BioChipVis:An Information Visualisation Interface for Explainable Biochip Data Classification

Paul Craig, Ruben Ng, Yu Liu, Boris Tefsen, Sam Linsen

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)

Abstract

This paper proposes a novel information visualisation interface to help with the reading and improvement of biochips. The interface serves two main groups of end users. These are bio-chip model users and bio-chip model developers. Bio-chip model users are biologists who use the software to read chips and detect biochemical substances. Bio-chip model developers use the software to design and train classification models by seeing how well the different biosensors work and how well the data fits their model. The interface proposed uses a Random Forest classifier and visualises the classification to provide a better understanding of how the data is classified by showing how it fits different classifications and how changes in attribute values can affect the classification. The interface also allows model-developers to interact to see how their model works for different attribute values, and shows them how new data (sent by model-users) fits into their classification model. This allow the biochip designers to detect how their model may be limited so they can retrain the model accordingly. The particular challenge with this project is how we manage and visualise uncertainty related to bio-sensor readings (that can be resultant from the manufacturing process and environmental factors) and the machine learning models, so that biologists can account for this when designing or using chips. Overall, our interface demonstrates the potential of information visualisation to be used to allow developers and model-users to better understand the effectiveness of classification models for their data, as well as the potential of collaborative interfaces to help them work together to build more effective supervised classification models.

Original languageEnglish
Article number404
JournalIS and T International Symposium on Electronic Imaging Science and Technology
Volume35
Issue number1
DOIs
Publication statusPublished - 2023
EventIS and T International Symposium on Electronic Imaging: Visualization and Data Analysis, VDA 2023 - San Francisco, United States
Duration: 15 Jan 202319 Jan 2023

Fingerprint

Dive into the research topics of 'BioChipVis:An Information Visualisation Interface for Explainable Biochip Data Classification'. Together they form a unique fingerprint.

Cite this