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Abstract: The electric vehicle (EV) market is expanding rapidly to achieve the future goal of eco-
friendly transportation. The scientific planning of energy supplement infrastructures (ESIs), with
appropriate locations and capacity, is imperative to develop the EV industry. In this research, a
mixed integer linear programming (MILP) model is proposed to optimize the location and capacity
of ESIs, including vehicle charging stations (VCSs), battery swapping stations (BSSs), and battery
charging stations (BCSs), in highway networks. The objective of this model is to minimize the total
cost with the average waiting time for EVs being constrained. In this model, battery swapping and
transportation behaviors are optimized such that the EV average waiting time can be reduced, and the
average queue and service process waiting time is estimated by the M/M/1 model. Real-world data,
i.e., from the London M25 highway network system, are used as a case study to test the effectiveness
of the proposed method. The results show that considering battery transportation behaviors is more
cost efficient, and the results are sensitive to the EV average waiting time tolerance, battery cost, and
charging demand.

Keywords: mixed integer linear programming; EV charging station; battery swapping station; battery
transportation; M/M/1 queue model

1. Introduction

Carbon dioxide emissions have caused severe environmental problems such as global
warming. In order to solve this problem, the Paris Agreement was signed in 2015, aiming to
reduce greenhouse gas emissions to limit the global temperature increase [1]. In particular,
16% of CO2 emissions around the world are caused by road transport [2]. Due to their
low CO2 emissions, EVs have become a core technology in decarbonization. Under such
circumstances, the last ten years have seen a significant increase in EV sales. In the 2021
new-car market, the share of EVs was 9% globally, while in China, this number reached
16% [2]. Overall, EVs are becoming a significant component of road transport.

Meanwhile, due to their limited battery capacity and long charging time, EVs are
highly dependent on energy supplement infrastructure, especially in long-distance cases.
However, energy supplement infrastructure is lacking around the world. According to the
UK government, as of 1 July 2023, there are 44,020 charging devices in the country, and
the number of devices per 100,000 population is 66. When it comes to rapid or quicker
chargers, on average, 7937 people are sharing one device [3]. The gap between charging
infrastructure supplementation and growing charging demand can lead to low efficiency in
energy supplementation, which has caused significant resistance to EV user extension [4].
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In particular, energy supplement efficiency is of great importance in the highway
scenario. Compared to fuel vehicles, EVs have a significant energy supplement shortage
due to the lower coverage of charging stations than gas stations, and the longer time cost
for charging compared to fuel filling. This problem becomes more severe for long-distance
trips. To solve this problem to some extent, one approach is to deploy more charging
devices in the highway network, while another is to develop technologies that improve
charging efficiency, including fast charging and battery swapping. Currently, few battery
swapping stations have been constructed in the UK, and the number of EVs per charger in
the UK has maintained a growing trend since 2019, indicating that the establishment of
charging devices cannot fit the growing EV quantity [5]. The scientific planning of energy
supplement infrastructure, including charging stations and battery swapping stations, is a
key problem to be solved.

This research is motivated by problems related to the energy supplementation of EVs,
especially in the highway scenario. To improve energy supplementation efficiency and
reduce the average waiting time of EVs, three main components of the energy supplement
infrastructure system, vehicle charging station (VCS), battery swapping station (BSS), and
battery charging station (BCS), are considered. Moreover, to adapt to the spatial–temporal
variability in charging demand, this research considers transporting the battery from low-
demand stations to high-demand stations at a specific time. Such behaviors are generalized
as the operation of batteries.

This paper is divided into the following sections: A literature review will be conducted
in Section 2, and the research contributions will be outlined. In Section 3, the mathematical
model will be introduced in detail, and the implementation will be covered in Section 4.
Finally, Section 5 will provide a conclusion for this work.

2. Literature Review

The location allocation (LA) problem was first considered by Hakimi [6] in the form
of a p-median model. The objective of this model is to find an optimal location in a
network which minimizes the total distance to any other nodes in the network. Many
researchers studied this work in the following decades. A number of studies related to
location decisions for charging facilities were observed to be related to the basic p-median
model [7].

With an increasing number of electric vehicles on the road network, some significant
charging problems have appeared. Therefore, charging station (CS) planning problems
have received more attention from researchers. CS-related problems can be classified as the
refueling type in the location problems, with a frequency of 18% across all related papers [8].
Jia et al. proposed a mixed integer quadratic programming model to decide the siting
and sizing of CSs, with the objective of minimizing the construction cost. An application
of this model was introduced based on the city of Stockholm [9]. However, no waiting-
time-related factors were considered in this model. Uslu and Kaya conducted a study
on CS planning for intercity electric buses. With the aim of minimizing the construction
cost for CSs and the waiting cost for customers, a mixed integer linear programming
(MILP) model was raised [10]. In addition to relatively comprehensive targets, the model
was designed for electric buses, which have stable running routes and timetables. Hence,
this model does not work well for a general traffic network with diverse electric vehicles.
From another aspect, Ma et al. proposed a model which minimized both user cost and
station cost, and a model was then developed by applying game theory [11]. Meanwhile,
some studies consider uncertainty in charging station siting and sizing problems, and
the Monte Carlo method and adaptive differential evolution optimization algorithm are
applied to determine the result [12,13]. Further, some studies consider optimal charging
station planning in a coupled power and transportation network. The Pareto method is
then applied to find the optimal solution [14]. Some other researchers claimed that the
charging problem can be solved to some extent via a system dynamic operation approach
or a Geographical Information System-based approach [15,16].
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The battery swapping mode is more flexible to deal with non-uniform-distributed
charging demand with peaks and valleys [17]. However, according to Revankar and
Kalkhambkar, compared to CSs, an extra business plan is necessary for BSS [18]. This is so
that an energy management plan for batteries, such as valley filling, can be determined by
a distribution system organizer to achieve higher efficiency in energy supplementation [19].
Lu and Gao proposed a battery charging and swapping model aimed at reducing the
waiting time before charging by providing a battery swapping service at CSs. Then,
the optimal operation pattern for batteries can be found using the mixed integer linear
programming (MILP) method, aiming to minimize the charging and transportation costs
of batteries [20]. Xiang and Zhang studied the location determination for the battery CS
of city buses, with a programming model minimizing the total cost, solved using the
particle swarm optimization (PSO) algorithm. Also, the case based on the bus routes in
Nanjing was studied, with eight nodes being picked as stations [21]. Liu et al. proposed
a system including battery swapping, battery charging, and battery logistics. Mixed
integer linear programming (MILP) was applied to determine the operational management
approach [22]. However, the BCSs do not serve EVs directly, resulting in center-distributed
BCSs. Zhang et al. studied capacity evaluation for CSs and BSSs which serve taxis and
buses only [23]. A probabilistic model was raised, with solutions determined via a Monte
Carlo simulation.

In general, existing studies on facility location problems mainly focus on cost and
time efficiency. For example, Jia et al. and Xiang and Zhang [9,21] focused on total cost
minimization, while in the model proposed by Lu and Gao, the objective function was
to minimize waiting time [20]. Some studies considered both economic optimization and
time efficiency, such as Uslu and Kaya [10]. The waiting time is usually determined using
Markovian queuing theory. Some other approaches to reduce waiting time in energy
supplement include adapting EV routing [24] and dynamic pricing [25], with energy
supplement infrastructure as a given parameter.

This paper advances the relevant literature through the following contributions:

1. This study establishes a coupled MILP model to optimize the battery quantity and
the planning of VCS, BSS, and BCS while considering battery transportation and the
EV battery’s energy supplement behavior (EV charging, EV battery swapping, and
battery charging). This is the first study to integrate various charging/swapping
station planning approaches with different charging/swapping behaviors.

2. A chance constraint is set to consider more realistic scenarios regarding the average
waiting time for electric vehicle charging.

3. This research designs a model based on general traffic flow in a real highway network,
which is a more general case compared to buses or taxis in a city road network.

3. Methodology
3.1. Research Question Statement

This paper proposes a method to determine the optimal siting and sizing of the VCSs,
BSSs, and BCSs. In this research, the following behaviors in the energy supplement system
are considered: 1. EV charging behavior; 2. EV battery swapping behavior; 3. battery
charging behavior; 4. battery transportation behavior. Figure 1 shows the four behaviors in
the network.

To give a further explanation of Figure 1, when an EV enters an ESI, it can be served
by either a VCS or BSS; if the EV is served by a BSS, then the battery being swapped
may be charged at a VCS or BCS at the same ESI, or it may also be transported to other
ESI for charging. Compared to common ESI systems, merely with VCSs, in this model,
infrastructure supporting the usage of batteries such as BSSs and BCSs is designed. Also,
batteries can be transported between ESIs. In this way, energy supplement efficiency for
EVs can be improved, and problems caused by spatial–temporal unbalanced charging
demand can be solved to some extent.
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The objective function of this model is to minimize the cost of station construction as
well as battery purchasing and transportation, with the EV average waiting time being
shorter than the given bound. The solution will indicate whether a VCS, BSS, or BCS is built
at one node, and the capacity of the stations. Here, capacity refers to the largest number
of vehicles that can be served at the same time. For VCSs and BCSs, the capacity refers to
the number of chargers; for BSSs, the capacity is the number of battery swapping devices.
Also, a pattern for battery transportation will be given to balance the inadequate charging
capacity at one node and surplus charging capacity at another node. To achieve this, a
mixed integer linear programming (MILP) model is introduced to optimize the location
and capacity of VCSs, BSSs, and BCSs, the battery transportation behaviors, and the battery
distribution at the operation start time.

BSSVCS BCS

1 2 3

3

1. EV Charging

2. EV Battery Swapping

3. Battery Charging

4. Battery Transportation

EV Route

Battery Route

ESI

Location of ESI

4

Highway

Figure 1. The behaviors of EVs and batteries in the highway network, with the box representing
behaviors at a particular energy supplement infrastructure (ESI). Three behaviors happen in energy
infrastructure: EV charging at VCSs, battery charging at BCSs and VCSs, and battery swapping
at BSSs. Meanwhile, battery transportation behavior is conducted from one ESI to another in the
highway network.

3.2. Parameters and Variables

(a) Parameters

N = {i, j, k, . . .}: The set of all nodes in the system.
C1: The maximum capacity of vehicle charging stations (VCSs).
C2: The maximum capacity of battery swapping stations (BSSs).
C3: The maximum capacity of battery charging stations (BCSs).
fc: The cost of building a vehicle charging station with capacity c.
gc: The cost of building a battery swapping station with capacity c.
hc: The cost of building a battery charging station with capacity c.
θ: The general cost of each battery in a planning lifespan of ten years.
r: The regulated maximum distance between two energy supplement infrastructures.
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TC: The exact charging time for each vehicle and empty battery.
TB: The exact battery swapping time for each vehicle.
Ttol : The tolerance of average waiting time at energy supplement stations for vehicles.
ε: The minimum probability that the average waiting time tolerance holds.
obv: The number of observed days for charging demand estimation.
Rk.t.n: The observed number of vehicles to be filled at node k in time interval t on

date n.
Vk.t: The ε value at risk of a number of vehicles to be filled at node k in time interval t.
di.j: Distance in the highway network from i and j.
Ti.j: The transportation time for batteries from node i to node j.
ai.j.k: Takes a value of 1 if node k is on the shortest path from i to j, 0 otherwise.
w: The general cost of battery transportation in a planning lifespan of ten years per

battery per kilometer.
OB: The battery operation beginning time.
OE: The battery operation ending time.

(b) Decision Variables

Ak.c: Takes a value of 1 if a vehicle charging station is built at node k with capacity c, 0
otherwise.

Bk.c: Takes a value of 1 if a battery swapping station is built at node k with capacity
c, 0 otherwise.

Ok.c: Takes a value of 1 if a battery charging station is built at node k with capacity c, 0
otherwise.

Lk: Takes a value of 1 if either a vehicle charging station or a battery swapping station
is built at node k, 0 otherwise.

Hk.t: The number of EV batteries can be swapped at node k in time interval t.
Ck.t: The number of EVs can be charged at node k in time interval t.
Mk.t: The number of batteries that start to charge at the vehicle charging station at

node k at the beginning of time interval t.
Nk.t: The number of batteries that start to charge at the battery charging station at

node k at the beginning of time interval t.
Fk.t: The number of full batteries at node k at the beginning of time interval t.
Ek.t: The number of empty batteries at node k at the beginning of time interval t.
Di.j.t: The number of full batteries beginning transport from node i to node j in time

interval t.
Gi.j.t: The number of empty batteries beginning transport from node i to node j in time

interval t.
Ik: The number of full batteries placed at node k at the battery operation beginning

time.

(c) Auxiliary Variables

µk.t: Service rate at node k in time interval t, namely, the number of vehicles that can
be charged or battery swapped provided by the energy supplement infrastructure.

λk.t: Arrival rate at node k in time interval t, namely, the number of vehicles to be filled.

3.3. Model

The model is developed to minimize the total cost. Meanwhile, to make the station
capacity well defined, the battery behavior reasonable, and the waiting time limited,
some constraints are set. The general idea of the development of this model is shown in
Figure 2.
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VCS
Transport

Purchase
BSS

BCS

Station Cost
Battery CostSiting

Sizing

Charging

Transport

Swapping

EV Waiting 
Time

Minimize total cost

Considered 
Factors 

Cost Element
Constraint: Factors 

affecting Cost Elements

Figure 2. A block diagram of the objectives and constraints of the model.

(a) Objective Function

Min ∑
k∈N

C1

∑
c=1

fc Ak.c + ∑
k∈N

C2

∑
c=1

gcBk.c + ∑
k∈N

C3

∑
c=1

hcOk.c + ∑
i∈N

∑
j∈N

OE

∑
t=OB

wdi.jDi.j.t

+ ∑
i∈N

∑
j∈N

OE

∑
t=OB

wdi.jGi.j.t + ∑
k∈N

θ Ik

(1)

The object of this model is to minimize the total cost, including the construction cost
of vehicle charging stations, battery swapping stations, and battery charging stations, the
transportation cost of full batteries and empty batteries, and the cost of purchasing extra
batteries for swapping.

(b) Constraints on Siting and Sizing of Energy Supplement Infrastructure

C1

∑
c=1

Ak.c ≤ 1 ∀k ∈ N (2)

C2

∑
c=1

Bk.c ≤ 1 ∀k ∈ N (3)

C2

∑
c=1

Ok.c ≤ 1 ∀k ∈ N (4)

Given a node k, the vehicle charging station, battery swapping station, and battery
charging station should either have a unique capacity or not exist (i.e., have capacity zero).
Since Ak.c, Bk.c, and Ok.c are binary variables, the values of these variables can be either
zero or one. Constraints (2), (3), and (4) ensure that at most one capacity is allocated to a
vehicle charging station, a battery swapping station, or a battery charging station at the
given node.

Lk ≤
C1

∑
c=1

Ak.c +
C2

∑
c=1

Bk.c ∀k ∈ N (5)
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Lk ≥
1
2

(
C1

∑
c=1

Ak.c +
C2

∑
c=1

Bk.c

)
∀k ∈ N (6)

Constraints (5) and (6) ensure that Lk is one if some energy supplement infrastructure
exists for vehicles (i.e., vehicle charging station and battery swapping station) at node k;
otherwise, it is zero.

di.j ≤ r ·
(

1 + ∑
k∈N

Lkai.j.k

)
∀i, j ∈ N (7)

Constraint (7) ensures that the distance between two arbitrary energy supplement
infrastructures for EVs has an upper bound of r. The term Lkai.j.k equals one if and only if
node k is on the route from i to j with at least one energy supplement infrastructure. There-
fore, the second term in the parentheses, i.e., the sum term, represents the total number
of nodes with energy supplement infrastructure on this route, leading to the right-hand
side of the inequality representing the maximum possible running distance, which should
definitely be larger than or equal to the distance from i to j. This should be true for the
arbitrary origin and destination. In this way, the limitation on the maximum distance
between the infrastructure can be ensured.

(c) Constraints on Battery Charging and Transportation

Fk.t = Ik t = OB, ∀k ∈ N (8)

Fk.t = Ik t = OE, ∀k ∈ N (9)

Ek.t = 0 t = OB, ∀k ∈ N (10)

Constraints (8) and (9) ensure that the same number of full batteries can be transported
back to the node where it is put into circulation, which is exactly the number of batteries
being purchased and placed at this node. This is an assumption of this model to make sure
that the battery operation is reasonable. Constraint (10) indicates that no empty batteries
are put into operation at the beginning time.

Fk.t = Fk.t−1 − Hk.t−1 + Mk.t−TC + Nk.t−TC −∑
j

Dk.j.t−1 + ∑
j

Dj.k.t−dTi.je

∀k ∈ N, ∀t ∈ [OB + 1, OE]
(11)

Ek.t = Ek.t−1 + Hk.t−1 −Mk.t−1 − Nk.t−1 −∑
j

Gk.j.t−1 + ∑
j

Gj.k.t−dTk.je

∀k ∈ N, ∀t ∈ [OB + 1, OE]
(12)

Constraints (11) and (12) ensure the balance of full batteries and empty batteries. Note
that

⌈
Ti.j
⌉

is the minimal integer larger than or equal to Ti.j. Constraint (11) shows that the
number of full batteries in one time interval equals the number in the last time interval plus
the number of batteries which have finished charging and the number of batteries being
transported to this station, and minus the number of full batteries being swapped in the
past interval and the number being transported away. Constraint (12) is constructed in a
similar way. Note that Constraints (11) and (12) are developed based on the assumption
that all batteries being swapped from EVs are empty.

Mk.t + Nk.t ≤ Ek.t ∀k ∈ N, ∀t (13)
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t

∑
l=t−TC+1

Mk.l ≤
C1

∑
c=1

cAk.c ∀k ∈ N, ∀t (14)

t

∑
l=t−TC+1

Nk.l ≤
C3

∑
c=1

cOk.c ∀k ∈ N, ∀t (15)

Hk.t ≤
1

TB

C2

∑
c=1

cBk.c ∀k ∈ N, ∀t (16)

Constraint (13) ensures that the number of batteries that begin charging in one time
interval should be less than or equal to the number of empty batteries, where batteries
being charged equals the number of batteries being charged at vehicle charging stations
plus the number of batteries being charged at battery charging stations. Constraint (14)
ensures the number of batteries being charged at the vehicle charging station is less than
or equal to the charging capacity of the station. Similarly, (15) sets the same constraint
for battery charging stations. Constraint (16) ensures that the number of batteries being
swapped is limited by the swapping ability of the battery swapping station.

∑
j

Dk.j.t ≤ Fk.t − Hk.t ∀k ∈ N, ∀t (17)

∑
j

Gk.j.t ≤ Ek.t + Hk.t ∀k ∈ N, ∀t (18)

Constraints (17) and (18) ensure that the number of batteries for transportation is
reasonable. For full batteries, it should be less than or equal to the number of full batteries
at the beginning of the time interval minus the number being swapped in the one-hour
interval, while for empty batteries, the right-hand side of the inequality should be the
number of empty batteries plus the swapping number.

∑
k
(Fk.t + Ek.t) + ∑

k

t

∑
t−Tc+1

(Mk.t + Nk.t) + ∑
k

∑
j

(
Dk.j.t−dTk.je + Gk.j.t−dTk.je

)
= ∑

k∈N
Ik ∀t (19)

Constraint (19) ensures that, at each time, the total number of batteries should equal
the number of all batteries in this model, namely, the sum of full batteries at the beginning
time at all nodes.

(d) Chance Constraint on EV Average Waiting Time

In this model, the EV average waiting time at an ESI is defined to be the sum of the
waiting time in the queue and service time. Then, a chance constraint is set to ensure that
the EV average waiting time is limited to some extent.

Ck.t ≤
(

C1

∑
c=1

cAk.c

)
−

t

∑
l=t−TC+1

Mk.l −
t−1

∑
l=t−TC

Ck.l ∀k ∈ N, ∀t (20)

Constraint (20) builds the relationship between the available capacity, the capacity
occupied by EVs, and the battery at time t node k. For EVs, the available capacity at period t
should be less than or equal to the total VCS capacity at node k minus the sum of capacities
occupied by battery charging and vehicle charging.

µk.t = Ck.t + Hk.t ∀k ∈ N, ∀t (21)

Pr
{
(µk.t − λk.t) ≥

(
1

Ttol

)
Lk

}
≥ ε ∀k ∈ N, ∀t (22)
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Constraints (21)–(22) are developed based on the M/M/1 queuing model. The M/M/1
queuing model, as shown in Figure 3, is applied here to estimate queuing at vehicle charging
stations and battery swapping stations, which assumes that the arrival process and the
service process (i.e., charging and battery swapping) at node k in time interval t follow a
Poisson distribution with parameters λk.t and µk.t, and a server number of one. Note that
the server number does not represent the capacity here, since the effect of capacity c is
shown by the service rate µk.t, and the energy supplement infrastructure is viewed as a
whole server in this model.

……

BSS

Waiting LineArrival Departure

VCS

VCS

BSS

……

……

Served by charging

Served by battery swapping

Service rate = 𝐶𝑘.𝑡

Service rate = 𝐻𝑘.𝑡

Arrival rate = 𝜆𝑘.𝑡
Service rate = 𝜇𝑘.𝑡
= 𝐶𝑘.𝑡+𝐻𝑘.𝑡

Figure 3. Modeling of EV average waiting time at an ESI based on M/M/1 queue model.

Constraint (21) indicates that the service rate at node k at time interval t is the sum of
available charging service times plus available battery swapping service times. Based on
the arrival rate and service rate, a chance constraint for waiting time, Constraint (22), can
be developed. For the M/M/1 model, 1

µk.t−λk.t
is the average waiting time at node k at time

interval t, including queuing time and charging time [26]. Then, for the given maximum
waiting time Ttol ,

1
µk.t − λk.t

≤ Ttol

should be upheld. If an energy supplement infrastructure is built at node k, then the
constraint for waiting time is

(µk.t − λk.t) ≥
(

1
Ttol

)
Lk.

The chance constraint of EV waiting time is modeled as follows. The idea comes
from the nonuniform distribution of the amount of traffic. It is observed that the peak
during festivals and holidays can be several times that of the normal amount of traffic,
while charging demand is proportional to this. Under such circumstances, the waiting
time constraint should not be strictly satisfied for all days, which can result in a waste of
resources during normal days. Then, the lower bound ε is set, which is the probability that
the waiting time constraint holds.

The chance constraint gives a stochastic portrait to charging demand in this determined
MILP model. Inspired by the sample average approximation method, in this context,
historical data in April 2023 (i.e., parameter Rk.t.n) were picked to represent the distribution
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of charging demand on different days, and the concept of value at risk will be applied to
quantify the probability. First, by substituting equation (21) into inequality (22), we obtain

Pr
{

Ck.t + Hk.t −
(

1
Ttol

)
Lk ≥ λk.t

}
≥ ε ∀k ∈ N, ∀t (23)

To solve (23), the concept of value-at-risk VaR is applied [27].

VaR(Z; X) = sup{γ | Pr(Z ≥ γ) ≥ X}

Similarly, the chance constraint can be transformed into an inequality of the VaR
of the charging demand. As introduced in the parameter section, Rk.t.n is the observed
charging demand at node k at time interval t on date n. For the given node k and time
interval t, there exist a series of data indicating the charging demand on different days;
this data series can be viewed as a set with cardinality n, say the set Rk.t at node k at time
interval t. This research assumed that 30 observations from 1 April 2023 to 30 April 2023
were picked to estimate the charging demand; hence, Rk.t = {Rk.t.1, Rk.t.2, ..., Rk.t.30}, ∀k, ∀t.
Another assumption is that the random variable of the charging demand follows the same
distribution as the data distribution in this set. Then, the chance constraint (23) is equivalent
to the following inequality:

Ck.t + Hk.t −
(

1
Ttol

)
Lk ≥ Vk.t ∀k ∈ N, ∀t (24)

where
Vk.t = VaR(Rk.t; ε) = sup{γ ∈ Rk.t | Pr(X ≥ γ) ≥ ε, X ∈ Rk.t}

4. Case Study with Numerical Results
4.1. Parameter Settings

The proposed method of siting and sizing for energy infrastructure, including battery
transportation, is tested in a real highway network, where the London M25 highway
network and travel data are chosen as a case study. As shown in Figure 4, 14 places near
the highway are picked as potential locations for energy supplement infrastructure.

London

Untitled layer

1

2

3

4

5

6

7
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Figure 4. The map of a London M25 highway network with 14 potential locations for ESI.
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The estimation of charging demand is based on the assumption that the charging
demand is proportional to the passing traffic amount. The UK National Highways publishes
the traffic data from billions of monitoring points on the portal [28]. To obtain the traffic
passing the nodes in the graph, the traffic data from the nearest monitoring point to the
node are selected.

After obtaining the traffic amount, it is necessary to determine the coefficient between
the traffic amount and charging demand. The average percentage of EVs among all vehicles
is about 10%, nearly three times the current percentage. In addition, battery technology
is constantly improving, and the mileage is generally around 600 miles. According to the
constraints, the distance between energy supplement infrastructure should be no more than
30 miles. Hence, it is estimated that 5% of EVs passing an energy supplement infrastructure
need to be filled. Thus, the charging demand is determined to make up 0.5% of the traffic
amount passing the node.

The other parameters are listed in Table 1.

Table 1. Parameters.

Parameter Value Unit

N {1, 2, 3, . . . , 14} -
C1 100 -
C2 50 -
C3 100 -
fc fc = 200 + 50× c 103 GBP
gc gc = 300 + 300× c 103 GBP
hc hc = 200 + 30× c 103 GBP
θ 10 103 GBP
r 30 mile

TC 2 hour
TB 1/6 hour
Ttol 1/2 hour

ε 0.8 -
w 0.0365 103 GBP per battery per mile

OB 6 -
OE 23 -

4.2. Planning Results for Energy Supplement Infrastructure

The optimization model is formulated to a MILP problem based on the MATLAB
R2022a platform and solved using the Gurobi 9.5.1 solver. The model has 11,592 variables
and 3834 constraints.

The optimization results show that there are 698 charging piles in VCS, 57 battery
swapping platforms in BSS, and 630 battery charging capacities, with 1198 batteries for
swapping in the London M25 highway network. The total cost in the planning lifespan is
GBP 8.6977× 107.

A comparison of the optimization results between those with and without battery
transportation is displayed in Table 2. It can be observed that the model with battery
transportation provides a result that is more cost efficient than the result without battery
transportation. By considering battery transportation, batteries are not necessarily charged
at the node where they are swapped, leading to four fewer stations of BCSs. Also, im-
provements in efficiency lead to fewer VCS and BSS capacities. Despite the slightly greater
battery cost, the costs of VCSs, BSSs, and BCSs are lowered in the model with battery trans-
portation. Hence, the model with battery transportation provides a better result compared
to the model without battery transportation.

Further, the transportation route and number of full/empty batteries being transported
is displayed in Table 3. Following this, a detailed explanation of the effect of battery
transportation behavior can be given. To reveal the detailed effect of transportation on the
battery swapping system, node 4 is taken as an example. The main battery transportation
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behavior with respect to node 4 happens on the route between 4 and 5. For full batteries,
transportation from node 5 to node 4 happens at time intervals 7, 12, 13, 14, 15, 16, 17, 18, 19,
and 22. The transportation numbers are 25, 13, 25, 22, 23, 25, 23, 21, 18, and 97, respectively.
For empty batteries, transportation from node 5 to node 4 happens at time intervals 6, 7,
8, 9, 10, 11, 12, 13, 14, 16, 17, and 20, and the transportation numbers are 13, 15, 27, 13, 30,
10, 28, 24, 24, 48, 27, and 59, respectively. Further, 25 empty batteries are transported from
node 1 to node 4 at time 8, and 20 empty batteries are transported from node 4 to node 3 at
time 11. Namely, many empty batteries are transported from node 4 to node 5 at some time
intervals, and then full batteries are transported back from node 5 to node 4. By applying
battery transportation, the battery charging demand at node 4 can be solved at ESIs at
node 5. The construction cost of one BCS can be saved in this way, at the cost of more BCS
capacities at node 5 and more transportation cost. In general, the cost of constructing a new
BCS surpasses the cost of adding more capacities at an existing BCS plus the transportation
cost between two near nodes in the ten-year planning lifespan. This example at node 4
shows the reason why the model with battery transportation is more cost efficient than the
model without battery transportation.

Table 2. Planning results for VCSs, BSSs, BCSs, and the number of batteries at the beginning at
each node.

Node Model with Battery Transportation Model without Battery Transportation
VCS BSS BCS Battery VCS BSS BCS Battery

1 19 3 0 87 50 1 6 28
2 43 5 80 105 85 4 52 52
3 32 4 77 97 88 1 0 27
4 26 5 0 111 92 6 53 93
5 30 5 99 99 53 5 52 90
6 51 5 60 83 39 6 62 107
7 58 6 68 107 61 7 67 111
8 58 7 97 122 56 8 79 135
9 46 5 71 90 40 6 59 99
10 100 2 0 51 40 6 59 99
11 47 1 0 34 59 2 0 13
12 99 1 0 31 37 5 48 91
13 45 4 78 126 33 5 48 92
14 44 4 0 55 48 4 37 79

Total 698 57 630 1198 781 66 622 1116
Cost 8.70 × 107 9.28 × 107

Table 3. The results for full and empty battery transportation between ESIs in one day.

Full Battery Empty Battery
Time Route Number Time Route Number

6 13→ 14 64 6 1→ 2 7
7 3→ 2 25 6 4→ 5 13
7 5→ 4 25 7 4→ 5 15
8 2→ 1 48 8 1→ 4 25

11 5→ 4 39 8 4→ 5 27
11 13→ 14 4 8 9→ 8 4
12 2→ 14 21 9 4→ 2 22
12 5→ 4 13 9 4→ 5 13
12 13→ 14 28 9 4→ 6 7
13 3→ 10 30 9 6→ 7 1
13 5→ 4 25 9 14→ 13 38
14 2→ 3 26 10 1→ 3 25
14 5→ 4 22 10 4→ 5 30
15 3→ 1 33 10 6→ 7 2
15 3→ 10 20 10 7→ 6 3
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Table 3. Cont.

Full Battery Empty Battery
Time Route Number Time Route Number

15 3→ 14 14 10 8→ 9 4
15 5→ 4 23 10 10→ 13 5
15 6→ 5 5 10 14→ 3 14
15 7→ 11 13 11 3→ 2 25
15 11→ 12 5 11 4→ 3 20
16 5→ 4 25 11 4→ 5 10
16 8→ 7 1 11 14→ 13 25
16 1→ 2 1 12 1→ 3 30
17 5→ 4 23 12 4→ 5 28
17 5→ 4 23 12 5→ 6 8
17 9→ 10 12 12 10→ 9 34
17 10→ 11 6 12 11→ 12 13
17 13→ 14 10 12 14→ 13 32
17 14→ 1 38 13 4→ 5 24
18 5→ 4 21 13 7→ 6 1
19 5→ 4 18 14 4→ 5 24
19 5→ 7 3 14 10→ 11 20
19 6→ 7 8 14 12→ 13 33
20 3→ 1 69 15 1→ 3 46
21 1→ 14 50 15 3→ 5 19
21 2→ 1 57 15 12→ 1 3
21 12→ 11 3 16 4→ 5 48
22 1→ 13 1 16 14→ 2 73
22 5→ 4 97 16 1→ 2 1
22 8→ 7 2 17 4→ 5 27
22 9→ 10 33 17 14→ 3 24
22 13→ 11 21 19 1→ 3 37

19 1→ 4 11
19 1→ 12 3
19 10→ 12 30
19 11→ 12 45
19 14→ 13 22
20 1→ 3 13
20 4→ 5 59
20 12→ 9 28
20 12→ 13 29
20 14→ 13 4

4.3. Effect of Average Waiting Time Tolerance

The tolerance of the EV average waiting time is a vital parameter in this planning
model. When the tolerance is quite large, the average waiting time constraint can be very
loose, resulting in little energy supplement infrastructure and long queues at stations.
However, if the tolerance is very strict, a large number of ESIs will be planned to satisfy this
bound, which may result in a waste of resources. In this research, the average waiting time
in the queue system is set to 0.5 h. To show the effect of the average waiting time tolerance
on the planning result, we have this tolerance moving from 0.1 to 0.9 in a step length of 0.1.

As shown in Figure 5, the total cost is sensitive to the average waiting time tolerance.
In particular, the construction costs of VCSs and BCSs are sensitive, while the BSS cost and
battery cost are not that sensitive. Also, it can be observed that the result is not sensitive to
the parameter Ttol when Ttol is larger than 0.5.
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Figure 5. The effect of average waiting time tolerance on each cost.

4.4. Effect of Battery Cost

The charging demand decides the energy supplement infrastructure velocity directly.
As shown in Figure 6, the total cost is sensitive to charging demand. In particular, there
is no clear trend for VCSs, while battery swapping and charging-process-related parts,
including BSSs, BCSs, and batteries, demonstrate a strong positive relationship with the
charging demand. This trend shows that from the cost-efficiency perspective, when the
charging demand grows, developing a battery swapping system works better than building
more vehicle charging stations.
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Figure 6. The effect of battery cost on each cost.

4.5. Effect of Charging Demand

As the cost of the battery increases, the total cost increases, and the number of batteries
for service decreases, as shown in Figure 7. Among the total cost, the cost of VCSs grows
significantly, while the costs of BSSs and BCSs decrease. The reason for this phenomenon is
that as the battery cost increases, the share of battery swapping services decreases, while the
share of charging increases. The cost of batteries experienced an increase before reaching
GBP 10,000, due to the increment in battery unit price. Meanwhile, a drop in battery cost
can be observed as the unit price grows larger than GBP 10,000, due to the reduction in
battery swapping services.
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Figure 7. The effect of charging demand on each cost.

5. Conclusions

This paper proposed a siting and sizing model of an energy supplement system
including vehicle charging stations, battery swapping stations, and battery charging stations
in the highway network. MILP is used to construct the model, where the EV average waiting
time is formulated as a chance constraint. A case study is carried out.

The planning model results show that, on average, the waiting time of electric vehicles
before energy filling is less than or equal to 0.5 h in 80% of circumstances. Vehicle charg-
ing stations and battery swapping stations are planned at all nodes to meet the energy
supplement demand, while battery charging stations are only planned at certain nodes
under some situations. Batteries are placed at nodes with battery swapping stations or
nodes near battery swapping stations, and the operation result indicates that most battery
transportation locations are near nodes. This planning model with battery transportation is
more cost efficient than the model without battery transportation. Also, the constraints on
the average waiting time of an EV demonstrates an obvious effect on the planning result,
i.e., a stricter constraint on the average waiting time leads to more energy supplement
infrastructure being planned.

The model proposed in this research can be applied to determine the optimal location
and size of the energy supplement infrastructure. For ESI deployers and the government,
the model can minimize the cost based on the condition that the charging demands of EV
owners are satisfied to a certain level, while for EV owners, energy supplement becomes
more convenient, and thus, waiting time can be shortened. Following this, the industry can
be promoted, which benefits the goal of achieving eco-friendly transportation.

This work can be further improved by defining a more specific distribution of the
service process and by estimating the waiting time using the M/G/1 queue model. In this
research, the arrival process and service process of EVs are assumed to follow a Poisson
distribution, and then the M/M/1 queue model is applied. For the arrival process this is
reasonable, since the Poisson distribution represents a totally random process with a given
mean value. However, for the service process, a more accurate distribution to represent
the process is a specific distribution combining the service time of VCSs or BSSs and the
probability of being served by VCSs or BSSs. Then, the M/G/1 queue model can be applied
to this specific distribution. Moreover, the burden on the power grid by charging stations
is ignored. The spatial–temporal distribution of the system’s charging load can affect the
planning and operation of the power grid. To achieve an overall optimal solution of energy
supplement infrastructure and the power grid, more factors such as the cost of power grid
infrastructure and the power grid operation strategy can be be taken into consideration in
future studies.
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