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Abstract—In the medical field, pathological carcinoma im-
ages look much more complicated than other medical images.
Identifying carcinoma pathology images is a time-consuming
and error-prone task for regular doctors and even for some
specialists. Nowadays, deep learning has been widely applied
in medicine, which could significantly reduce the time cost and
improve accuracy. To save time and improve the accuracy of
identifying pathological carcinoma slices, we propose a novel
ViT-CNN hybrid neural network called CPNet, specially for
the classification of different categories of carcinoma patho-
logical slices. CPNet achieves the state-of-the-art performance
in PatchCamelyon and our own dataset. We adopt a transfer
learning method to identify degrees of malignancy using a few
samples. Furthermore, we design and develop a fast medical
decision system, where we deploy the CPNet in it. The system
could effectively assist doctors in identifying the cancer pathology
images with high accuracy and speed. The code of CPNet is in
https://github.com/GuanRunwei/CPNet.

Index Terms—intelligent medicine, pathological image identi-
fication, deep learning, CNN-ViT hybrid NN

I. INTRODUCTION

In recent years, with the gradual maturity of image process-
ing technology and the rapid development of machine learning,
machine learning and deep learning technologies have begun
to enter the medical field to replace medical staff to complete
many difficult and time-consuming tasks [1].

As one of the diseases with the largest number of patients
in the world, cancer has naturally attracted the attention of
deep learning technology, and many phased results have been
achieved so far [2].

Emine CENGIL et al. [3] proposed a method based on 3D
convolutional neural network to identify lung CT images to
diagnose lung cancer. Siddharth Bhatia et al. [4] proposed a
method of using Resnet to extract image features, ensembling
two models which are XGBoost and random forest for lung CT
image diagnosis classification. A. Asuntha et al. [5] proposed
a method that uses HoG, LBP, and SIFT for feature extraction,
then uses FPSO for feature selection, and finally uses a
novel FPSOCNN to classify lung CT images. Lakshmanaprabu
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S.K et al. [6] proposed a method for lung cancer image
classification using ODNN for feature extraction and then
using LDA model to classify. Zhihua Zhou et al. [7] proposed
a method for identifying lung cancer cells based on integrated
artificial neural networks.

Pathology denotes the process and principle of the occur-
rence and development of diseases [8]. That is, the causes
of the disease and the changes in the structure, function and
metabolism of cells, tissues, and organs during the disease pro-
cess and their laws. Compared to other medical images such
as CTs and MRNs, pathology images are more complicated
and confusing in their structures and forms [9].

Coundray et al. [10] adopted Inception v3 to classify
lung cancer pathology images. Wang et al. [11] used tranfer
learning and CNN-based models to analyze the lung cancer
pathology. AlZubaidi [12] used a CNN to extract features and
used a series of machine learning models to classify different
lung cancer pathology images. Luo et al. [13] proposes a
statistics machine learning framework to analyze the lung
cancer pathological images.

It could be seen that the methods of machine learning and
deep learning are gradually mature. However, machine learn-
ing models need high-quality features extracted by pretrained
neural networks, which have high cost and low generalization.
For deep learning, CNNs are widely used, but CNNs could not
model the global contextual feature due to the locality in its
inductive bias. It means CNNs could not learn and model the
potential connection and correlation of features. Moreover, no
matter ML models or CNNs, they both have weak robustness,
which means they are sensitive to noises [14].

Vision transformer(ViT) [15] is robust to noises and has
high generalization. However, ViTs discard the inductive bias
in CNNs and have large number of parameters, which are
highly time-consuming for training and inference.

In this paper, we focus on the identification of 3 most
common cancers and their pathology images, including lung
cancer, liver cancer and colon cancer. Furthermore, we re-
search combining CNN with ViT, which could accelerate
training and inference compared with the pure ViT. Our
contributions are summarized as

• We propose a ViT-CNN hybrid neural network called
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Fig. 1. The structure of CPNet. A CPNet includes 2 Basic Conv blocks, 3 RA Cells and 1 CLS Linear block.

CPNet, which is specifically for classification of cancer
pathology images. CPNet achieves 99.8% accuracy in
PatchCamelyon and 99.2% accuracy in our base dataset.

• We propose a transfer learning method to transfer the
trained CPNet to train in a few labeled samples for iden-
tification of malignancy degrees. We get 92.8% accuracy
with this transfer learning method.

• We design and develop a fast diagnosis system, assisting
physicians in decision.

II. RELATED WORK

A. ViT-CNN Hybrid Neural Network

There are many NNs combining CNN with ViT, which
could introduce the inductive bias to ViT. It could speed
up the training and inference. ViTs can calculate the feature
similarity and model the global context, which is the weakness
of CNN due to its locality. Moreover, CNNs are high-pass
filters while ViTs are low-pass filters [16]. It means these two
filters are complementary. ViTAE [17] concatenates CNN in
the residual side of the vision transformer block. BoTNet [18]
replaces one basic convolution module with a multi-head self-
attention(MHSA) module in a residual block. Visformer [19]
combines MHSAs and CNNs in each stage with much less
FLOPs than pure ViTs.

B. Transfer Learning

Deep learning needs a large amount of data. In some fields,
the labelled data is few for the high labelling cost. Transfer
learning could let the model converge earlier in the training
process, with the help of pretraining the model in similar data
fields. The common transfer learning fields including network
fine-tuning, few-shot learning, weak-shot learning, etc [20].

III. CPNET

For images of pathological carcinoma, different pathological
carcinomas may have the similar feature in some local areas.
Under these circumstances, we need to find an approach to
model the global feature, which could dramatically reduce
the error rate. Therefore, we propose CPNet as the backbone
for the recognition of pathological carcinoma images. The
structure of CPNet is shown in Fig.1. CPNet consists of two
basic convolution blocks (BC), three residual attention cells
(RA) and one linear block for classification.

Fig. 2. Basic Convolution Block

Fig. 3. Residual Attention Cell. The left one is a normal residual block in
ResNet. The right one is a residual attention cell in CPNet proposed in this
paper.

A. Basic Convolution

As Fig.2 shows, basic convolution (BC) is to extract the
feature of image in the early stage and deepen the network.
It consists of a convolution with 3 × 3 kernels, a batch-norm
(BN) and a LeakyReLU for activation. Assuming the input
map is xi ∈ RC×W×H , the operation of BC is show in Eq.1.

xi+1 = LeakyReLU(BN(Conv(xi))), xi+1 ∈ RC×W
2 ×H

2

(1)

B. Residual Attention Cell

Residual Attention Cell (RA Cell) is located after two BCs
instead of directly used at the beginning. The reason can be
concluded as:

• For the receptive field of shallow layers is small, the fea-
tures that shallow layers extract almost have no semantic
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information. It is meaningless to use MHSA at the early
stage, which would cause over-fitting.

• Stacking BCs could deepen the network, making the
feature from low-level to high-level, so MHSA in late
stages could aggregate the high-level semantic feature.

As Fig.3 shows, compared with the normal residual block
in ResNet [21], firstly, we replace ReLU with Mish [22] for
activation. We empirically argue that ReLU would cause the
death of partial neurons for its characteristics, which is adverse
for training and inference some time, because we do not
know whether the partial killed neurons are useful or not. We
empirically argue that Mish has better generalization.

Secondly, Park et al. [16] argued that inserting the attention
mechanism at the end of each stage can improve the predictive
performance of NN, so we add MHSA after 2 convolution
layers. Conventional vision transformer flatten the map as a
sequence, so vision transformer needs to learn the position
information by itself, which would prolong the training time.
In RA Cell, we directly use the feature map extracted by
convolution. Assuming there is a feature map x ∈ RC×W×H ,
we make three copies of it as xq ∈ RC×W×H , xk ∈ RC×W×H

and xv ∈ RC×W×H . The generation process of self-attention
map is shown in Fig.4 and Eq.2.

MAtt = W qxq ⊗W kxk,MAtt ∈ RC×W×H

M
′

Att = MAtt ⊕RPE,M
′

Att ∈ RC×W×H

M
′′

Att = softmax(
M

′

Att√
dk

),M
′′

Att ∈ RC×W×H

xself−att = M
′′

Att ⊗W vxv, xself−att ∈ RC×W×H (2)

where W q,W k and W v are three learnable weights. ⊗
means element-wise multiply. ⊕ means element-wise addition.
MAtt denotes the attention matrix. RPE denotes the relative
position encoding, the position encoding will be changed
according to the map’s shape in different bottlenecks, which is
more flexible and general than the absolute position encoding.√
dk indicates the dimension of M

′

Att. M
′′

Att is the matrix
of attention, which indicates the position needs to be payed
attention to. MHSA stacks multiple xself−att. Each xself−att

pays attention to n channels. MHSA is shown in Eq.3.

mhsa(x) = x1
self−att c⃝x2

self−att · · · c⃝xi
self−att (3)

where c⃝ denotes the stack operation.
Like the normal residual block, a RA Cell also consists of

a residual side, which could alleviate the gradient explosion
or vanishing. Assuming the input map is x ∈ RC×W×H , the
output of MHSA is x3 ∈ RC×W×H . The whole process is in
Eq.4.

Fig. 4. Self Attention in Residual Attention Cell

Fig. 5. CLS Linear Block

x1 = Mish(Conv(x)), x1 ∈ RC×W×H

x2 = Mish(Conv(x1)), x2 ∈ RC×W×H

x3 = MHSA(x2), x3 ∈ RC×W×H

xres
3 = x⊕ x3, x

res
3 ∈ RC×W×H (4)

Like the normal residual block in ResNet, there is a batch-
norm and an activation function at the last stage. However, we
replace ReLU with LeakyReLU to avoid the death of partial
neurons. Given an input map x ∈ RC×W×H , the process is
shown in Eq.5.

x1 = BN(x), x1 ∈ RC×W×H

x2 = LeakyReLU(x1), x2 ∈ RC×W×H (5)

C. CLS Linear

As Fig.5 shows, a CLS Linear block consists of a max-
pooling operation for down-sampling and a linear layer for
classification. Given an input map x ∈ RC×W×H , the process
is shown in Eq.6.

x1 = maxpool(x), x1 ∈ RC×W
2 ×H

2

y = linear(x1), y ∈ Rcls×1×1 (6)

where cls denotes the number of categories. y is a one-
dimension array for classification.
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Fig. 6. Transfer Learning Framework for Malignancy Degree Identification

TABLE I
DATA AUGMENTATION METHODS

Method IsUsed

Mixup [23] ✓
CenterCrop ✓

RandomHorizontalFlip ✓
RandomVerticalFlip ✓

RandomRotation ✓
GaussianBlur ✓
CenterCrop ✓

RandomPerspective ✓
ColorJitter ✓

To sum up, CPNet models features of locality by CNNs
and global context by MHSAs, which enhances the feature
representation of the image.

IV. TRANSFER LEARNING FOR MALIGNANCY DEGREE
IDENTIFICATION

Labelling malignancy degrees of cancer pathology images
is a time-consuming and tough job for doctors, but deep
learning is a data-hungry game. Therefore, it is challenging
and significant to use few training samples to train a qualified
model. We propose a transfer learning framework to transfer
the cancer-category-prediction model to malignancy-degree-
prediction model. As Fig.6, we aggregate different approaches
in our framework from perspectives of data, model and loss
function.

A. Data

Since the number of training samples is limited, we need
to use some augmentation methods to extend the dataset
indirectly. Moreover, the augmentation could enhance the
generalization and alleviate over-fitting.

The augmentation methods in the framework are shown in
Table I.

Fig.7 visualizes the result of mixup.

B. Model

For the same training samples, we empirically argue that
features learned in shallow layers could be shared in other
downstream tasks. It means we could just train the parameters

Fig. 7. Mixup

in last RA Cell and CLS Linear layer, for the parameters of
other layers, we just freeze them. Thus, the training data we
need would be much less than training a model from scratch.
Fig.8 shows the fine-tuned model trained for malignancy
degree identification.

C. Loss Function

To let the model converge as fast as possible, we combine
focal loss [24] with label smoothing [25]. Label smoothing
could alleviate the over-confidence due to few samples. Focal
loss could enlarge the loss value of hard samples and minish
the loss value of easy samples, which could make the model
pay attention to hard samples. Eq.7 shows the label smoothing
operation.

pi =
e

xi
T∑K

j=1 e
xj
T

,∀1, 2, . . . ,K (7)

where pi is the normalized predicted value. xi indicates
the predicted value. xj indicates all the values in the softmax
matrix. T is a constant above 1.

Eq.8 shows the focal loss.

Focal(pi) = −(1− pi)
γ log(pi) (8)

where we set γ to 2 empirically.

V. EXPERIMENTS

A. Classification of Pathological Carcinoma Images

1) Dataset: The dataset consists of two parts, the first
one is lung-and-colon-cancer-histopathological-images [26] in
Kaggle while the second is collected from clinical patients,
totally 30 thousand images, 70% for training and 30% for test.
We call it base dataset. The dataset has 8 categories, including
lung benign tissue, lung adenocarcinoma, lung squamous cell
carcinoma, colon benign tissue, colon adenocarcinoma, liver
benign tissue, liver adenocarcinoma and liver squamous cell
carcinoma. Some samples are shown in Fig.9.

2) Implementation Details: Implementation details are
shown in TABLE II. We train the model for 15 epochs with
the batch size of 16 on one RTX 3060 GPU. We set the initial
learning rate to 0.001 and use Adam as the optimizer, which is
under the cosine scheduler. We set the weight decay to 5e-4.

We train CPNet as well as other state-of-the-art models in
our base dataset. We select models whose parameter numbers
are close to our CPNet. As TABLE III shows, CPNet performs
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Fig. 8. Fine-tuned Model for Malignancy Degree Identification

Fig. 9. Some samples in base dataset. It has eight classes totally, including
lung benign tissue, lung adenocarcinoma, lung squamous cell carcinoma,
colon benign tissue, colon adenocarcinoma, liver benign tissue, liver ade-
nocarcinoma and liver squamous cell carcinoma.

TABLE II
IMPLEMENTATION DETAILS OF CLASSIFICATION OF CANCER PATHOLOGY

IMAGES

Epochs Batch Size Initial LR Optimizer Weight Decay

15 16 0.001 Adam 5e-4

better than other 4 models, which are 2 ViT-based and 2 CNN-
based models.

Moreover, we also train and test CPNet in PatchCamelyon
benchmark [30]. As TABLE IV shows, CPNet achieves the
state-of-the-art results compared with other models. CPNet
gets the accuracy of 99.8%, which is 0.7% higher than TNT-S
and 1.1% higher than EfficientNet-b4.

TABLE III
COMPARISON OF DIFFERENT MODELS ON OUR BASE DATASET

Model Params(M) Accuracy(%)

CPNet (ours) 24 99.2
DeiT-S [27] 22 98.4
TNT-S [28] 24 98.1

EfficientNet-b4 [29] 19 97.8
ResNet-50 [21] 25 97.2

TABLE IV
COMPARISON OF DIFFERENT MODELS IN PatchCamelyon [30]

Model Params(M) Accuracy(%)

CPNet (ours) 24 99.8
TNT-S [28] 24 99.1

EfficientNet-b4 [29] 19 98.7
DeiT-S [27] 22 98.4

ResNet-50 [21] 25 96.1

TABLE V
IMPLEMENTATION DETAILS OF CLASSIFICATION OF MALIGNANCY

DEGREE

Epochs Batch Size Initial LR Optimizer Weight Decay

5 8 0.005 Adam 5e-4

B. Transfer Learning for Malignancy Degree Identification

1) Dataset: We select 1200 images from the base dataset
and label them into 3 categories: mild, moderate and severe.
Among them, 1000 images for training and 200 images for
test.

2) Implementation Details: Implementation details are
shown in TABLE V. We use the model pretrained in the base
dataset. We train the model for 5 epochs with the batch size
of 8 on one RTX 3060 GPU. We set the initial learning rate
to 0.005 and use Adam as the optimizer, which is under the
cosine scheduler. We set the weight decay to 5e-4.

As TABLE VI shows, the model trained under the transfer
learning framework has the accuracy of 92.8%, which is 11.2%
higher than the model out of the transfer learning framework.

C. Diagnosis System

We design and develop a diagnosis system based on .Net
Core and Django, where .NET Core is for the client and
Django is for the back-end service. Fig.10 shows the window
of diagnosis result in the client. It takes only 15ms for the

TABLE VI
USING AND NOT USING THE TRANSFER LEARNING FRAMEWORK

IsTransfered Accuracy(%)

✓ 92.8
# 81.6
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Fig. 10. Identification Result

system to identify one image. Moreover, if the value of the
class with the highest probability predicted by the model and
the class with the second highest probability are too close, the
system will alert the doctor.

VI. CONCLUSION

In this paper, we propose a ViT-CNN hybrid neural network
called CPNet to identify carcinoma pathological slices. CPNet
achieves 99.8% accuracy in PatchCamelyon and 99.2% accu-
racy in our base dataset, outperforming other models. We also
propose a practical transfer learning framework to train the
model in a few samples to identify malignancy degrees, which
achieves 92.8%, 11.2% higher than directly training. Last but
not least, we design and develop a fast diagnosis system, which
could effectively help doctors improve the diagnosis accuracy
and speed.
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