracked in the previous frames. Intuiti vely some tracked
objeds will have radically different colours from others,
and an efficient search is desirable. This is achieved by
having a pyramid of colour templates at four resolu-
tions, and by trying to match initialy at the arsest
resolution, and only going to higher resolution for ob-
jeds considered similar [1].

3.2. Object models

Each tracked objed isrecorded in an ohjed database
and ideally corresponds with a blob in the new frame.
An objed is described by:

(1) The dharacteristics of its matched blob

» Podtions: its bounding box and coordinate of its
centroid.

» Colours: its colour template pyramid.

» Sizes: the number of foreground pixels.

(2) The tracking information

o Status: NEW (objeds entering the scene), TER-
MINATED (obeds leaving the scene), UP-
DATED (an objed optimally matched to a blob),
MERGED (cdlliding objeds), SA.IT (oheds
colliding and then separate), OCCLUDED (ob-
jeds hidden by doatic ocdusions), MISING
(cannot be interpreted).

» Dynamic moddl: diredion, velocity, accderation.

» History: last position, frame of being first see,
frame of being last seen.

» Prediction: predicted postion (estimated by a
first-order motion model), predicted status, pre-
dicted bounding box.

* Interacting objed: index of another objed that
interacts or is asaumed to interact the underlying
objed.

3.3. Scene models

Beause the @mera is fixed, a scene model can be
congtructed for a spedfic camera position. Whil &t thisis
currently done manually, we are investigating automatic
methods for learning the scene modd [6]. This helps
reasoning about the termination and ocdusion of oljeds
by scene dements. Threetypes of static ocdusionsin a
scene areidentified (Fig. 1):

» Border ocdusions (BO) due to the limits of the

camerafield-of-view (FOV).

* Long-term ocdusions (LO). These are locations
where objeds may leave the scene exrlier than
expeded, corresponding to the termination of a
record in the objed database. These ocdusions
often have one side touching the border of the
image and make oljeds leave the scene from the
other side, at a distance away from the border of
the image, eg. buildings and vegetation. The
long-term ocdusion may also exist in the midde
of an image, eg. at the doors of a building.
Without some prior knowledge of these long-
term ocdusions, an objed disappearing at a LO
may later be mismatched with other ohjeds that
are present nearby.

e Short-term ocdusions (SO). These are the loca-
tions where an objed may be temporarily oc-
cluded by a static ocdusion, e.g. atreeor a road
sign. Prior knowledge of these ocdusions helps
avoid missng existing objeds and creating
“new” objeds.

! o
EZNS!

Figure 1. Long-term occlusions (LO) and short-term
occlusions (SO) in a scene.

All the ocdusions are stored in an ocdusion database.
Each ocdusion is characterized by its:

* Type(BO, LO or SO).

* Bounding box, representing its location and d-

mension.

The overlap of these static ocdusions with the pre-
dicted bounding bax of an ohjed can be used to predict
objed termination and ocdusion. Currently a redangular
bounding box is being used for each static ocdusion to
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minimize the computational cost. A more accurate repre-
sentation of these ocdusions, eg. using polygons, is
straightforward but not so important here, because these
ocdusion bounding boxes are used only for the predic-
tion of some esents (termination and ocdusion). The
determination of such events also depends on the result
of tracking (e.g. an ohjea fails to find a corresponding
blob), because obhjeds may passin front of an ocdusion.

3.4. Model-based prediction

After the status of an objed is determined at each
frame, the objed is aubjed to a process of status predic-
tion which is based on a first-order motion model and
scene modd.

* An obed is labdled as PREDICTIVE TERMI-
NATED, if its predicted bounding box overlaps a
long-term ocdusion (LO) or the outer of the bor-
der ocdusion (BO).

* An ohed is labelled as PREDICTIVE OCCLU-
DED, if its predicted bounding box overlaps a
short-term ocdusion (SO).

* An obed is labdled as PREDICTIVE MER-
GED, if its predicted bounding box overlaps that
for another ojed. Then the index of the seand
obed is recorded as the “Interacting Objed” of
thefirst objed.

* An obed is labelled as PREDICTIVE SHA.IT, if
its gatus is MERGED and its predicted bounding
box does not overlap that of its “Interacting Ob-
jed”.

4. Object tracking

A staged and ordered matching process has been
used to make a correspondence between the blobs de-
teded at the arrent frame and the ohjeds tracked at the
previous frame.

4.1. Blob to object matching

The visible blobs are first compared with the tracked
obeds. To determine blob-to-objed correspondence a
match score for every blob and objed combination is
computed as the weighted sum of several distance
measures, as in [5]. Each distance measure refleds the
difference of some daracteristic between the blob and
objed. It islimited by an all owable tolerance for poss-
ble matching and normali sed by the tolerance value. Be-
cause the ohjeds are asaumed to have no drastic change
in some seleded characteristics between two conseautive
frames, the distance measure is low for a possble

match. The daracteristics that have been considered
include:

» Predicted position. It is given the greatest weight.
For an objed identified as NEW at the previous
frame, this characteristic is replaced by the ojed
position.

» Coalour. The distance measure between the @lour
template, T, of abloband that, T', of an objed is

calculated as:
a=5 ZEL o é ©)
rg=0by=0 Sr Sr
m-1 m-1
where S; = % % T, suchthat 0<d<1. The
rg=0by=0

scaling down by the sum of values in the tem-
plate ensures that the distance measure is invari-
ant to scale.

» Diredion

 Size

The match scores between all pairs of the deteded

blobs and tracked objeds congtitute a match score ma-
trix. Thismatrix is arse in that many pairing relations
are inhibited by using the tolerance value for each dis-
tancemeasure. For each oljed, its match scores with all
the blobs are cmpared, and the best-matched blob is
seleded. For each blob, its match scores with all the
objeds are also compared and the best-matched objed is
identified.

For a pair of ohjed O, and blob B;:

e If O; isthe only ohjed that has B; as its best-
matched blob and B, is aso the only blob that
has O, as its best-matched objed, then blob B; is
considered to correspond to oljed O; and O is
set to the status UPDATED (Fig. 2(a)).

* If bath the obhjeds O; and O, have the same best-
matched blob B,, then the match scores of (B,
0O,) and (By, O,) are cmmpared (Fig. 2(b)). Sup-
pose that (B;, O,) has a better match, then objed
O; is asdgned to bob B; and set to the status
UPDATED; objead O, chedks its next best-
matched blob B,. If O, is the best-matched objed
to B,, then ohjed O, is assgned to Hob B, and
set to the status UPDATED; otherwise, O, is la-
beled with POTENTIALLY MERGED and left
to the next stage for chedking unmatched objeds.

* If ojed O, is the best-matched objed to bah
blobs B; and B,, then the match scores of (B,
0O,) and (B,, O;) are mmpared (Fig. 2(c)). Sup-
pose that (B, O,) has a better match, then objed
O, is asdgned to bob B; and set to the status
UPDATED; blob B, cheds its next best-matched
obea O,. If B, is the best-matched blob to O,,
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Figure 2. (a) an UPDATED object, (b) a POTENTIALLY
MERGED object, and (c) a POTENTIALLY SPLIT blob.
The size of each circleindicates the amount of match score.

then ohjed O, is assgned to Hob B, and st to
the status UPDATED; otherwise, B, is labeled
with POTENTIALLY SALIT and l€ft to the final
stage for chedking unmatched blobs.

Therefore, when two oljeds are potentially merged,
the ohjed, whose properties are less influenced by the
objed merging (with a better match score), is favoured
and considered as a normally tracked objed, e.g. the ar
in a car-and-pedestrian merging group or the pedestrian
who partially ocdudes another one. On the other hand,
when two oljeds are potentially split from a single ob-
jed, the objead whose properties are more nsistent
with that of the original objed is favoured and consid-
ered as a normally tracked objed, e.g. the pedestrian
who drops a baggage on the ground.

In addition, the splitting of two ariginally merged
objeds is treated dfferently in our algorithm according
to their relative moving dredions. If one ohjed heads
toward and then passes by another, bath objeds are on-
sidered as UPDATED. If a pair of objeds move along
non-interfering dredions, one is UPDATED and an-
other isSHLIT.

4.2. Unmatched objects

After sorting out the UPDATED objeds, there re-
main some objeds that do not have a correspondence
with any deteded blob. This may arise from the objeds
leaving the scene, the ocdusion of objeds by scene de-
ments, the merging of multi ple ojeds, or the fail ure of
foreground detedion. The ambiguity here @an be partly
relieved by using domain knowledge. For example, if it
is known that an unmatched objed was very close to a
long-term ocdusion in the last frame, it is quite posshle
that thisobjed left the scenein the aurrent frame. How-
ever, there ist uncertainties in such domain knowl-
edge

* Not al of the ohjeds close to a long-term ocdu-

sion will | eave the scene (they may walk in front
of it).

* An objed may merge with another one near the
border of along-term ocdusion.

» Theforeground detedion may fail (i.e. the corre-
sponding blobs are missng) at any position in a
scene.

Given the uncertain and incomplete information, the
objed tracking can be inferred through a process of de-
duction. A Bayesian network [8] is a framework for rep-
resenting and using domain knowledge to perform
probabili stic inference It is a direded acyclic graph in
which nodes represent random variables and arcs repre-
sent causal connedions among the variables. Associated
with each node is a probability table that provides con-
ditional probahiliti es of the node's possble states given
each possble state of its parents. In the @ase that a node
has no parents, conditional probabiliti es degenerate to
priors. When values are observed for a subset of the
nodes, posterior probability distributions can be @m-
puted for any of the remaining nodes. Bayesian net-
works have been used in objed tracking and behaviour
identification [2][4][9][ 10].

The Bayesian network used for reasoning about un-
matched objeds is gown in Fig. 3. Except the query
nodes “terminated at t”’, “ocduded at t", “merged at t”
and “missing at t", the nodes correspond to image-
measurable quantities, i.e. evidence nodes. All quanti-
tiesin the network are binary variables. The cnditional
probability distributions attributed to each variable in
the network are spedfied using domain knowledge. Al-
though the prior probability of an ojed being merged is
very low (0.05), the cnditiona probability runs up to
0.75 gven that the objed was merged at the previous
frame (timet-1). Thisis also true for the “ocduded at t-

occluded merged
att-1 att-1
A4
terminated | occluded missing merged
att att att att

L7\

predictive |predttivel [unmatched potentially|| predictive
terminatef| occluded | object || merged || merged

A4
blob size
increases

Figure 3. The Bayesian network for reasoning about un-
matched objects.
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1" and “ocduded at t" nodes. For a merged objed, it is
very likely to be labeled as POTENTIALLY MERGED
in the matching stage and the @rresponding blob is of-
ten significantly larger than that objed.

Given the observed values for the evidence nodes,
the probahility of any unmatched objed being termi-
nated, ocduded, merged or missng can be mmputed
and the most probable explanation can be given. It is
noted that four causes, “terminated”, “ocduded”,
“merged” and “missng” compete to explain the evi-
dence “unmatched objed”. Hence they become ndi-
tionally dependent given that their common child is ob-
served. For example, suppose the underlying objed is
unmatched, but that we know that this obed was
merged at the previous frame. Then the posterior prob-
ability that the ohjed isterminated, ocduded or missng
goes down, which is call ed “explaining away”.

To make the omputation more dficient, the poste-
rior probabilities of the four query nodes were pre-
computed using the Bayes Net Todbax in [7], given all
the posshle values of the evidence nodes. The result is
saved in alodk-up-table.

4.3. Unmatched blobs

After chedking the objed database, the deteded
blobs that have not been interpreted are most likely split
or new ohjeds. Another Bayesian network has been used
to infer the posterior probabiliti es of the query nodes,
“new at t” and “split at t”, given the observed values of
the evidence nodes (Fig. 4). In order to have dficient
computation, the “distance to BO or LO” is approxi-
mated with a set of discrete values: touching, close and
far. It is noted that most of the split objeds was previ-
ously merged unlessthe objeds entered the scene in a
group. This is refleded in the high conditional prob-
ability of “split at t" given “merged at t-1". For a split
obed, it is most likely labeled as POTENTIALLY
SALIT in the blob-to-ohjed matching stage and tends to
be significant small er than the merging group.

Once the gtatus of all the ojeds is determined, the
records in the objed database need to be updated. The
record of an UPDATED, SALIT or NEW objed is re-
placed by the daracteristics of the crresponding blob.
For a MERGED or OCCLUDED objed, its position is
updated according to its visible history and the first-
order motion model; its colour and size remain un-
changed. The reard of a MISING objed is kept un-
changed until this ohjed is re-tracked or automatically
terminated after "missng"” for three onseautive frames.

5. Reaults

merged
att-1

new split
att att

A
distance td | unmatched | potentially || predictive
BO or LO blob split split

X
blob size
decreases

Figure 4. The Bayesian network for reasoning about un-
matched blobs.

To as®ss the significance of the detedion and
tracking algorithm, we have applied it to the PETS2001
sequences which include significant lighting variation,
ocdusion and scene activity. The sequences were spa-
tially sub-sasmpled to half-PAL (384x288 pxels) and
temporal sub-sampling has been investigated in our ex-
periments. The results presented below use 2.5 fps for
foreground detedion and 5 fps for oljed tracking.
These rates provided a reasonable trade-off between
computational efficiency and robust detedion and
tracking.

5.1 Foreground detection

Fig. 5 shows the results of the motion detedion at
frame 2690 of Dataset 3 (camera 1, testing) at 2.5 fps.
The rresponding result sequences ("31 lavi" and
"31_2avi" using intensity-based model, and "31_3avi"
and "31_4avi" using the embination of colour- and
intensity-based models) start at frame 1500 and end at
frame 300Q The foreground pixels in the lour-based
results are those that go beyond [u-3.50, u+3.50] of the
most probable Gausdans. The foreground pixels in the
intensity-based results arise from a global threshold on
the difference between the observation and the mean of
the most probable Gaussan. The thresholding leve is
seleded as 10% of the maximum intensity so as to pro-
duce ‘blobs’ of similar sizes to those in the rrespond-
ing colour-based results. In order to rule out isolated
“foreground” pixels and fill gaps and holes in “fore-
ground” regions, a 1x3 closing (dil ation-erosion) opera-
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Figure 5. Motion detection, at frame 2690 of Dataset 3
(camera 1, testing), with FPS=2.5: the detected blobs (a)
and bounding boxes overlaid on the frame (right) using
the intensity-based model (top) and the combination of
colour - and intensity-based models (bottom).

tion has been applied to the binary image of deteded
“foreground” pixes.

There is a major illumination change around frame
2690 In the intensity-based result, Figs. 5(a) and (b), a
large area of the background is deteded as a huge fore-
ground ohjed, in which the ground-truth targets (pedes-
trians) are submerged and lost. On the other hand, in the
result of the combination of colour- and intensity-based
models, Figs. 5(c) and (d), fast illumination changes give
no additional “foreground” blob and the ground-truth
targets are dearly visible,

Table 1 shows the number of the detedion errors in
the same image sequence, from frame 1600 (skipping the
learning period) to frame 300Q Multiple objeds are @n-
sidered as a single ground-truth objea if they are
grouped. The alour-based model is much more suc-
cesgul in dealing with ill umination changes.

Modes Intensity | Colour
Ground-truth objeds 509
Undeteded positives 54 22
False positives 151 8

Table 1. The detection errorsin an image sequence
with fast illumination changes.

5.2 Object Tracking

Figs. 6-8 show part of the tracking results using
Dataset 2 (camera 1, testing) at 5 fps. The crrespond-

Figure 6. The occlusion models for the Dataset 2 (cam-
eral, testing).

ing result sequence ("31_Savi") starts at frame 1 and
ends at frame 701 The results of the first five frames
are noisy and not included, because the Gausgan mix-
ture model neeadsto learn the initial parameters for each
distribution.

Fig. 6 shows the manually seleded ocdusionsin the
scene, in which No. 0, 2 and 3 are short-term ocdusions
and No. 1 is a long-term ocdusion. The building in the
right is a potential long-term ocdusion but not used
here.

Fig. 7 shows an example when an objed (No. O,
white bounding box) is passng by a short-term ocdu-
sion (No. O, in pink bounding box). At frame 351 (Fig.
7(a)), the predicted bounding box (invisible here) of ob-
jed O overlaps ocdusion O, the predicted status is st to
PREDICTIVE OCCLUDED. At frame 386 (Fig. 7(b))
when no corresponding blob is found, objed O is deter-
mined as OCCLUDED by the Bayesian network. Its po-
sition is updated according to the first-order mation
model based on its visible history. Therefore, the objed
bounding box (grey) is not observed but estimated. At
frame 396 (Fig. 7(c)) when a blob is deteded at the
other side of the ocdusion and matches oljed 0O, ohed
O is retracked and its record is then updated using the

Figure 7. A tracking example in Dataset 2 when object O
(white) passes by a short-term occlusion O (grey).
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Figure 8. A tracking example in Dataset 2 when objects 0
and 2 are merged and then split.

new observation.

Fig. 8 shows an example when one objed is merged
with another. At frame 416 (Fig. 8(a)) when the pre-
dicted bounding boxes (invisible) of objeds O and 2
overlap, the predicted status is st to PREDICTIVE
MERGED for bath the objeds. At frame 426 (Fig. 8(b))
when only one blob is deteded, objed O is matched to
that blob because its properties are lessinfluenced by the
merging. Objed O is determined as a normal UP-
DATED obed. On the other hand, objed 2 is deter-
mined as MERGED by the Bayesian network and its
interacting objed is st to No. 0. Its position is updated
and predicted acoording to the first-order motion model
based on the visible history (note the grey bounding
boxesin Figs. 8(b)(c)). At frame 441 (Fig. 8(d)) ojead 2
are matched to a newly deteded blob and thus re-
tracked as an UPDATED objed.

Table 2 shows the tracking errors, when the oljeds
are interacting with each other or the scene dements,
for the first four testing sequences ( Datasets 1-2, cam-
eras 1-2). The result indicates that the aurrent algorithm
is proper to track two interacting objeds or objed
groups. Its performance degrades when multi ple objeds
are dustered in alocal region, such asthat in Dataset 3.

Events Merged Split Ocduded
Examples 12 8 13
Errors 0 1 3

Table 2. Thetracking examplesand errorsfor in-
teracting objectsin the Datasets 1 and 2.

6. Conclusions
The ombination of the wlour- and intensity-based

Gaussan mixture models can better adapt to fast ill umi-
nation changes when deteding foregrounds. The scene

model and motion prediction provide relatively reliable
evidencein inferring and tracking objeds through Baye-
sian networks, espedally when ambiguity in observation
arises.

Future work includes considering multiple ohjeds
that interact within a group, using dynamic Bayesian
networks and even continuous variables to infer objed
status, using multi-view co-operation to interpret the
incompl ete observation from each single view.
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