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Abstract The authors study rotational hypersurfaces with constant Gauss-Kronecker

curvature in R
n. They solve the ODE associated with the generating curve of such hyper-

surface using integral expressions and obtain several geometric properties of such hyper-

surfaces. In particular, they discover a class of non-compact rotational hypersurfaces with

constant and negative Gauss-Kronecker curvature and finite volume, which can be seen as

the higher-dimensional generalization of the pseudo-sphere.
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1 Introduction

In the field of differential geometry, curvature is the quantity used to measure the extent

to which a geometrical object bends. In the study of submanifold geometry, the principal

curvatures describe how the submanifold bends in each principal directions. The mean curvature

is the mean value of all principal curvatures, while the Gauss-Kronecker curvature is the product

of principal curvatures. For the rest of the paper we will call it Gauss curvature for short.

Various notions of curvatures have many applications in science and industry. The problems

on various restrictions on those curvatures have a long history. In particular we focus on the

study of submanifolds with constant or prescribed curvature, and most of the time we only

consider hypersurfaces, namely, codimension one submanifolds. The constant mean curvature

(CMC for short) submanifolds can be seen as generalizations of minimal submanifolds, which are

characterized as having zero mean curvature. CMC hypersurfaces enjoy good variational and

geometric properties. For a detailed survey on CMC hypersurfaces in R
n, we refer the readers

to [1]. We mention a few results here, which motivate our work. In terms of rotational CMC

surfaces in R
3, Delaunay proposed a beautiful classification theorem which indicates that the

generating curves of these surfaces are formed geometrically by rolling a conic along a straight

line without slippage (see [5]). In the 1980s, Hsiang and Yu generalized Delaunay’s theorem
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to rotational hypersurfaces in R
n (see [6–7]). Recently Buenoa, Galvezb and Mirac studied

the more general question about rotational hypersurfaces with prescribed mean curvature and

obtained Delaunay-type classification theorems (see [2]).

On the other hand, higher order symmetric functions of the principal curvatures are also

interesting. The r-th symmetric function of the principal curvatures is called “r-mean curva-

ture”, which covers the notions of mean curvature and Gauss curvature when r is equal to 1 and

the dimension of the hypersurface, respectively. In 1987, Ros proved that a closed hypersurface

embedded into the Euclidean space with constant r-mean curvature is a round sphere (see [9,

11]). There are also results on hypersurfaces with constant or prescribed Gauss curvature in

other ambient spaces. See e.g. [12–13].

However, we notice that few examples on constant Gauss curvature hypersurfaces in R
n have

been constructed and studied in the literature, other than the round spheres and flat planes.

According to Ros’ theorem, either such hypersurfaces are non-compact or they have non-empty

boundary, if they are not the round spheres. They could still carry interesting geometric and

analytic properties. The condition of having constant Gauss curvature is characterized by a

Monge-Ampere type equation, and special explicit solutions to such equations can shed light

on the study of general solutions. Looking for constant Gauss curvature hypersurfaces with

enough symmetry could be an initial step of the study of general hypersurfaces with constant

Gauss curvature. Just as Delaunay-type hypersurfaces have been built blocks of general CMC

hypersurfaces in R
n, hypersurfaces with special symmetry conditions can be testgrounds for

general hypersurfaces with constant or prescribed Gauss curvature.

In this paper, we focus on rotational hypersurfaces M with constant Gauss curvature K in

R
n. Let γ(t) = (ϕ(t), ψ(t)) be a parametrization of the generating curve of M . We derive the

following ODE for ϕ(t):

K = −ϕ
′′(1− ϕ′2)

n−3
2

ϕn−2
. (1.1)

We solve this equation and obtain the following result.

Theorem 1.1 Let M ⊂ R
n be a rotational hypersurface with constant Gauss curvature K

such that its generating curve γ is a graph over the axis of rotation. Let γ(t) = (ϕ(t), ψ(t)) be a

parametrization of the generating curve, where ϕ(t) is the radius of the meridian (n−2)-sphere,

ψ(t) is the height function and t is the arclength parameter. Then:

(1) When K = 0, M is a circular cone or a circular cylinder.

(2) When K 6= 0, the expression of the inverse function of ϕ is locally given by

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ
√

1− (Kϕn−1 − CK)
2

n−1

,

where the sign of the integrand agrees with the sign of ϕ′, t0 is the initial time, CK is a real
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constant. Moreover, ψ is given by

ψ(t) = ψ(t0) +

∫ t

t0

√

1− (ϕ′)2dt.

(3) When K < 0 and CK = −1, the corresponding hypersurface is a complete Riemannian

manifold (with boundary) diffeomorphic to Sn−2× [0,+∞) and has finite volume. It can be seen

as a higher-dimensional generalization of the pseudosphere in dimension two.

More precise statements are made in Theorems 3.2–3.4. The pictures of the generating

curves are displayed in Figures 1–2. The hypersurface in (3) in Theorem 1.1 is the only non-

compact example. We also note that when n = 3, classifying constant curvature surfaces of

revolution is a classical problem and was completely solved long ago. See e.g. [3, Chapter 3–3,

Exercise 7]. Using the explicit formula for the solutions, we also study how the shape of the

generating curve changes as the Gauss curvature K varies, see Subsection 3.3.

We remark that rotational hypersurfaces in space forms have been systematically stud-

ied, e.g. in [4, 8, 10]. In particular, Palmas concluded that the only complete rotational

hypersurfaces (without boundary) with constant Gauss curvature in the Euclidean spaces are

hyperplanes, cylinders and round spheres (see [10]). We follow the orbit geometry approach in

their papers, and we allow the hypersurfaces to have boundary or to be singular. In particular,

we discover a class of non-compact rotational hypersurfaces with constant and negative Gauss

curvature which have finite volume. To the best of our knowledge, we have not seen such

examples discussed in the literature.

2 Rotational Hypersurfaces and Its Curvatures

We set up notations and state the formulae for principal curvatures and Gauss curvature of

a rotational hypersurface in R
n. Let x1, x2, · · · , xn denote the standard coordinates of Rn and

we assume that xn is the axis of rotation. Let f : R → (0,+∞) be a smooth function.

Definition 2.1 A hypersurface M is called a rotational hypersurface if it is produced by ro-

tating the generating curve x1 = f(xn) in the x1xn-plane around the xn-axis. It is characterized

by the following equation

f(xn)
2 =

n−1
∑

i=1

x2i .

Note that f(xn) is the radius of the horizontal subsphere at height xn. Throughout this

paper, M will always denote a rotational hypersurface in R
n unless otherwise stated.

We choose an appropriate parametrization of the generating curve to facilitate the cal-

culation. Let ϕ(t) denote the radius of the n − 2 dimensional hypersphere and ψ(t) denote

the corresponding height. We choose the parameter t to be the arclength parameter, that

is, ϕ′2 + ψ′2 = 1. Under the above parametrization, the generating curve x1 = f(xn) is
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parametrized as (x1, xn) = (ϕ(t), ψ(t)). Note that ϕ(t) ≥ 0 since it is the radius, and we

require ψ′(t) ≥ 0 so that the generating curve is a graph over the xn-axis.

We use the hypersphere coordinate (ϕ, θ1, · · · , θn−2) to parametrize the rotational hyper-

surface. The position vector field of rotational hypersurface M can be written as

~r(ϕ, θ1, · · · , θn−2)

= (ϕ cos θ1 · · · cos θn−2, ϕ cos θ1 · · · cos θn−3 sin θn−2, · · · , ϕ cos θ1 sin θ2, ϕ sin θ1, ψ),

where θ1 ∈
[

− π
2 ,

π
2

]

and θi ∈ [0, 2π] for i = 2, 3, · · · , n − 2. Note that ψ can be expressed in

terms of ϕ since ϕ′2 + ψ′2 = 1.

Under the above parametrization, the principal curvatures and the Gauss curvature of M

are given in the following theorems, respectively.

Theorem 2.1 The principal curvatures k1, · · · , kn−1 of M are given below:

(1) k1 = −ϕ′′

ψ′
;

(2) ki =
ψ′

ϕ
for i = 2, 3, · · · , n− 1.

Theorem 2.2 The Gauss curvature K of M is given below:

K = −ϕ
′′ψ′n−3

ϕn−2
(n ≥ 3).

Detailed calculations can be found in [2, Section 2].

3 Analysis of Rotational Hypersurface with Constant Gauss Curvature

We require the Gauss curvature of rotational hypersurfaceM to be a constant K. Then the

equation in Theorem 2.2 is transformed into an ODE as below:

K = −ϕ
′′ψ′n−3

ϕn−2
= −ϕ

′′(1− ϕ′2)
n−3
2

ϕn−2
. (3.1)

This equation will be the main equation that we study in this paper. Here we require that

ψ′ ≥ 0, so that the generating curve is a graph over the xn-axis. In this section, we will solve

this equation by separation of variables.

3.1 Solutions to the ODE

When K = 0, we get

ϕ′′(1− ϕ′2)
n−3
2 = 0.

Obviously, we must have ϕ′′ ≡ 0 or ϕ′ ≡ ±1. Both yields

ϕ(t) = c1t+ c2. (3.2)

Thus we have the following theorem.
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Theorem 3.1 A rotational hypersurface with constant Gauss curvature K = 0 is one of

the following:

(1) A right straight cylinder in R
n.

(2) A right circular cone in R
n.

Proof From (3.2), we know that the generating curve is a straight line in the case where

K = 0. Consider the equation

ϕ(t) = c1t+ c2,

when c1 = 0, ϕ is a constant in which case M is a right straight cylinder. Otherwise, when

c1 6= 0, M is a right circular cone.

Remark 3.1 In fact, the Gauss curvature of any cylinder or cone is 0.

In the rest of the paper, we will therefore discuss the case where K 6= 0. We rewrite (3.1)

in the following form:

Kϕn−2 = −ϕ′′(1− ϕ′2)
n−3
2 . (3.3)

Multiply both sides by ϕ′ and integrate both sides, we have

Kϕn−1 = (1− ϕ′2)
n−1
2 + CK , (3.4)

where CK is a constant to be chosen.

Since ϕ is the radius parameter, we only consider the case where ϕ ≥ 0. First, we notice

that the solution ϕ is bounded.

Lemma 3.1 ϕ is a bounded function such that

(1) for K > 0, max{0, CK

K
} ≤ ϕn−1 ≤ CK+1

K
where CK > −1;

(2) for K < 0, max{0, CK+1
K

} ≤ ϕn−1 ≤ CK

K
where CK < 0.

Proof From (3.4), we get

Kϕn−1 − CK = (1− ϕ′2)
n−1
2 .

Clearly, we know that 0 ≤ (1 − ϕ′2)
n−1
2 ≤ 1. So, we have

CK ≤ Kϕn−1 ≤ CK + 1.

For K > 0, we further yield

CK

K
≤ ϕn−1 ≤ CK + 1

K
.

Since we only consider the case where ϕ ≥ 0, we have

max
{

0,
CK

K

}

≤ ϕn−1 ≤ CK + 1

K
.
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Here, we must have CK > −1 to make sure that CK+1
K

> 0.

Similarly, we can deduce the inequality for K < 0,

max
{

0,
CK + 1

K

}

≤ ϕn−1 ≤ CK

K
.

Here, we must have CK < 0 to make sure that CK

K
> 0.

Now we solve the ODE when K > 0 and K < 0, respectively.

Theorem 3.2 Suppose K > 0. Let ϕ be a solution to the ODE (3.3), then:

(1) The inverse function of ϕ is given by

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ
√

1− (Kϕn−1 − CK)
2

n−1

,

where t0 is a fixed initial time.

(2) The solution ϕ can be defined on the interval I = [C′, C′+T ], where C′ is a real number,

T = T (CK) = 2

∫

(

CK+1

K

) 1
n−1

(

max{0,CK

K
}
) 1

n−1

dϕ
√

1− (Kϕn−1 − CK)
2

n−1

and ϕ(C′) = ϕ(C′ + T ) = max
{

0, CK

K

}
1

n−1 .

(3) The sign of the integrand is + for t ∈
[

C′, C′ + T
2

]

and − for t ∈
[

C′ + T
2 , C

′ + T
]

, or

the other way around if the orientation of the generating curve is reversed.

Proof From (3.4), we get

ϕ′ = ±
√

1− (Kϕn−1 − CK)
2

n−1 (3.5)

and

dt = ± dϕ
√

1− (Kϕn−1 − CK)
2

n−1

.

Here, the sign of dt agrees with the sign of ϕ′.

Then integrate both sides of the above equation, and we get

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ
√

1− (Kϕn−1 − CK)
2

n−1

. (3.6)

We also note that the solution ϕ is invariant under time translation and reversion, and thus

the value of t0 does not affect the shape of the generating curve.

Now, we should consider the interval of definition for this solution. From Lemma 3.1, we

know that the integrand in (3.6) is bounded from both above and below. We try to integrate
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from the lower bound to the upper bound and show that the integral converges, that is, we

claim

T ′ =

∫

(

CK+1

K

) 1
n−1

(

max{0,CK

K
}
) 1

n−1

dϕ
√

1− (Kϕn−1 − CK)
2

n−1

< +∞. (3.7)

To prove the claim, we only need to check the singularity when ϕ reaches
(

CK+1
K

)
1

n−1 . Let

A =
(

CK+1
K

)
1

n−1 6= 0, and the Taylor expansion of the integrand as A− ϕ→ 0 is given below:

T ′ =

∫ A

(

max{0,CK

K
}
) 1

n−1

1√
2An−2K

(A− ϕ)−
1
2 +O((A− ϕ)−1)dϕ.

Since the order of the main term of the integrand in terms of (ϕ − A) is greater than −1, the

claim is clearly true.

Thus the solution ϕ(t) can be defined on a time interval of length T ′, say [t0, t0 + T ′].

Without loss of generality, we may assume that ϕ(t) is increasing on [t0, t0 + T ′], that is, the

sign of the integrand in (3.6) is positive. In this way ϕ(t) reaches its minimum at t = t0 and

its maximum at t = t0 + T ′.

Now we extend the solution ϕ(t) to the interval [t0, t0 + 2T ′] by reflection. Namely, we

define ϕ(t) = ϕ(2t0+2T ′− t). Since (3.3) is invariant under time translation and reversion, this

extension of ϕ is a solution to the equation. By checking that the (2n+ 1)st order derivatives

of ϕ at t = t0+T ′ equal zero, we know that the left derivatives and right derivatives of ϕ agree

at t = t0 + T ′. Therefore, we know that ϕ(t) is smooth for t ∈ [t0, t0 + 2T ′].

Thus we obtain a solution ϕ on [t0, t0 + T ] satisfying all the desired properties, where

T = 2T ′ = 2

∫

(

CK+1

K

) 1
n−1

(

max
{

0,
CK

K

}) 1
n−1

dϕ
√

1− (Kϕn−1 − CK)
2

n−1

. (3.8)

Remark 3.2 When CK = 0, the solution becomes ϕ(t) = cos(
√
Kt−θ0)√
K

. In this case, M is

the round sphere of constant Gauss curvature K.

Recall that ϕ′2 + ψ′2 = 1, by (3.4) we have

ψ(t) = ψ(t0) +

∫ t

t0

√

1− ϕ′(s)2ds = ψ(t0) +

∫ t

t0

(Kϕ(s)n−1 − CK)
1

n−1ds.

Thus using the parametrization (ϕ(t), ψ(t)) of the generating curve, we draw the pictures

of the generating curves using Mathematica. Figures 1(a) and 1(b) show the generating curves

for K = 1, CK = −0.5 and K = 1, CK = 2, respectively.

Similarly, we can describe the solution for K < 0 as follows.

Theorem 3.3 Suppose K < 0. Let ϕ be a solution to the ODE (3.3), then:

(1) The inverse function of ϕ is given by

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ
√

1− (Kϕn−1 − CK)
2

n−1

,
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Figure 1

where t0 is a fixed initial time.

(2) When CK 6= −1, ϕ can be defined on [C′, C′ + T ] ∪ [D′ − T,D′], where C′, D′ are two

real numbers such that ϕ(C′) = ϕ(D′) =
(

CK

K

)
1

n−1 where

D′ − C′ = 2

∫

(

CK

K

) 1
n−1

(

CK+1

K

) 1
n−1

dϕ
√

1− (Kϕn−1 − CK)
2

n−1

and

T = T (CK) =

∫

(

CK

K

) 1
n−1

(

max
{

0,
CK+1

K

}) 1
n−1

dϕ
√

1− (Kϕn−1 − CK)
2

n−1

.



Rotational Hypersurfaces with Constant Gauss-Kronecker Curvature 351

In this case, the sign of the integrand is − in the interval [C′, C′ + T ] and + in the interval

[D′ − T,D′]. Or the other way around if the orientation of the generating curve is reversed.

(3) When CK = −1, we fix the sign of the integrand to be positive. Under this convention,

the interval of definition of the solution to (3.3) extends to −∞. In particular, the corresponding

hypersurface is non-compact complete and unbounded in the xn-direction.

Proof Similar to Theorem 3.2, we can derive the inverse function of ϕ as follows

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ
√

1− (Kϕn−1 − CK)
2

n−1

.

When CK 6= −1, we also claim

T =

∫

(

CK

K

) 1
n−1

(

CK+1

K

) 1
n−1

dϕ
√

1− (Kϕn−1 − CK)
2

n−1

< +∞.

To prove the claim, we similarly let A =
(

CK+1
K

)
1

n−1 6= 0. Then, the Taylor expansion of the

integrand as ϕ−A→ 0 is given by

T =

∫

(

CK

K

) 1
n−1

A

1√
−2An−2K

(ϕ−A)−
1
2 +O((ϕ −A)−1)dϕ.

Clearly, the integral converges since the order of the integrand’s main term is greater than −1.

Thus by the same reflection argument as in the proof of Theorem 3.2, we can show that ϕ

can be extended to a smooth solution defined on [t0, t0+2T ], where T is the above integral and

t0 can be any real number. Moreover, we can prescribe its monotonicity by fixing the orientation

of the generating curve. However, in this way ϕ can be negative somewhere. After deleting the

interval on which ϕ is negative, we obtain the desired form of the domain of definition of ϕ.

Finally, when CK = −1, we need to prove that the integral in (3.3) diverges, namely

T =

∫

(

−1
K

) 1
n−1

0

dϕ
√

1− (Kϕn−1 + 1)
2

n−1

= +∞.

Thus the interval of definition of ϕ can extend to −∞.

We consider the behavior of the integrand when

ϕ→
(CK + 1

K

)
1

n−1

= 0.

Let x = Kϕn−1, where x < 0. Then let

f(x) = 1− (x+ 1)
2

n−1 .

After expanding f(x) at x = 0 with Taylor Series, we get

f(x) = 1−
(

1 +
2

n− 1
x+O(x2)

)

= − 2

n− 1
x+O(x2).
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Then we can rewrite the integrand as

1
√

1− (Kϕn−1 − CK)
2

n−1

=
1

√

f(x)
=

1
√

− 2
n−1x+O(x2)

. (3.9)

Clearly, we know that the order of the integrand in terms of ϕ is equal to the order of its

main term, namely 1−n
2 because x = Kϕn−1. When n > 3, we know that the order of the

integrand is less than −1, which implies that the integral diverges when ϕ→ 0.

Now we see that as t goes to −∞, ϕ → 0 and ϕ′ =
√

1− (Kϕn−1 + 1)
2

n−1 → 0 (we have

fixed the sign of ϕ′ to be positive). Thus ψ′ =
√

1− (ϕ′)2 → 1 and ψ → −∞ (because we let

t decrease to −∞). Recall that ψ is the height function. This shows that the generating curve

is an unbounded curve asymptotic to the axis of rotation. Thus the rotational hypersurface

corresponding to CK = −1 is complete as a metric space.

Remark 3.3 The hypersurface corresponding to CK = −1 in the above theorem can be

seen as a higher-dimensional generalization of the pseudo-sphere in dimension two. Our results

do not contradict Ros’ theorem in [11] since the hypersurfaces in our theorem have non-empty

boundary. We also note that we can find a non-compact solution only when K < 0 and

CK = −1. In all other cases, the corresponding hypersurfaces are compact with boundary or

compact with conical singularities at the axis of rotation.

Using Mathematica, we draw the generating curves for K < 0. Figure 2(a) depicts the

generating curve of the non-compact hypersurface corresponding to CK = −1, while Figures

2(b) and 2(c) show the generating curves for K = −1, CK = −0.5 and K = −1, CK = −2,

respectively.

Using the integral expression of the solution ϕ, we can calculate its Taylor expansions at

critical points in order to extract more information about the local behavior of ϕ.

Lemma 3.2 The series expansion of ϕ(t) near ϕ(t0) = ϕmax when K > 0 is given by

ϕ(t) =
(CK + 1

K

)
1

n−1
{

1− K

2

(CK + 1

K

)

n−3
n−1

(t− t0)
2

− K2

24

(CK + 1

K

)

2(n−3)
n−1

[ (n− 3)(CK + 1)

K
− (n− 2)

]

(t− t0)
4 − · · ·

}

. (3.10)

Proof By (3.5), we know that the first order derivative of ϕ near its maximum is zero.

Then, we can further compute its second order derivative as

ϕ′′(t0) = −(Kϕn−1 − CK)
3−n

n−1 ·Kϕn−2 = −K
(CK + 1

K

)

n−2
n−1

.

Similarly, we can compute its 4th order derivative, and so on. Notice that the sign of these

derivatives are negative near ϕmax, we can get the series shown above by using Taylor expansion.

Lemma 3.3 The series expansion of ϕ(t) near ϕ(t0) = ϕmin when K < 0 and CK < −1 is
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Figure 2

given by

ϕ(t) =
(CK + 1

K

)
1

n−1
{

1 +
K

2

(CK + 1

K

)

n−3
n−1

(t− t0)
2

+
K2

24

(CK + 1

K

)

2(n−3)
n−1

[ (n− 3)(CK + 1)

K
− (n− 2)

]

(t− t0)
4 + · · ·

}

. (3.11)

Proof Similar to Lemma 3.2, we can compute the 2kth order derivatives near the minimum

ϕ(t0) =
(

CK+1
K

)
1

n−1 .

For the non-compact hypersurface, we also have the asymptotic expansion of ϕ near infinity.

Lemma 3.4 Up to time translation, the asymptotic expansion of ϕ(t) for K < 0 and

CK = −1 in Theorem 3.3 near −∞ is given by

ϕ(t) = f(n)|t| 2
3−n + g(n)|t| 2n

3−n +O(|t| 4n−2
3−n ).

Here, f, g are given by

f(n) =
( 1

AB

)
2

3−n
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and

g(n) =
C

B
· 2

3− n

( 1

AB

)
2n

3−n

,

where A =
√

n−1
2 , B = 2

3−n |K|− 1
2 and C = n−3

2(n2−1) |K| 12 .

Proof By expanding the integrand in Theorem 3.3, we get

t =

√

n− 1

2

∫

|K|− 1
2ϕ

1−n

2 + |K| 12 n− 3

4(n− 1)
ϕ

n−1
2 +O(ϕ

3n−3
2 )dϕ

=

√

n− 1

2
·
[ 2

3− n
|K|− 1

2ϕ
3−n

2 +
n− 3

2(n2 − 1)
|K| 12ϕn+1

2 +O(ϕ
3n−1

2 )
]

.

Note that the integral in the first line gives us an undetermined constant. Up to a translation

of t, we can take that constant to be 0. Let A =
√

n−1
2 , B = 2

3−n |K|− 1
2 and C = n−3

2(n2−1) |K| 12 ,
we can compute that

ϕ(t) = f(n)|t| 2
3−n + g(n)|t| 2n

3−n +O(|t| 4n−2
3−n ).

3.2 Finite volume of the noncompact hypersurfaces

For the hypersurface described in Theorem 3.3 when CK = −1, we will show that its “surface

area” and “volume” of the region enclosed by the hypersurface are indeed finite.

Before the proof, we introduce the following notations. Let Vn(r) denote the volume of an

n-dimensional ball of radius r, and Sn(r) denote the area of an n-dimensional sphere of radius

r. It is well-known that

Vn(r) =
π

n

2

Γ
(

n
2 + 1

) · rn, Sn(r) =
2π

n

2

Γ
(

n
2

) · rn−1.

Theorem 3.4 The surface area of the hypersurface in Theorem 3.3 when CK = −1 is finite.

Moreover, the volume of the region enclosed by the hypersurface and the horizontal disk at the

end of the hypersurface is also finite.

Proof The surface area of the rotational hypersurface is

S = 2

∫ t0

−∞
Sn−1(ϕ)dψ = 2

∫ t0

−∞

2π
n−1
2

Γ
(

n−1
2

) · ϕn−2dψ.

Here, t = t0 is the point where ϕ(t) reaches its maximum. Without loss of generality, we

can take t0 = 0 since ϕ(t) is invariant under translation, namely

S = 2

∫ 0

−∞

2π
n−1
2

Γ
(

n−1
2

) · ϕn−2dψ.

From Theorem 3.3, we know that ϕ′ → 0 as t → −∞, which also implies ψ′ → 1 since

ϕ′2 + ψ′2 = 1.
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So, we know that as t→ −∞,

dψ

dt
→ 1.

Consider

S(t) = 2

∫ 0

t

2π
n−1
2

Γ
(

n−1
2

) · ϕn−2dψ.

Let ord(S) be the order of S(t) in terms of |t|, namely S(t) = O(|t|ord(S)).
From Theorem 3.3, we know that the order of the integral in (3.6) is 1−n

2 , which indicates

that the order of |t| in terms of ϕ is 3−n
2 . Therefore, the order of ϕ in terms of |t| is 2

3−n .

Then, we get

ord(S) =
2

3− n
· (n− 2) + 1 =

n− 1

3− n
. (3.12)

Since n > 3, we know that

n− 1

3− n
= −1 +

2

3− n
< −1.

Therefore, the surface area of this non-compact hypersurface is finite.

Similarly, we can derive the expression of the volume of the enclosed region

V = 2

∫ 0

−∞
Vn−1(ϕ)dt = 2

∫ 0

−∞

π
n−1
2

Γ
(

n−1
2 + 1

) · ϕn−1dt.

Consider

V (t) = 2

∫ 0

t

π
n−1
2

Γ
(

n−1
2 + 1

) · ϕn−1dt.

Then we get

ord(V ) =
2

3− n
· (n− 1) + 1 =

n+ 1

3− n
. (3.13)

When n > 3, we know that

n+ 1

3− n
= −1 +

4

3− n
< −1.

Clearly, it indicates that the integral converges as t → −∞, and thus the volume is also

finite.

Remark 3.4 We also compute the approximate value of the volume of the enclosed region

and the surface area of this hypersurface when n = 4 and K = 1 by Mathematica, which are

1.82 and 19.74, respectively.
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3.3 A comparison theorem

From (3.6), we know that the value of ϕ(t) for a given value of t is dependent on the Gauss

curvature K. When the Gauss curvature is a constant K, let ϕK denote the solution to (3.6)

described in Theorems 3.2 or 3.3 and ψK denote the corresponding height function. We would

like to study the behavior of the solution ϕK when K changes.

In the following theorem, we show that for K > 0, the value of ϕK at a fixed height ψK = y

decreases as K increases if the maximum of ϕK is fixed. Geometrically the generating curve

drops faster to the axis of rotation for greater positive Gauss curvature.

Theorem 3.5 Take a, b ∈ R and a > b > 0. Assume that both ϕa and ϕb obtain the same

maximum at t = t0, namely ϕa(t0) = ϕb(t0) = ϕmax = C. We also assume that on a small

interval D = [t0, t0 + δ], both ϕa and ϕb are monotonically decreasing, and ψa and ψb are

increasing. Then ∀y ∈ ψa(D) ∪ ψb(D), we get

ϕa(ψ
−1
a (y)) ≤ ϕb(ψ

−1
b (y)).

Proof From Theorem 3.1, we get

Cn−1 = ϕn−1
max =

CK + 1

K
.

Recall that ϕ′2 + ψ′2 = 1 and the expression of ϕ′ in (3.5), we get

ψK(t) =

∫ t

t0

√

1− ϕ′2
Kdt

=

∫ ϕK(t)

ϕK(t0)

√

1− (1− (Kϕn−1
K − CK)

2
n−1 )

√

1− (Kϕn−1
K − CK)

2
n−1

dϕK

=

∫ ϕK(t)

ϕK(t0)

1
√

1

(Kϕn−1
K

−CK)
2

n−1

dϕK

=

∫ ϕK(t)

ϕK(t0)

1
√

1

(Kϕn−1
K

−(Cn−1K−1)
2

n−1 )

dϕK

=

∫ ϕK(t)

ϕK(t0)

√

Kϕn−1
K − (Cn−1K − 1)

2
n−1dϕK .

Thus, we have

y = ψK(ψ−1
K (y)) =

∫ ϕK(ψ−1
K

(y))

ϕK(t0)

√

Kϕn−1
K − (Cn−1K − 1)

2
n−1dϕK . (3.14)

Obviously, we know that the integrand f(K) =

√

Kϕn−1
K − (Cn−1K − 1)

2
n−1 increases as

|K| increases.
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Therefore, for a fixed maximum ϕa(t0) = ϕb(t0) = C and negative ϕ′, we must have

ϕa(ψ
−1
a (y)) ≤ ϕb(ψ

−1
b (y)) to make sure that the left side of (3.14) remains the same.

Similarly, we propose a parallel theorem for K < 0. In this case, the generating curve stays

further away from the axis of rotation when |K| increases.

Theorem 3.6 Take a, b ∈ R and 0 > a > b. Assume that both ϕa and ϕb obtain the

same minimum at t = t0, namely ϕa(t0) = ϕb(t0) = ϕmin = C. We also assume that on a

small interval D = [t0, t0+ δ], both ϕa and ϕb are monotonically increasing, and ψa and ψb are

increasing. Then ∀y ∈ ψa(D) ∪ ψb(D), we get

ϕa(ψ
−1
a (y)) ≤ ϕb(ψ

−1
b (y)).

Proof First consider the case where C = ϕmin 6= 0.

Similarly to Theorem 3.5, we get

ψK(t) =

∫ t

t0

√

1− ϕ′2
Kdt

=

∫ ϕK(t)

ϕK(t0)

√

Kϕn−1
K − (Cn−1K − 1)

2
n−1dϕK .

Thus, we have

y = ψK(ψ−1
K (y)) =

∫ ϕK(ψ−1
K

(y))

ϕK(t0)

√

Kϕn−1
K − (Cn−1K − 1)

2
n−1dϕK . (3.15)

From Theorem 3.5, we know that the integrand

√

Kϕn−1
K − (Cn−1K − 1)

2
n−1 increases as

|K| increase.
Therefore, for a fixed minimum ϕa(t0) = ϕb(t0) = C and positive ϕ′, we must have

ϕa(ψ
−1
a (y)) ≤ ϕb(ψ

−1
b (y)) to make sure that the left side of (3.15) remains the same.

When C = ϕmin = 0, then CK will be a constant that is independent of K. In this case,

the proof is exactly the same.
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