Transformer Based Feature Fusion for Left Ventricle Segmentation in 4D Flow MRI

Xiaowu Sun, Li Hsin Cheng, Sven Plein, Pankaj Garg, Rob J. van der Geest*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

4 Citations (Scopus)

Abstract

Four-dimensional flow magnetic resonance imaging (4D Flow MRI) enables visualization of intra-cardiac blood flow and quantification of cardiac function using time-resolved three directional velocity data. Segmentation of cardiac 4D flow data is a big challenge due to the extremely poor contrast between the blood pool and myocardium. The magnitude and velocity images from a 4D flow acquisition provide complementary information, but how to extract and fuse these features efficiently is unknown. Automated cardiac segmentation methods from 4D flow MRI have not been fully investigated yet. In this paper, we take the velocity and magnitude image as the inputs of two branches separately, then propose a Transformer based cross- and self-fusion layer to explore the inter-relationship from two modalities and model the intra-relationship in the same modality. A large in-house dataset of 104 subjects (91,182 2D images) was used to train and evaluate our model using several metrics including the Dice, Average Surface Distance (ASD), end-diastolic volume (EDV), end-systolic volume (ESV), Left Ventricle Ejection Fraction (LVEF) and Kinetic Energy (KE). Our method achieved a mean Dice of 86.52%, and ASD of 2.51 mm. Evaluation on the clinical parameters demonstrated competitive results, yielding a Pearson correlation coefficient of 83.26%, 97.4%, 96.97% and 98.92% for LVEF, EDV, ESV and KE respectively. Code is available at github.com/xsunn/4DFlowLVSeg.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditorsLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
PublisherSpringer Science and Business Media Deutschland GmbH
Pages370-379
Number of pages10
ISBN (Print)9783031164422
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sept 202222 Sept 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13435 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

Keywords

  • 4D Flow MRI
  • Feature fusion
  • LV segmentation
  • Transformer

Fingerprint

Dive into the research topics of 'Transformer Based Feature Fusion for Left Ventricle Segmentation in 4D Flow MRI'. Together they form a unique fingerprint.

Cite this