TY - JOUR
T1 - Automatic diagnostics of electroencephalography pathology based on multi-domain feature fusion
AU - Chen, Shimiao
AU - Huang, Dong
AU - Liu, Xinyue
AU - Chen, Jianjun
AU - Kong, Xiangzeng
AU - Zhang, Tingting
N1 - Publisher Copyright:
© 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2025/5
Y1 - 2025/5
N2 - Electroencephalography (EEG) serves as a practical auxiliary tool deployed to diagnose diverse brain-related disorders owing to its exceptional temporal resolution, non-invasive characteristics, and cost-effectiveness. In recent years, with the advancement of machine learning, automated EEG pathology diagnostics methods have flourished. However, most existing methods usually neglect the crucial spatial correlations in multi-channel EEG signals and the potential complementary information among different domain features, both of which are keys to improving discrimination performance. In addition, latent redundant and irrelevant features may cause overfitting, increased model complexity, and other issues. In response, we propose a novel feature-based framework designed to improve the diagnostic accuracy of multi-channel EEG pathology. This framework first applies a multi-resolution decomposition technique and a statistical feature extractor to construct a salient time-frequency feature space. Then, spatial distribution information is channel-wise extracted from this space to fuse with time-frequency features, thereby leveraging their complementarity to the fullest extent. Furthermore, to eliminate the redundancy and irrelevancy, a two-step dimension reduction strategy, including a lightweight multi-view time-frequency feature aggregation and a non-parametric statistical significance analysis, is devised to pick out the features with stronger discriminative ability. Comprehensive examinations of the Temple University Hospital Abnormal EEG Corpus V. 2.0.0 demonstrate that our proposal outperforms state-of-the-art methods, highlighting its significant potential in clinically automated EEG abnormality detection.
AB - Electroencephalography (EEG) serves as a practical auxiliary tool deployed to diagnose diverse brain-related disorders owing to its exceptional temporal resolution, non-invasive characteristics, and cost-effectiveness. In recent years, with the advancement of machine learning, automated EEG pathology diagnostics methods have flourished. However, most existing methods usually neglect the crucial spatial correlations in multi-channel EEG signals and the potential complementary information among different domain features, both of which are keys to improving discrimination performance. In addition, latent redundant and irrelevant features may cause overfitting, increased model complexity, and other issues. In response, we propose a novel feature-based framework designed to improve the diagnostic accuracy of multi-channel EEG pathology. This framework first applies a multi-resolution decomposition technique and a statistical feature extractor to construct a salient time-frequency feature space. Then, spatial distribution information is channel-wise extracted from this space to fuse with time-frequency features, thereby leveraging their complementarity to the fullest extent. Furthermore, to eliminate the redundancy and irrelevancy, a two-step dimension reduction strategy, including a lightweight multi-view time-frequency feature aggregation and a non-parametric statistical significance analysis, is devised to pick out the features with stronger discriminative ability. Comprehensive examinations of the Temple University Hospital Abnormal EEG Corpus V. 2.0.0 demonstrate that our proposal outperforms state-of-the-art methods, highlighting its significant potential in clinically automated EEG abnormality detection.
UR - http://www.scopus.com/inward/record.url?scp=105004387181&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0310348
DO - 10.1371/journal.pone.0310348
M3 - Article
C2 - 40323980
AN - SCOPUS:105004387181
SN - 1932-6203
VL - 20
JO - PLoS ONE
JF - PLoS ONE
IS - 5 May
M1 - e0310348
ER -