Advancing Cuffless Arterial Blood Pressure Waveform Estimation: Time-Series Deep Neural Network Approach

Bo Cheng, Hongda Huang, Zhengbi Song, Shenghao Wu, Qing Liu, Yali Zheng*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Existing deep learning models for arterial blood pressure (ABP) estimation are becoming increasingly complex. They mainly treat the estimation as a sequence-to-sequence (seq2seq) task, to establish the relationship between input physiological signals and the corresponding BP within the same time frame. However, this approach may overlook the rich temporal information embedded in physiological signals. In this study, we propose a time-series training strategy for ABP waveform prediction. We compared two deep learning models of different sizes - the smaller gMLP and the larger UtransBPNet - in both seq2seq and time-series training ways. The findings indicate that, the models trained with the time-series method achieved significant enhancements in performance compared to their seq2seq counterparts, with mean absolute error (MAE) reductions of 2.0 and 0.9 mmHg for gMLP and UtransBPNet, respectively. This improvement was more pronounced in the smaller, simpler-structured gMLP network. Additionally, the time-series training approach exhibited superior predictive abilities for out-of-distribution data. In conclusion, this straightforward time-series approach offers a novel perspective for developing efficient models for cuffless arterial BP estimation, making it a promising candidate for implementation in edge wearable devices.

Original languageEnglish
Title of host publication46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350371499
DOIs
Publication statusPublished - 2024
Event46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Orlando, United States
Duration: 15 Jul 202419 Jul 2024

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
Country/TerritoryUnited States
CityOrlando
Period15/07/2419/07/24

Keywords

  • cuffless blood pressure estimation
  • edge artificial intelligence
  • time series forecasting

Fingerprint

Dive into the research topics of 'Advancing Cuffless Arterial Blood Pressure Waveform Estimation: Time-Series Deep Neural Network Approach'. Together they form a unique fingerprint.

Cite this