TY - GEN
T1 - LLM-Enhanced Feature Engineering for Multi-factor Electricity Price Predictions
AU - Xue, Haochen
AU - Liu, Chenghao
AU - Zhang, Chong
AU - Chen, Yuxuan
AU - Zong, Angxiao
AU - Wu, Zhaodong
AU - Li, Yulong
AU - Liu, Jiayi
AU - Liang, Kaiyu
AU - Lu, Zhixiang
AU - Li, Ruobing
AU - Su, Jionglong
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
PY - 2025
Y1 - 2025
N2 - Accurately forecasting electricity price volatility is crucial for effective risk management and decision-making. Traditional forecasting models often fall short in capturing the complex, non-linear dynamics of electricity markets, particularly when external factors like weather conditions and market volatility are involved. These limitations hinder their ability to provide reliable predictions in markets with high volatility, such as the New South Wales (NSW) electricity market. To address these challenges, we introduce FAEP, a Feature-Augmented Electricity Price Prediction framework, FAEP leverages Large Language Models (LLMs) combined with advanced feature engineering to enhance prediction accuracy. By incorporating external features such as weather data and price volatility jumps, and utilizing Retrieval-Augmented Generation (RAG) for effective feature extraction, FAEP overcomes the shortcomings of traditional approaches. A hybrid XGBoost-LSTM model in FAEP further refines these augmented features, resulting in a more robust prediction framework. Experimental results demonstrate that FAEP achieves state-of-art (SOTA) performance compared to other electricity price prediction models in the Australian New South Wale electricity market, showcasing the efficiency of LLM-enhanced feature engineering and hybrid machine learning architectures.
AB - Accurately forecasting electricity price volatility is crucial for effective risk management and decision-making. Traditional forecasting models often fall short in capturing the complex, non-linear dynamics of electricity markets, particularly when external factors like weather conditions and market volatility are involved. These limitations hinder their ability to provide reliable predictions in markets with high volatility, such as the New South Wales (NSW) electricity market. To address these challenges, we introduce FAEP, a Feature-Augmented Electricity Price Prediction framework, FAEP leverages Large Language Models (LLMs) combined with advanced feature engineering to enhance prediction accuracy. By incorporating external features such as weather data and price volatility jumps, and utilizing Retrieval-Augmented Generation (RAG) for effective feature extraction, FAEP overcomes the shortcomings of traditional approaches. A hybrid XGBoost-LSTM model in FAEP further refines these augmented features, resulting in a more robust prediction framework. Experimental results demonstrate that FAEP achieves state-of-art (SOTA) performance compared to other electricity price prediction models in the Australian New South Wale electricity market, showcasing the efficiency of LLM-enhanced feature engineering and hybrid machine learning architectures.
KW - Electricity Price Prediction
KW - Feature Engineering
KW - LLM
UR - https://www.scopus.com/pages/publications/105013049166
U2 - 10.1007/978-981-96-9986-5_8
DO - 10.1007/978-981-96-9986-5_8
M3 - Conference Proceeding
AN - SCOPUS:105013049166
SN - 9789819699858
T3 - Communications in Computer and Information Science
SP - 89
EP - 100
BT - Advanced Intelligent Computing Technology and Applications - 21st International Conference, ICIC 2025, Proceedings
A2 - Huang, De-Shuang
A2 - Zhang, Chuanlei
A2 - Zhang, Qinhu
A2 - Pan, Yijie
PB - Springer Science and Business Media Deutschland GmbH
T2 - 21st International Conference on Intelligent Computing, ICIC 2025
Y2 - 26 July 2025 through 29 July 2025
ER -