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Abstract

A motion detection and tracking algorithm is pre-
sented for monitoring the pedestrians in an outdoor scene
from a fixed camera. A mixture of Gaussians is used to
model each pixel of the background image and thus
adaptive to the dynamic scene. Colour chromaticity is
used as the image representation, which results in the
ill umination-invariant change detection in a daylit envi-
ronment. To correctly interpret those objects that are
occluded, merged, split or exit from the scene, a scene
model is  created and the motion of each object is pre-
dicted. A Bayesian network is constructed to reason
about the uncertainty in the tracking. The results for de-
tecting and tracking the moving objects in the PETS se-
quences are demonstrated.

1. Introduction

1.1 Previous Work

Tracking non-rigid objects in real world scenes con-
tains several diff iculties for computer vision. Problems
include static and dynamic occlusion, variation of light-
ing condition, failure of foreground detection, etc.
Therefore, many successful tracking systems work only
in constrained environments, in which the targets are
sparsely distributed and the background is less dynamic
[12].

Frame differencing is a technique widely used for the
change detection in dynamic images. It compares each
incoming frame with a background image and classifies
those pixels of significant variation into foreground. The
background can be modeled with a single adaptive Gaus-
sian [12] and learnt during an initiali zation period when
the scene is empty. This method is eff icient only in less
dynamic scenes but has diff iculties with vacill ating back-
grounds (e.g. swaying trees), background elements
moving, and ill umination changes. A more robust

method is to model the background by a mixture of
adaptive Gaussians [11]. However, it may fail i n tracking
a background pixel under fast ill umination changes, e.g.
flood of sunlight, shadows or artificial li ghts switching
on/off. This causes spurious “foregrounds” and can lose
targets in such cases. The reason is that most the existing
applications use intensity-based image representations,
e.g. (R, G, B) or I, which are the result of interaction
between ill umination from light sources and reflectance
of object surfaces. To be able to identify and track the
same object surface (e.g. a background pixel) under
varying ill umination, it is desirable to separate the varia-
tion of the ill umination from that of the surface reflec-
tion.

In the existing algorithms that track occluded objects,
Intill e et al [5] compared the properties of detected fore-
ground regions with those of the previously tracked ob-
jects. An object is identified as being occluded if two
objects are found to match the same foreground region.
Haritaoglu et al [3] identified the dynamic occlusion
when the predicted bounding boxes of two objects over-
lap the same foreground regions. However, these are
rule-based methods that are brittle and globally lack of
consistency [10]. In addition, these algorithms did not
consider static occlusions, e.g. buildings, trees, or road
sign. Therefore, objects may suddenly disappear at some
sites in a scene and many new objects appear at some
other sites. Therefore, the trajectory of an object tends to
be short and segmental.

1.2 Our Approach   

In this paper a mixture of Gaussians is used to model
each pixel of the background image and thus adaptive to
the dynamic scene. The combination of colour chro-
maticity- and intensity-based image representations re-
sults in the ill umination-invariant change detection in a
daylit environment. To correctly interpret those objects
that are occluded, merged, split or exit from the scene, a
scene model is created and the motion of each object is
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predicted. A Bayesian network is constructed to reason
about the uncertainty and noise in the observation.

2. Foreground detection

2.1. Background modeling and extraction

A mixture of up to N Gaussians has been used to
model the probabilit y of observing a value, tf , at each

pixel:
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where G is the Gaussian probabilit y density function,

ti ,
�  and ti ,
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 are the (temporal) mean vector and covari-

ance matrix of the i-th distribution, respectively; the
weight, ti ,ω  reflects the li kelihood that the i-th distribu-

tion accounts for the data and is limited between [0, 1].
To simpli fy the computation, the components of tf  are

assumed to be independent and then ti ,

�
 can be ap-

proximately represented using the sum of its diagonal

elements, 2
,tiσ .

We approximate the initial values of the temporal
statistics using the spatial statistics over a local region (n
pixels) of the start frame:
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For the following frames, every new observation, tf ,

is checked against the N Gaussian distributions. A match

is identified if 1,1, −− <− titit cσ�f  ( 3≈c ). The parame-

ters of the matched distribution are updated as:
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where ϕ controls the updating rate, and the weight
)(, xtiω  is increased. For the unmatched j-th distribution

( ij ≠ ), tj ,
�  and tj ,σ  remain the same, but )(, xtjω  is

damped exponentiall y.
If none of the existing distributions matches the cur-

rent pixel value, we have to either create a new distribu-
tion, given less than N existing distributions, or replace
the least probable distribution with a new distribution.
The distribution(s) with greatest weight is (are) consid-
ered as the background model(s).

2.2. Illumination-invariant detection

In an outdoor environment lit by sunlight, fast ill u-
mination changes tend to occur at the regions where
shadows emerge or disappear. For the fast-moving cloud
case, the shadows are larger-scale and ill uminated by
the reflection from the ambient clouds. These grey (or
white) clouds are relatively balanced in all visible
wavelengths. Therefore, the reflected light from shadow
or lit regions has no difference in spectral distribution
and only varies in magnitude [13]. The proportionalit y
between (R, G, B) can be better represented using the
colour chromaticity, (r, g, b), each component of which
will keep constant for a given object surface under
varying ill umination and is more appropriate to model
using an adaptive Gaussian [13].

To compensate the loss of the colour-based model in
dim regions, we have combined the motion detection
results using the intensity, I, with those using the (r, g, b)
colour space to give a better detection. Suppose IS  and

CS  are the binary sets of foreground detection using in-

tensity- and colour-based models, respectively. A value of
1 represents the foreground and 0 for background. One
combination scheme favouring the colour-based model is
to add some points of IS , which is spatiall y close to CS ,

into CS . The set of the fused foreground pixels, S , at

pixel x can be computed as:
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where ⊕  denotes the morphological dilation and B is
the structuring element. .

The foreground pixels above are filtered by a closing
(dilation plus erosion) morphological operation and then
clustered into foreground “blobs” using a connected
component analysis. A minimum number of foreground
pixels is set for each blob to rule out small disturbances.

3. Object and scene modeling

3.1. Blob models

Each foreground blob detected at the current frame
is ideally associated with an object or a group of inter-
acting objects. It is characterized by:

• Positions: its bounding box and coordinate of its
centroid.

• Colours: its colour template pyramid.
• Sizes: the number of foreground pixels.
• Status: allocated to an object (ALLOCATED) or

not (UNALLOCATED).
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For each foreground pixel of the blob, the colour
chromaticity (r, g, b) is transformed into the two oppo-
nent colours (rg, by):

2

2 grb
by

grrg

−−=

−=
                             (5)

which represent colours along the red to green, and blue
to yellow axes [1]. The 3-D colour information has been
mapped to 2-D, and for each blob a 2-D m×m colour
histogram is generated as a template (m=16). This 2-D
template needs less storage than a 3-D one, and so is
faster to handle. The colour template for a blob needs to
be compared with that for each object that has been
tracked in the previous frames. Intuiti vely some tracked
objects will have radicall y different colours from others,
and an eff icient search is desirable. This is achieved by
having a pyramid of colour templates at four resolu-
tions, and by trying to match initiall y at the coarsest
resolution, and only going to higher resolution for ob-
jects considered similar [1].

3.2. Object models

Each tracked object is recorded in an object database
and ideally corresponds with a blob in the new frame.
An object is described by:

(1) The characteristics of its matched blob
• Positions: its bounding box and coordinate of its

centroid.
• Colours: its colour template pyramid.
• Sizes: the number of foreground pixels.
(2) The tracking information
• Status: NEW (objects entering the scene), TER-

MINATED (objects leaving the scene), UP-
DATED (an object optimally matched to a blob),
MERGED (colli ding objects), SPLIT (objects
colli ding and then separate), OCCLUDED (ob-
jects hidden by static occlusions), MISSING
(cannot be interpreted).

• Dynamic model: direction, velocity, acceleration.
• History: last position, frame of being first seen,

frame of being last seen.
• Prediction: predicted position (estimated by a

first-order motion model), predicted status, pre-
dicted bounding box.

• Interacting object: index of another object that
interacts or is assumed to interact the underlying
object.

3.3. Scene models

Because the camera is fixed, a scene model can be
constructed for a specific camera position. Whilst this is
currently done manually, we are investigating automatic
methods for learning the scene model [6]. This helps
reasoning about the termination and occlusion of objects
by scene elements. Three types of static occlusions in a
scene are identified (Fig. 1):

• Border occlusions (BO) due to the limits of the
camera field-of-view (FOV).

• Long-term occlusions (LO). These are locations
where objects may leave the scene earlier than
expected, corresponding to the termination of a
record in the object database. These occlusions
often have one side touching the border of the
image and make objects leave the scene from the
other side, at a distance away from the border of
the image, e.g. buildings and vegetation. The
long-term occlusion may also exist in the middle
of an image, e.g. at the doors of a building.
Without some prior knowledge of these long-
term occlusions, an object disappearing at a LO
may later be mismatched with other objects that
are present nearby.

• Short-term occlusions (SO). These are the loca-
tions where an object may be temporaril y oc-
cluded by a static occlusion, e.g. a tree or a road
sign. Prior knowledge of these occlusions helps
avoid missing existing objects and creating
“new” objects.

All the occlusions are stored in an occlusion database.
Each occlusion is characterized by its:

• Type (BO, LO or SO).
• Bounding box, representing its location and di-

mension.
The overlap of these static occlusions with the pre-

dicted bounding box of an object can be used to predict
object termination and occlusion. Currently a rectangular
bounding box is being used for each static occlusion to

LO

LO

SO
SO

Figure 1. Long-term occlusions (LO) and short-term
occlusions (SO) in a scene.
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minimize the computational cost. A more accurate repre-
sentation of these occlusions, e.g. using polygons, is
straightforward but not so important here, because these
occlusion bounding boxes are used only for the predic-
tion of some events (termination and occlusion). The
determination of such events also depends on the result
of tracking (e.g. an object fail s to find a corresponding
blob), because objects may pass in front of an occlusion.

3.4. Model-based prediction

After the status of an object is determined at each
frame, the object is subject to a process of status predic-
tion which is based on a first-order motion model and
scene model.

• An object is labelled as PREDICTIVE TERMI-
NATED, if its predicted bounding box overlaps a
long-term occlusion (LO) or the outer of the bor-
der occlusion (BO).

• An object is labelled as PREDICTIVE OCCLU-
DED, if its predicted bounding box overlaps a
short-term occlusion (SO).

• An object is labelled as PREDICTIVE MER-
GED, if its predicted bounding box overlaps that
for another object. Then the index of the second
object is recorded as the “Interacting Object” of
the first object.

• An object is labelled as PREDICTIVE SPLIT, if
its status is MERGED and its predicted bounding
box does not overlap that of its “ Interacting Ob-
ject” .

4. Object tracking

A staged and ordered matching process has been
used to make a correspondence between the blobs de-
tected at the current frame and the objects tracked at the
previous frame.

4.1. Blob to object matching

The visible blobs are first compared with the tracked
objects. To determine blob-to-object correspondence, a
match score for every blob and object combination is
computed as the weighted sum of several distance
measures, as in [5]. Each distance measure reflects the
difference of some characteristic between the blob and
object. It is limited by an allowable tolerance for possi-
ble matching and normalised by the tolerance value. Be-
cause the objects are assumed to have no drastic change
in some selected characteristics between two consecutive
frames, the distance measure is low for a possible

match. The characteristics that have been considered
include:

• Predicted position. It is given the greatest weight.
For an object identified as NEW at the previous
frame, this characteristic is replaced by the object
position.

• Colour. The distance measure between the colour
template, T, of a blob and that, T′ , of an object is
calculated as:
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scaling down by the sum of values in the tem-
plate ensures that the distance measure is invari-
ant to scale.

• Direction
• Size
The match scores between all pairs of the detected

blobs and tracked objects constitute a match score ma-
trix. This matrix is sparse in that many pairing relations
are inhibited by using the tolerance value for each dis-
tance measure. For each object, its match scores with all
the blobs are compared, and the best-matched blob is
selected. For each blob, its match scores with all the
objects are also compared and the best-matched object is
identified.

For a pair of object O1 and blob B1:
• If O1 is the only object that has B1 as its best-

matched blob and B1 is also the only blob that
has O1 as its best-matched object, then blob B1 is
considered to correspond to object O1 and O1 is
set to the status UPDATED (Fig. 2(a)).

• If both the objects O1 and O2 have the same best-
matched blob B1, then the match scores of (B1,
O1) and (B1, O2) are compared (Fig. 2(b)). Sup-
pose that (B1, O1) has a better match, then  object
O1 is assigned to blob B1 and set to the status
UPDATED; object O2 checks its next best-
matched blob B2. If O2 is the best-matched object
to B2, then object O2 is assigned to blob B2 and
set to the status UPDATED; otherwise, O2 is la-
beled with POTENTIALLY MERGED and left
to the next stage for checking unmatched objects.

• If object O1 is the best-matched object to both
blobs B1 and B2, then the match scores of (B1,
O1) and (B2, O1) are compared (Fig. 2(c)). Sup-
pose that (B1, O1) has a better match, then object
O1 is assigned to blob B1 and set to the status
UPDATED; blob B2 checks its next best-matched
object O2. If B2 is the best-matched blob to O2,
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then object O2 is assigned to blob B2 and set to
the status UPDATED; otherwise, B2 is labeled
with POTENTIALLY SPLIT and left to the final
stage for checking unmatched blobs.

Therefore, when two objects are potentiall y merged,
the object, whose properties are less influenced by the
object merging (with a better match score), is favoured
and considered as a normally tracked object, e.g. the car
in a car-and-pedestrian merging group or the pedestrian
who partiall y occludes another one. On the other hand,
when two objects are potentiall y split from a single ob-
ject, the object whose properties are more consistent
with that of the original object is favoured and consid-
ered as a normally tracked object, e.g. the pedestrian
who drops a baggage on the ground.

In addition, the splitti ng of two originall y merged
objects is treated differently in our algorithm according
to their relative moving directions. If one object heads
toward and then passes by another, both objects are con-
sidered as UPDATED. If a pair of objects move along
non-interfering directions, one is UPDATED and an-
other is SPLIT.

4.2.  Unmatched objects

After sorting out the UPDATED objects, there re-
main some objects that do not have a correspondence
with any detected blob. This may arise from the objects
leaving the scene, the occlusion of objects by scene ele-
ments, the merging of multiple objects, or the failure of
foreground detection. The ambiguity here can be partly
relieved by using domain knowledge. For example, if it
is known that an unmatched object was very close to a
long-term occlusion in the last frame, it is quite possible
that this object left the scene in the current frame. How-
ever, there exist uncertainties in such domain knowl-
edge:

• Not all of the objects close to a long-term occlu-
sion will l eave the scene (they may walk in front
of it).

• An object may merge with another one near the
border of a long-term occlusion.

• The foreground detection may fail (i.e. the corre-
sponding blobs are missing) at any position in a
scene.

Given the uncertain and incomplete information, the
object tracking can be inferred through a process of de-
duction. A Bayesian network [8] is a framework for rep-
resenting and using domain knowledge to perform
probabili stic inference. It is a directed acycli c graph in
which nodes represent random variables and arcs repre-
sent causal connections among the variables. Associated
with each node is a probabilit y table that provides con-
ditional probabiliti es of the node's possible states given
each possible state of its parents. In the case that a node
has no parents, conditional probabiliti es degenerate to
priors. When values are observed for a subset of the
nodes, posterior probabilit y distributions can be com-
puted for any of the remaining nodes. Bayesian net-
works have been used in object tracking and behaviour
identification [2][4][9][10].

The Bayesian network used for reasoning about un-
matched objects is shown in Fig. 3. Except the query
nodes “terminated at t” , “occluded at t” , “merged at t”
and “missing at t” , the nodes correspond to image-
measurable quantities, i.e. evidence nodes. All quanti-
ties in the network are binary variables. The conditional
probabilit y distributions attributed to each variable in
the network are specified using domain knowledge. Al-
though the prior probabilit y of an object being merged is
very low (0.05), the conditional probabilit y runs up to
0.75 given that the object was merged at the previous
frame (time t-1). This is also true for the “occluded at t-

O

B

1

1

O

B

1

1

O

B

1

1

O2

B B2 2

2O

(a)                              (b)                               (c)

Figure 2. (a) an UPDATED object, (b) a POTENTIALLY
MERGED object, and (c) a POTENTIALLY SPLIT blob.
The size of each circle indicates the amount of match score.

occluded
at t-1

merged
at t-1

terminated
at t

occluded
at t

merged
at t

predictive
terminated

predictive
occluded

unmatched
object

potentially
merged

predictive
merged

blob size
increases

missing
at t

Figure 3. The Bayesian network for reasoning about un-
matched objects.
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1” and “occluded at t” nodes. For a merged object, it is
very li kely to be labeled as POTENTIALLY MERGED
in the matching stage and the corresponding blob is of-
ten significantly larger than that object.

Given the observed values for the evidence nodes,
the probabilit y of any unmatched object  being termi-
nated, occluded, merged or missing can be computed
and the most probable explanation can be given. It is
noted that four causes, “ terminated” , “occluded” ,
“merged” and “missing” compete to explain the evi-
dence “unmatched object” . Hence they become condi-
tionally dependent given that their common child is ob-
served. For example, suppose the underlying object is
unmatched, but that we  know that this object was
merged at the previous frame. Then the posterior prob-
abilit y that the object is terminated, occluded or missing
goes down, which is called “explaining away” .

To make the computation more eff icient, the poste-
rior probabiliti es of the four query nodes were pre-
computed using the Bayes Net Toolbox in [7], given all
the possible values of the evidence nodes. The result is
saved in a look-up-table.

4.3. Unmatched blobs

After checking the object database, the detected
blobs that have not been interpreted are most likely split
or new objects. Another Bayesian network has been used
to infer the posterior probabiliti es of the query nodes,
“new at t” and “split at t” , given the observed values of
the evidence nodes (Fig. 4). In order to have eff icient
computation, the “distance to BO or LO” is approxi-
mated with a set of discrete values: touching, close and
far. It is noted that most of the split objects was previ-
ously merged  unless the objects entered the scene in a
group. This is reflected in the high conditional prob-
abilit y of “split at t” given “merged at t-1” . For a split
object, it is most likely labeled as POTENTIALLY
SPLIT in the blob-to-object matching stage and tends to
be significant smaller than the merging group.

Once the status of all the objects is determined, the
records in the object database need to be updated. The
record of an UPDATED, SPLIT or NEW object is re-
placed by the characteristics of the corresponding blob.
For a MERGED or OCCLUDED object, its position is
updated according to its visible history and the first-
order motion model; its colour and size remain un-
changed. The record of a MISSING object is kept un-
changed until this object is re-tracked or automaticall y
terminated after "missing" for three consecutive frames.

5. Results

To assess the significance of the detection and
tracking algorithm, we have applied it to the PETS2001
sequences which include significant lighting variation,
occlusion and scene activity. The sequences were spa-
tiall y sub-sampled to half-PAL (384×288 pixels) and
temporal sub-sampling has been investigated in our ex-
periments. The results presented below use 2.5 fps for
foreground detection and 5 fps for object tracking.
These rates provided a reasonable trade-off between
computational eff iciency and robust detection and
tracking.

5.1 Foreground detection

Fig. 5 shows the results of the motion detection at
frame 2690 of Dataset 3 (camera 1, testing) at 2.5 fps.
The corresponding result sequences ("31_1.avi" and
"31_2.avi" using intensity-based model, and "31_3.avi"
and "31_4.avi" using the combination of colour- and
intensity-based models) start at frame 1500 and end at
frame 3000. The foreground pixels in the colour-based
results are those that go beyond [µ-3.5σ, µ+3.5σ] of the
most probable Gaussians. The foreground pixels in the
intensity-based results arise from a global threshold on
the difference between the observation and the mean of
the most probable Gaussian. The thresholding level is
selected as 10% of the maximum intensity so as to pro-
duce “blobs” of similar sizes to those in the correspond-
ing colour-based results. In order to rule out isolated
“foreground” pixels and fill gaps and holes in “ fore-
ground” regions, a 1×3 closing (dilation-erosion) opera-

merged
at t-1

split
at t

new
at t

distance to
BO or LO

unmatched
blob

potentially
split

predictive
split

blob size
decreases

Figure 4. The Bayesian network for reasoning about un-
matched blobs.
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tion has been applied to the binary image of detected
“foreground” pixels.

There is a major ill umination change around frame
2690. In the intensity-based result, Figs. 5(a) and (b), a
large area of the background is detected as a huge fore-
ground object, in which the ground-truth targets (pedes-
trians) are submerged and lost. On the other hand, in the
result of the combination of colour- and intensity-based
models, Figs. 5(c) and (d), fast ill umination changes give
no additional “ foreground” blob and the ground-truth
targets are clearly visible.

Table 1 shows the number of the detection errors in
the same image sequence, from frame 1600 (skipping the
learning period) to frame 3000. Multiple objects are con-
sidered as a single ground-truth object if they are
grouped. The colour-based model is much more suc-
cessful in dealing with ill umination changes.

Models Intensity Colour

Ground-truth objects 509

Undetected positi ves 54 22

False positi ves 151 8

Table 1. The detection errors in an image sequence
with fast illumination changes.

5.2 Object Tracking

Figs. 6-8 show part of the tracking results using
Dataset 2 (camera 1, testing) at 5 fps. The correspond-

ing result sequence ("31_5.avi") starts at frame 1 and
ends at frame 701. The results of the first five frames
are noisy and not included, because the Gaussian mix-
ture model needs to learn the initial parameters for each
distribution.

Fig. 6 shows the manually selected occlusions in the
scene, in which No. 0, 2 and 3 are short-term occlusions
and No. 1 is a long-term occlusion. The building in the
right is a potential long-term occlusion but not used
here.

Fig. 7 shows an example when an object (No. 0,
white bounding box) is passing by a short-term occlu-
sion (No. 0, in pink bounding box). At frame 351 (Fig.
7(a)), the predicted bounding box (invisible here) of ob-
ject 0 overlaps occlusion 0, the predicted status is set to
PREDICTIVE OCCLUDED. At frame 386 (Fig. 7(b))
when no corresponding blob is found, object 0 is deter-
mined as OCCLUDED by the Bayesian network. Its po-
sition is updated according to the first-order motion
model based on its visible history. Therefore, the object
bounding box (grey) is not observed but estimated. At
frame 396 (Fig. 7(c)) when a blob is detected at the
other side of the occlusion and matches object 0, object
0 is re-tracked and its record is then updated using the

 
                     (a)                                            (b)

 
                      (c)                                           (d)

Figure 5. Motion detection, at frame 2690 of Dataset 3
(camera 1, testing), with FPS=2.5: the detected blobs (a)
and bounding boxes overlaid on the frame (right) using
the intensity-based model (top) and the combination of
colour- and intensity-based models (bottom).

Figure 6. The occlusion models for the Dataset 2 (cam-
era 1, testing).

 
                     (a)                                            (b)

 
(c) (d)

Figure 7. A tracking example in Dataset 2 when object 0
(white) passes by a short-term occlusion 0 (grey).
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new observation.
Fig. 8 shows an example when one object is merged

with another. At frame 416 (Fig. 8(a)) when the pre-
dicted bounding boxes (invisible) of objects 0 and 2
overlap, the predicted status is set to PREDICTIVE
MERGED for both the objects. At frame 426 (Fig. 8(b))
when only one blob is detected, object 0 is matched to
that blob because its properties are less influenced by the
merging. Object 0 is determined as a normal UP-
DATED object. On the other hand, object 2 is deter-
mined as MERGED by the Bayesian network and its
interacting object is set to No. 0. Its position is updated
and predicted  according to the first-order motion model
based on the visible history (note the grey bounding
boxes in Figs. 8(b)(c)). At frame 441 (Fig. 8(d)) object 2
are matched to a newly detected blob and thus re-
tracked as an UPDATED object.

Table 2 shows the tracking errors, when the objects
are interacting with each other or the scene elements,
for the first four testing sequences ( Datasets 1-2, cam-
eras 1-2). The result indicates that the current algorithm
is proper to track two interacting objects or object
groups. Its performance degrades when multiple objects
are clustered in a local region, such as that in Dataset 3.

Events Merged Split Occluded
Examples 12 8 13
Errors 0 1 3

Table 2. The tracking examples and errors for in-
teracting objects in the Datasets 1 and 2.

6. Conclusions

The combination of the colour- and intensity-based
Gaussian mixture models can better adapt to fast ill umi-
nation changes when detecting foregrounds. The scene

model and motion prediction provide relatively reliable
evidence in inferring and tracking objects through Baye-
sian networks, especiall y when ambiguity in observation
arises.

Future work includes considering multiple objects
that interact within a group, using dynamic Bayesian
networks and even continuous variables to infer object
status, using multi -view co-operation to interpret the
incomplete observation from each single view.
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                      (a)                                           (b)
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Figure 8. A tracking example in Dataset 2 when objects 0
and 2 are merged and then split.
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