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Abstract. In pursuit of enhancing driving safety while controlling and
reducing vehicle and testing costs, our research explores advanced de-
cision logic for autonomous driving. This study integrates foundational
algorithms and employs a suite of tools, including MATLAB, Simulink,
Prescan, and CarSim, to develop a comprehensive virtual simulation test-
ing environment. Within this virtual platform, we create and test various
environmental parameters and vehicle states to simulate real-world driv-
ing conditions accurately. Our core cost-based decision-making algorithm
processes perceptual results to calculate the "cost," which then informs
driving decisions and planning. By default, the planning tried not to
decelerate, but maintained acceleration changes as smooth as possible,
which leading to unsafe scenarios such as driving off-road to go around
the obstacles. In contrast, we proposed an explainable algorithm that
could effectively balances safety and comfort, ensuring safer driving out-
comes. Furthermore, our work could contribute to the field of Explain-
able Artificial Intelligence in Autonomous Driving by providing a robust
framework for testing and optimizing decision logic, ultimately leading
to the development of safe and efficient autonomous vehicles.

Keywords: Autonomous Driving · Explainable Artificial Intelligence ·
Dynamic Planning · Decision-making · Safety-comfort Trade-off

1 Introduction

With the continued advancement of Artificial Intelligence technology, significant
achievements have been made in the field of autonomous driving [1], especially
in the areas of system perception [2], decision planning [3], and vehicle control
[4]. Current technology applications focus on advanced perception systems, deep
learning algorithms for complex scene processing, sensor accuracy, and decision-
making and control systems that mimic human driving behavior (e.g. mimic
human attention and action [5]), which have basically achieved the effect of ve-
hicle navigation and path planning in complex traffic environments by combining
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sensor fusion such as advanced cameras, radar, laser radar (LiDAR), and deep
learning algorithms in software technology [6]. Currently, artificial intelligence
empowers vehicles to understand their surroundings, including recognizing other
vehicles, pedestrians, traffic signs and road conditions, and to make correspond-
ing driving decisions based on real-time changes, increasing the proportion of
intelligence in the active supervision of self-driving vehicles.

Society of Automotive Engineers International (SAE) is the world’s leading
authority in mobility standards development. It defines 6 levels of driving au-
tomation ranging from 0 to 5 [7], namely No driving automation (L0), Driver
assistance (L1), Partial driving automation (L2), Conditional driving automa-
tion (L3), High driving automation (L4), and Full driving automation (L5).
Currently, the autonomous driving industry is mostly at L2 and L3.

L2 systems, such as Tesla’s Autopilot [8], can control the vehicle’s steering
and speed decisions in specific situations, but still require the driver to be re-
sponsible for the car and be ready to take over control at all times [9]. L3, on the
other hand, are able to take full control of driving tasks under certain conditions,
but still require human intervention and control when encountering complex and
changing scenarios. Some companies are experimenting with L4 technologies that
enable fully automated driving in specific areas and conditions, but are generally
limited to closed or controlled environments [7].

There are a number of factors that prevent autonomous driving technology
from being fully automated at this time, The four main challenges to current
development are as follows:

System reliability testing: The system safety of autonomous driving is at the
core, and is a major human concern, and involves how to maintain a high level
of reliability in unpredictable road conditions and complex traffic environments.
In the latest self-driving models, testers and suppliers are constantly figuring
out how to try to attempt multi-type sensor fusion, advanced computer vision
technologies, and improve vehicle performance in road test experiments such
as automated lane tracking, assisted parking, or collision detection, in order to
adapt as much as possible to more real-world demands and possibilities [10].
However, when faced with practical challenges, road tests, which are the final
arbiter of safety performance, are often scheduled at the end of the design cycle
and pose the same life-safety risks to researchers [11].

Ethical decision-making: The ethical challenges include the establishment
of regulations applicable to different stage classes of self-driving vehicles and
the apportionment of liability for accidents. Attempts to explain or define the
perception, reasoning and decision-making processes present in the vehicle’s be-
havior can also increase the difficulty and challenge for the acceptance of the
population and the establishment of laws and regulations [10].

Learning Models and Technical Constraints: The technical limitations
are mainly in terms of the interpretability of deep learning models. The limited
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dataset bias, black-box characteristics, nonlinear complexity, and opacity of the
learning process in deep learning models can directly or indirectly increase the
difficulty of interpretability.

Regulatory and legal issues/level of consumer trust: Increasing public
awareness of the safety and effectiveness of self-driving vehicles is key to im-
proving their acceptance. Currently, most driving tasks are actively supervised
or assisted by self-driving vehicles, and the pressure on drivers has declined as a
result of being assisted by Artificial Intelligent [12], but due to the lack of sys-
tematic transparency and interpretability in traditional drive control and neural
network models, humans often fail to understand some of the behaviors accom-
plished by self-driving vehicles while in operation. Therefore, it is particularly
important to create laws and regulations that clearly and explicitly explain the
behavior of machines when running neural drive models, improve the correspond-
ing laws and regulations in the field of autonomous driving, and try to obtain
and improve general social acceptance.

With the challenges above, the important advances in automated driving
technology, achieving full automation and widespread application, up to full au-
tomation (L5) and widespread use in everyday traffic, still requires overcoming
these technical, legal, and social acceptance challenges and attempting to make
breakthroughs in key areas [7]. An important step forward in this field is the
development of Explainable Artificial Intelligence (XAI), which aims to solve
the opaque nature of very sophisticated machine learning models, notably in the
field of deep learning [13]. In order to guarantee that decisions made by AI are
not only accurate but also trustworthy and transparent, XAI works towards the
goal of making these processes as interpretable as possible to humans [14]. The
heart of XAI resides in the fact that it bridges the gap between the advanced
capabilities of AI systems and the human need for understanding and trust [15].
Significant strides of XAI were made in the field of autonomous driving, led
to significant advancements [16]. The decision-making process of Convolutional
Neural Networks (CNNs) was the subject of an investigation that led to the
development of an innovative XAI method in the field of autonomous driving
[17]. The primary objective is to examine and extract output feature produced
by neurons in the hidden layers [18]. Experiments have been conducted using
attention mechanisms that concentrate on visible elements causally linked to
the driver’s actions, and natural language processing to articulate the vehicle’s
maneuvers [19]. Moreover, recent research in computational Neuroscience and
Cognitive Robotics developed robotic models that mimic human driving behav-
ior (e.g. how human select attention and action [5,20]). Collectively, they signif-
icantly augment both the interpretability and reliability of AI decision- making
in autonomous vehicles, with a keen focus on crucial elements like pedestrians
and traffic signals [21].

The main purpose of the current work is to try to build an autonomous driv-
ing model configurator and simulation tester by using the software combination
that has been gradually matured, to provide a safer and less costly solution for
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the future testing of autonomous driving vehicles based on the multiple data
sets and diverse data collection and adjustments therein. At the same time, the
experiment also highlights and adopts two different vehicle operation decision-
making algorithms (quadratic planning and dynamic planning) for path planning
and speed planning, respectively, under the effect of the software combination,
through the collection and sampling of certain specific data, in order to achieve
the effect of testing the simulated environment. The data collection and analysis
is also used to try to improve the safety and comfort level of the self-driving
vehicle by using the data for rational optimisation and later improvement.

2 Materials and Methods

2.1 Materials

The software used in this project includes CarSim, Prescan, MATLAB and
Simulink, the combination of these applications creates a sophisticated simu-
lation platform that is crucial for the development and testing of autonomous
driving systems (Please refer to Table 1 in Appendix A for a detailed comparison
of the software). The following is a brief introduction to the software and the
function and role of each application used in this work:

Fig. 1. A screenshot of PreScan[22]. Completion of the environmental model in PreScan
(including obstacles, pedestrians, and vehicles). In the environment setting interface of
prescan, you can add various obstacles such as houses, vehicles, pedestrians, trees, etc.
to assist the test, and arrange the location according to the experimental requirements,
so as to achieve the purpose of testing the vehicle algorithm and unexpected conditions.

Prescan is primarily utilized for generating complex traffic scenarios and sim-
ulating sensors[22] (Fig.1). The software creates intricate virtual environments
that encompass diverse road configurations, traffic scenarios, and pedestrian be-
haviors. Prescan also emulates the data that would be acquired by vehicle sensors
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in these situations, including LiDAR, radar, and camera feeds. The simulations
are essential for generating authentic scenarios that an autonomous vehicle could
potentially face (Fig.2).

Fig. 2. Coordinate System Selection and Vehicle Initial Path Setting. In the following
introduction, the coordinate system will be unified, and the direction of vehicle travel
will be defined as the vertical dimension, and the direction perpendicular to the vehicle
travel will be defined as the lateral dimension. The test vehicle first performs the path
point setup and the experiment vehicle is responsible for the final practical data col-
lection through the path points which provided by test vehicle, followed the trajectory
from beginning and ending of the test vehicle; Detection distance is kind of the specific
area which could be flexible and changeable to detect the obstacles by using Prescan,
which is already set up at 50 meter by Lidar.

After the completion of the environmental model in Prescan ver.8.5.0, the
sensor data it produces is transferred to MATLAB R2022b [23]. In the MAT-
LAB environment, the data is employed to create and enhance decision-making
algorithms that are crucial for the operation of autonomous vehicles. These algo-
rithms encompass intricate procedures such as object detection, path planning,
and decision-making in diverse traffic scenarios. MATLAB’s robust computa-
tional tools enable the testing and optimization of these algorithms, guaranteeing
their effectiveness and reliability.

Once the decision-making algorithms are created in MATLAB, they are in-
corporated into CarSim ver.2019.1.[24], see in Fig.3. CarSim is responsible for
accurately simulating the physical dynamics of the vehicle. The system utilizes
the decision-making algorithms of MATLAB to simulate the physical response
of a virtual vehicle to the decisions made. This encompasses the vehicle’s acceler-
ation, deceleration, and maneuvering in reaction to the simulated environment.
CarSim’s accurate representation of vehicle dynamics guarantees that the simu-
lated reactions are highly realistic.

Simulink is crucial in integrating these tools (details can be found in Meth-
ods section). The platform facilitates instantaneous interaction among Prescan,
MATLAB, and CarSim. Simulink facilitates the exchange of data between these
software tools, guaranteeing that the choices made by the algorithms in MAT-
LAB [25], which rely on Prescan’s sensor simulations, are faithfully represented
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Fig. 3. A screenshot of CarSim[24]. Physical modeling setup for vehicles (The choice
here is the more compatible Audi A8). In terms of the versatile function from Carsim,
which consist of road settings, friction settings, vehicle performance settings, gradient
settings, etc.

in CarSim’s vehicle dynamics[24]. This integration enables the seamless and in-
stantaneous simulation of autonomous driving, wherein modifications in the sur-
roundings (such as a pedestrian entering the road) promptly impact the vehicle’s
actions.

The combination of Prescan, CarSim, MATLAB & Simulink, Python and
TensorFlow altogether results in a comprehensive and interactive simulation
platform with intricate details and dynamic capabilities. It facilitates compre-
hensive testing and development of autonomous driving technologies, serving as
a crucial tool for engineers to evaluate and improve the safety and effectiveness
of autonomous vehicles in various situations.

2.2 Methods

Master Functions for Autonomous Driving Decision Making. In the
main function framework of autonomous driving decision making, we chose the
optimization technique of dynamic programming for path planning, which fa-
cilitates the decomposition of a large problem into small interrelated problems,
and was dedicated to logically solving complex decision problems with overlap-
ping sub-problems and optimal sub-structures. In the decision-making problem
of autonomous driving, dynamic planning of paths mainly solves the optimal
path problem from the starting point to the end point, which usually involves
the global consideration of the whole route. It evaluates various possible path al-
ternatives, considering obstacles, route length, possible traffic conditions, etc., to
find the path with the lowest cost (Fig.4). The implementation process was con-
ducted in five steps, namely 1) Initialization, 2) Cost Calculation, 3) Recycling
Process, 4) Path Backtracking, and 5) Output Path.
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Fig. 4. The block of Path decision main task from Simulink

First, the minimum cost from the starting point to each node and the mini-
mum cost from the starting point to the previous node of the optimal path were
recorded using the matrices "node_cost" and "pre_node_index", respectively.
A node in path planning is a point (in a dynamically planned grid) where the
vehicle may be subjected to a travel strategy to reach a particular state due to a
combination of node costs such as time, distance and path smoothing. The initial
settings of the current node and the previous node were recorded separately in
order to be able to track and obtain the entire path history when the optimal
path was finally determined. In this way, we combined the planned path infor-
mation with the speed information and used linear fitting to provide the model
with a smoother and more adaptive, real-time update of the path information
and speed of the dual-modal smoother and more natural change curve (as shown
in Fig.5).

Second, the initial cost calculation includes the possible costs from the first
node at the starting point to all subsequent nodes. It directly affected the entire
path planning strategy and path generation. Given the fifteen input arguments
as shown in Fig.4 (left side), three types of cost calculations were performed in
the functions "CalcNeighbourCost" and "CalcStartCost", namely Smoothness
Cost, Reference Trajectory Cost, and Crash Cost.

The smoothness cost cost_smooth is given by Eq.1:

cost_smooth = wsmooth_v

n∑
i=1

v2i + wsmooth_a

n∑
i=1

a2i + wsmooth_a’

n∑
i=1

a
′2
i (1)
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Fig. 5. Process Schematic. Under a specific or previously set path, the vehicle will
consider multiple obstacles within its detection range and plan a path that considers
all of them.

where vi, ai, and a′i are velocity, acceleration, and jerk (rate of change of
acceleration) at path point i, along the direction of the road (defined as vertical
dimension, see Fig.2), respectively. wsmooth_v, wsmooth_a, and wsmooth_a’ are
the corresponding smoothness cost weights.

The reference trajectory cost cost_ref was given by Eq.2:

cost_ref = wref

n∑
i=1

ref2i (2)

where refi denotes the deviation of the reference trajectory from path point i,
and wref is the weight of the reference trajectory cost.

The collision cost cost_collision was given by Eq.3:

cost_collision =

m∑
j=1

CalcObsCost(wcollision, d
2
j ) (3)

Here, d2j is the square of the distance between path point j and the obstacle,
and wcollision is the weight of the collision cost.

Third, for each decision step, the system calculated the cost from all nodes in
the previous step to each current node, and considered all possible paths coming
from the nodes in the previous steps and calculates the total cost to reach the
current node. Whenever a lower cost path was found, the generation value in
"node_cost" was updated again. The source node of this path was then recorded
in "pre_node_index".

Next, after traversing all the nodes in each step that meet the requirements,
it found the path that had the smallest cumulative cost from the starting point
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to the end point (cumulative optimal), and used the index of the previous node
recorded in the "pre_node_index" to backtrack, such that the optimal path was
obtained after traversal.

Last, based on the backtracking results, the sequence of the nodes was ob-
tained and displayed in the s-l coordinate system. The dynamic obstacles and
the vehicle’s speed planning were added on the original basis, thus it is necessary
to output the vertical position l and longitudinal position s of each node in the
subsequent steps, also including the dynamics of velocity v and acceleration a
for two-speed planning and control, which completed the path information and
facilitated the execution of the vehicle control system.

Velocity dynamic planning The implementation process includes four steps
(Fig.6), namely 1) Set sampling point, 2) Initialize the cost matrix and speed
store, 3) Fill the dynamic programming matrix, and 4) Results backtracking.

First, non-uniform sampling and uniform time sampling were used as the ba-
sis, through the definition of "s_list" and "s_list", non-uniform spatial sampling
concentrates the computational resources at the beginning of the planning path,
while uniform time sampling was used to simplify the time dimension problem.

Fig. 6. Speed decision with Dynamic planning

Second, the "dp_st_cost" was initialized to infinity to indicate that there
was no feasible path cost initially. "dp_st_s_dot" was used to store the speed
information of each node. The costing and speed information were stored for
each traversal as a key for later updates.
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Fig. 7. Generate convex space

Third, each node calculates the cost and velocity from the previous node
to all possible spatial points using the "CalcDpCost" function, which contained
cost information such as obstacles, acceleration, and deviation from the reference
velocity, and traverses each time and spatial point using a double loop. At each
node, the cost transferred from the previous time step was considered and the
lowest cost and corresponding velocity at the current node were updated.

Last, we traversed the edges of the dynamic planning matrix (all spatial
points at the last time step and all-time steps at the last spatial point) to find
the point with the lowest cost. Starting from the point with the lowest cost,
the optimal speed selection was constructed step by step using the former node
information "dp_st_node" back to the starting point.

Velocity quadratic planning preparation (velocity and acceleration)
Since the types of obstacles, we consider the simulation phase as dynamic and
static. Thus it requires the vehicle to follow appropriate speed and acceleration
boundaries during travelling, especially when encountering dynamic obstacles
it would be more restrictive. The obstacles were mapped and localized to the
vehicle to ensure that the vehicle’s speed was planned to be within the safety
and technical constraints (as shown in Fig.7).

The implementation process includes two steps (Fig.7), namely 1) Vehicle
edge dynamics modelling, 2)Dynamically adjust speed limits.

First, a vehicle-side dynamics model in autonomous driving decisions de-
scribes the maximum speed. With such model, a vehicle can safely travel on a
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given curvature path. The parameters are specified as in Eq.4:

ν2 =
avertical

k
(4)

– ν: vehicle velocity
– avertical: the maximum vertical acceleration of the vehicle, i.e., the maximum

vertical acceleration due to centripetal force when the vehicle is travelling in
a curve

– k: curvature, a measure indicating the degree of curvature of the path, k = 1
R ,

where R is the radius of the curve.

The important use of this model is to ensure that the vehicle does not skid
or lose control due to excessive speed when travelling in curves, thus ensuring
safe driving. The model is used to calculate the maximum safe speed for each
curvature, as in Eq.5:

cost_smooth =

√
max_vertical_accel

cur_kappa
(5)

where max_vertical_accel is the maximum vertical acceleration, and
”cur_kappa” refers to the k(kappa), where the smoothness cost function com-
bines the curvature and the maximum vertical acceleration to ensure the safety
of the vehicle at any curvature, with the help of the calculation in Eq.5, which
helps to determine the maximum safe speed of the vehicle at different curves.

Next, dynamically adjusting speed boundaries in an autopilot system mainly
considers the effects of dynamic obstacles:

a. Obstacle localization: the mean position "obs_s" and time "obs_t" of
an obstacle is calculated from the start and end spatial positions of the ob-
stacle "obs_st_s_in_set", "obs_st_s_out_set" as well as the time window
"obs_st_t_in_set", "obs_st_t_out_set".

b. Speed limit adjustment: If the obstacle is in front of the vehicle, reduce
the speed to the upper boundary to avoid a collision, depending on the speed
and location of the obstacle; If an obstacle is behind the vehicle, raise the speed
lower boundary to help the vehicle pass the obstacle by accelerating.

Finally, this dynamic adjustment allows the vehicle to respond flexibly to un-
expected situations, by defining clear speed and acceleration bounds and estab-
lishing the necessary convex optimization space for subsequent quadratic plan-
ning algorithms. Driving adaptability, safety and flexibility are enhanced in a
simulated environment, a key step in solving optimal control commands.

Quadratic Velocity Programming The implementation process includes
four steps (Fig.8), namely 1) Construction of continuity constraint, 2) Applica-
tion of boundary constraints, 3) Construction of cost function, and 4) Quadratic
programming solution, and 5) Result processing and output.
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Fig. 8. Speed planning with Quadratic planning

First, the equation constraints in quadratic programming ensure continuous
changes in velocity and acceleration from one point in time to the next. This is
constructed through the matrix Aeq, which contains a linear relationship for the
velocity and acceleration at the current and next time points.

Secondly, the lb and ub arrays define specific ranges of values for velocity
and acceleration that are determined based on static analyses (e.g., road condi-
tions, vehicle performance) and dynamic inputs (e.g., traffic conditions ahead,
obstacles).

Next, by defining a cost matrix H and a vector f, the QP algorithm minimizes
a cost function that contains the speed, acceleration, and its variation (Jerk).
This optimization is directly related to the driving comfort and energy efficiency
of the vehicle.

Furthermore, using the quadprog function, the optimal velocity and accel-
eration configurations are solved for based on the given H-matrix (cost term),
f-vector (linear term), A-matrix (inequality constraints), Aeq-matrix (equation
constraints), and upper and lower bounds.

Finally, the outputs include secondary planning and optimized speed, accel-
eration, position, and relative time. These results provide the vehicle control
system with accurate velocity and acceleration commands for speed control in
real-world driving.
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3 Results

After data collection in the test environment, the output results focus on the
speed and acceleration information of the self-driving car in the vertical direction
and in the lateral line of defence to measure the safety factor and comfort level
of the car.

Fig. 9. Vehicle Profile. The solid black line represents the real-time change in speed
of the vehicle in the direction of travel (i.e., Vertical Dimension); the blue dotted line
represents the real-time change in speed of the vehicle in the direction of steering (i.e.,
Lateral Dimension).

Throughout the experiment, the dynamic monitoring of speed can be used to
provide the current simulation test environment with some vehicle interpretable
decisions and actions, such as when to decelerate, when to accelerate, etc., and
the relevance and accuracy of the decisions can also be inferred from the curves
below (shown in Fig.9), especially on both dynamic and static obstacles.

In the results panel, the speed information in both directions was an impor-
tant condition indicator, but since we should not only pursue safety but also
focus on comfort in the field of autonomous driving, the dynamic display of ac-
celeration in both directions were analysed and presented as in Fig.10. According
to the acceleration curve, we could clearly observe that the model has quite a lot
of irregular jitters in both directions, indicating that there were still some loop-
holes and deficiencies in the model’s ability to handle some obstacle avoidance
and detection of the surrounding environment. Especially for the model in this
experiment, the range used for detecting the surrounding environment was fixed
as a circled area with a radius of 50m. It was inevitable to deal with several
different types of obstacles at the same time and combine the vehicle control
behaviors under each different decision during operation.

The absolutely acceleration change of the vehicle was then calculated based
on the dynamic change of acceleration in both directions (Fig.10). In order to
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Fig. 10. Vehicle acceleration profile. The solid black line represents the real-time change
in acceleration of the vehicle in the traveling direction (i.e., Vertical Dimension); the
blue dotted line represents the real-time change in acceleration of the vehicle in the
steering direction (i.e., Lateral Dimension).

investigate the improvement of acceleration on the comfort experience of the
self-driving vehicle, and to investigate the interpretability of the decisions in the
model, we set a threshold value to monitor the stages at which the acceleration
of the vehicle changes significantly. In the current work, an acceleration of 3m/s2

was chosen as the threshold, considered to be discomfort for passnegers [26]. We
counted the number of times this threshold was exceeded in the testing, as a
judgement of the model and the simulated environment performance in comfort.
In the example shown in Fig.11, we observed four times that the acceleration
exceeded 3m/s2, and only one of the four times it was well above the threshold,
reaching around 5m/s2.

In the previous model, the prediction of unexpected situations on the road
was insufficient, and it could only avoid obstacles with almost no deceleration,
which was still a safety hazard and lacks the verification of interpretable ve-
hicle behavior information even in the simulation environment. In the above-
mentioned results, it could be clearly seen that although the acceleration of the
vehicle exceeds the threshold four times in the test environment of nearly one
minute. In other workds, it made up for the improvement of the safety perfor-
mance of the vehicle by trading-off minimal discomfort. We also observed the
following performances of the model in our testing: 1) it treated the static ob-
stacles on the non-travelling path as the dynamic obstacles with the speed of
0, simulating the occurrence of pedestrians on the side of the road or corner
emergencies, 2) it dealt with the problem of the speed decreasing of the dy-
namic obstacles getting closer, 3) it braked and de-accelerated significantly as
the the obstacle were getting too close, i.e. the "cost" increased largely in those
occasions, 4) it could make decision of slowing down to avoid dynamic obsta-
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Fig. 11. Absolutely Acceleration of vehicle profile with the threshold (a = 3m/s2).
The black plot represents the acceleration profile, the red dashed line represents the
threshold 3m/s2, and the red circle points out the occasions that the acceleration
exceeded the threshold.

cle travelling in horizontal dimention (e.g. pedestriant), and then accelerated to
overtake safely.

4 Discussion

The aim of the current work was to build a decision-making model for au-
tonomous driving that provides visual scenario simulations and dynamic displays
in terms of safety and explanatory aspects [27]. We demonstrated that only dy-
namic display data such as speed and acceleration were used for the evaluation
criteria of the previous model, which was obviously insufficient for judging the
performance of a decision-making model. At the level of automatic driving, the
performance of the vehicle includes the passage of different road sections, the
passage efficiency, and the collision situation, the performance of the model for
a variety of different complex road conditions and emergencies, etc.

We developed a complete framework to test autonomous driving decision-
making and planning algorithms in a realistic simulation, though the evaluattion
of the performance was not fully quantitative. Specifcally, our model processes
information from perception results, and performs explainable decision-making
and planning. We believe our data-driven approach could facilitate more objec-
tive assessments and guide further improvements. It could be easily integrated
to perception or control models of autonomous vehicles for enhancing the safety
and explain-ability of a complete autonomous model, which could contribute to
the future development of autonomous driving technology towards L4 or L5 [28].

Possible future work includes the following directions. First, Vision and
Multi-sensor Fusion, combining data from cameras, LiDAR, radar, and other
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sensors, improving the vehicle’s perceptual ability to detect and respond to vari-
ous obstacles and conditions in real-time [29]. Recent advances in sensor fusion al-
gorithms have shown promising results in improving the robustness and accuracy
of autonomous vehicle perception systems. By integrating these advancements,
future systems can achieve high levels of situational awareness and reliability.
Second, Handling Real-Time Large-Scale Data and Complex Environments, op-
timizing data processing pipelines and employing more sophisticated machine
learning techniques to ensure robust performance in diverse and dynamic sce-
narios [30]. The challenge of processing vast amounts of sensor data in real-time
requires innovative solution, such as edge computing and distributed process-
ing frameworks, which can help manage the computational load and enhance
system responsiveness. Third, Higher Computing Resources and Accurate Envi-
ronmental Data, exploring the use of more powerful computing platforms and
cloud-based solutions to meet computational demands, improving the fidelity
of simulations and enhance the reliability of the autonomous driving system in
real-world applications [31]. Leveraging high-performance computing (HPC) and
cloud infrastructure can significantly accelerate the development and testing cy-
cles of autonomous driving algorithms, enabling more comprehensive validation
and iteration processes And last but not the least, Quantitative Evaluation of
Autonomous Driving Performance, by systematically measuring various aspects
of performance, such as response times, obstacle avoidance success rates, and
passenger comfort levels, gaining a clearer understanding of system strengths
and weaknesses [32]. Implementing standardized metrics and benchmarks for
autonomous driving performance evaluation can provide valuable insights and
facilitate comparison across different systems and approaches.

Recent studies have emphasized the importance of multi-sensor fusion and
advanced data processing techniques in achieving reliable autonomous driving
systems. For instance, according to a survey by Zhang et al., the integration of
various sensor modalities is critical for enhancing the perception capabilities of
autonomous vehicles and addressing the challenges posed by dynamic environ-
ments [33]. Additionally, advances in edge computing and 5G have demonstrated
potential in managing the computational demands of real-time data processing
for autonomous systems [34,35].
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A Appendix A

Below is a side-by-side comparison of the basic information of the software plat-
forms we implemented:

Table 1. Comparison of various simulators [31]. Y=supported, N = not supported, U
= unknown

Requirements MATLAB (Simulink) Carsim PreScan
Perception: Sensor models supported Y Y Y
Perception: Support for different weather conditions N N Y
Camera Calibration Y N Y
Path planning Y Y Y
Vehicle Control: Support for proper vehicle dynamics Y Y Y
3D Virtual Environment U Y Y
Traffic infrastructure Y, allow to build lights model Y Y
Traffic Scenario simulation: Support of different types of Dynamic objects Y Y Y
2D/3D Ground Truth Y N N
Interfaces to other software Y, with Carsim, Prescan, ROS Y, with MATLAB (Simulink) Y, with MATLAB (Simulink)
Scalability via a server multiclient architecture U U U
Open source N N N
Well-maintained/Stable Y Y Y
Portability Y Y Y
Flexible API Y Y U
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